mempool/backend/src/api/acceleration/acceleration.ts

244 lines
9.6 KiB
TypeScript

import logger from '../../logger';
import { MempoolTransactionExtended } from '../../mempool.interfaces';
import { GraphTx, getSameBlockRelatives, initializeRelatives, makeBlockTemplate, mempoolComparator, removeAncestors, setAncestorScores } from '../mini-miner';
const BLOCK_WEIGHT_UNITS = 4_000_000;
const MAX_RELATIVE_GRAPH_SIZE = 200;
const BID_BOOST_WINDOW = 40_000;
const BID_BOOST_MIN_OFFSET = 10_000;
const BID_BOOST_MAX_OFFSET = 400_000;
export type Acceleration = {
txid: string;
max_bid: number;
};
interface TxSummary {
txid: string; // txid of the current transaction
effectiveVsize: number; // Total vsize of the dependency tree
effectiveFee: number; // Total fee of the dependency tree in sats
ancestorCount: number; // Number of ancestors
}
export interface AccelerationInfo {
txSummary: TxSummary;
targetFeeRate: number; // target fee rate (recommended next block fee, or median fee for mined block)
nextBlockFee: number; // fee in sats required to be in the next block (using recommended next block fee, or median fee for mined block)
cost: number; // additional cost to accelerate ((cost + txSummary.effectiveFee) / txSummary.effectiveVsize) >= targetFeeRate
}
class AccelerationCosts {
/**
* Takes a list of accelerations and verbose block data
* Returns the "fair" boost rate to charge accelerations
*
* @param accelerationsx
* @param verboseBlock
*/
public calculateBoostRate(accelerations: Acceleration[], blockTxs: MempoolTransactionExtended[]): number {
// Run GBT ourselves to calculate accurate effective fee rates
// the list of transactions comes from a mined block, so we already know everything fits within consensus limits
const template = makeBlockTemplate(blockTxs, accelerations, 1, Infinity, Infinity);
// initialize working maps for fast tx lookups
const accMap = {};
const txMap = {};
for (const acceleration of accelerations) {
accMap[acceleration.txid] = acceleration;
}
for (const tx of template) {
txMap[tx.txid] = tx;
}
// Identify and exclude accelerated and otherwise prioritized transactions
const excludeMap = {};
let totalWeight = 0;
let minAcceleratedPackage = Infinity;
let lastEffectiveRate = 0;
// Iterate over the mined template from bottom to top.
// Transactions should appear in ascending order of mining priority.
for (const blockTx of [...blockTxs].reverse()) {
const txid = blockTx.txid;
const tx = txMap[txid];
totalWeight += tx.weight;
const isAccelerated = accMap[txid] != null;
// If a cluster has a in-band effective fee rate than the previous cluster,
// it must have been prioritized out-of-band (in order to have a higher mining priority)
// so exclude from the analysis.
const isPrioritized = tx.effectiveFeePerVsize < lastEffectiveRate;
if (isPrioritized || isAccelerated) {
let packageWeight = 0;
// exclude this whole CPFP cluster
for (const clusterTxid of tx.cluster) {
packageWeight += txMap[clusterTxid].weight;
if (!excludeMap[clusterTxid]) {
excludeMap[clusterTxid] = true;
}
}
// keep track of the smallest accelerated CPFP cluster for later
if (isAccelerated) {
minAcceleratedPackage = Math.min(minAcceleratedPackage, packageWeight);
}
}
if (!isPrioritized) {
if (!isAccelerated) {
lastEffectiveRate = tx.effectiveFeePerVsize;
}
}
}
// The Bid Boost Rate is calculated by disregarding the bottom X weight units of the block,
// where X is the larger of BID_BOOST_MIN_OFFSET or the smallest accelerated package weight (the "offset"),
// then taking the average fee rate of the following BID_BOOST_WINDOW weight units
// (ignoring accelerated transactions and their ancestors).
