mempool/backend/src/api/tx-selection-worker.ts

294 lines
10 KiB
TypeScript

import config from '../config';
import logger from '../logger';
import { ThreadTransaction, MempoolBlockWithTransactions, AuditTransaction } from '../mempool.interfaces';
import { PairingHeap } from '../utils/pairing-heap';
import { Common } from './common';
import { parentPort } from 'worker_threads';
let mempool: { [txid: string]: ThreadTransaction } = {};