//
// Transactions within the offset might pay less than the fair rate due to bin-packing effects
// But the average rate paid by the next chunk of non-accelerated transactions provides a good
// upper bound on the "next best rate" of alternatives to including the accelerated transactions
// (since, if there were any better options, they would have been included instead)
const spareWeight = BLOCK_WEIGHT_UNITS - totalWeight;
const windowOffset = Math.min(Math.max(minAcceleratedPackage, BID_BOOST_MIN_OFFSET, spareWeight), BID_BOOST_MAX_OFFSET);
const leftBound = windowOffset;
const rightBound = windowOffset + BID_BOOST_WINDOW;
let totalFeeInWindow = 0;
let totalWeightInWindow = Math.max(0, spareWeight - leftBound);
let txIndex = blockTxs.length - 1;
for (let offset = spareWeight; offset < BLOCK_WEIGHT_UNITS && txIndex >= 0; txIndex--) {
const txid = blockTxs[txIndex].txid;
const tx = txMap[txid];
if (excludeMap[txid]) {
// skip prioritized transactions and their ancestors
continue;
}
const left = offset;
const right = offset + tx.weight;
offset += tx.weight;
if (right < leftBound) {
// not within window yet
continue;
}
if (left > rightBound) {
// past window
break;
}
// count fees for weight units within the window
const overlapLeft = Math.max(leftBound, left);
const overlapRight = Math.min(rightBound, right);
const overlapUnits = overlapRight - overlapLeft;
totalFeeInWindow += (tx.effectiveFeePerVsize * (overlapUnits / 4));
totalWeightInWindow += overlapUnits;
}
if (totalWeightInWindow < BID_BOOST_WINDOW) {
// not enough un-prioritized transactions to calculate a fair rate
// just charge everyone their max bids
return Infinity;
}
// Divide the total fee by the size of the BID_BOOST_WINDOW in vbytes
const averageRate = totalFeeInWindow / (BID_BOOST_WINDOW / 4);
return averageRate;
}
/**
* Takes an accelerated mined txid and a target rate
* Returns the total vsize, fees and acceleration cost (in sats) of the tx and all same-block ancestors
*
* @param txid
* @param medianFeeRate
*/
public getAccelerationInfo(tx: MempoolTransactionExtended, targetFeeRate: number, transactions: MempoolTransactionExtended[]): AccelerationInfo {
// Get same-block transaction ancestors
const allRelatives = getSameBlockRelatives(tx, transactions);
const relativesMap = initializeRelatives(allRelatives);
const rootTx = relativesMap.get(tx.txid) as GraphTx;
// Calculate cost to boost
return this.calculateAccelerationAncestors(rootTx, relativesMap, targetFeeRate);
}
/**
* Given a root transaction, a list of in-mempool ancestors, and a target fee rate,
* Calculate the minimum set of transactions to fee-bump, their total vsize + fees
*
* @param tx
* @param ancestors
*/
private calculateAccelerationAncestors(tx: GraphTx, relatives: Map<string, GraphTx>, targetFeeRate: number): AccelerationInfo {
// add root tx to the ancestor map
relatives.set(tx.txid, tx);
// Check for high-sigop transactions (not supported)
relatives.forEach(entry => {
if (entry.vsize > Math.ceil(entry.weight / 4)) {
throw new Error(`high_sigop_tx`);
}
});
// Initialize individual & ancestor fee rates
relatives.forEach(entry => setAncestorScores(entry));
// Sort by descending ancestor score
let sortedRelatives = Array.from(relatives.values()).sort(mempoolComparator);
let includedInCluster: Map<string, GraphTx> | null = null;
// While highest score >= targetFeeRate
let maxIterations = MAX_RELATIVE_GRAPH_SIZE;
while (sortedRelatives.length && sortedRelatives[0].score && sortedRelatives[0].score >= targetFeeRate && maxIterations > 0) {
maxIterations--;
// Grab the highest scoring entry
const best = sortedRelatives.shift();
if (best) {
const cluster = new Map<string, GraphTx>(best.ancestors?.entries() || []);
if (best.ancestors.has(tx.txid)) {
includedInCluster = cluster;
}
cluster.set(best.txid, best);
// Remove this cluster (it already pays over the target rate, so doesn't need to be boosted)
// and update scores, ancestor totals and dependencies for the survivors
removeAncestors(cluster, relatives);
// re-sort
sortedRelatives = Array.from(relatives.values()).sort(mempoolComparator);
}
}
// sanity check for infinite loops / too many ancestors (should never happen)
if (maxIterations <= 0) {
logger.warn(`acceleration dependency calculation failed: calculateAccelerationAncestors loop exceeded ${MAX_RELATIVE_GRAPH_SIZE} iterations, unable to proceed`);
throw new Error('invalid_tx_dependencies');
}
let totalFee = tx.fees.ancestor;
// transaction is already CPFP-d above the target rate by some descendant
if (includedInCluster) {
let clusterSize = 0;
let clusterFee = 0;
includedInCluster.forEach(entry => {
clusterSize += entry.vsize;
clusterFee += entry.fees.base;
});
const clusterRate = clusterFee / clusterSize;
totalFee = Math.ceil(tx.ancestorsize * clusterRate);
}
// Whatever remains in the accelerated tx's dependencies needs to be boosted to the targetFeeRate
// Cost = (totalVsize * targetFeeRate) - totalFee
return {
txSummary: {
txid: tx.txid,
effectiveVsize: tx.ancestorsize,
effectiveFee: totalFee,
ancestorCount: tx.ancestorcount,
},
cost: Math.max(0, Math.ceil(tx.ancestorsize * targetFeeRate) - totalFee),
targetFeeRate,
nextBlockFee: Math.ceil(tx.ancestorsize * targetFeeRate),
};
}
}
export default new AccelerationCosts;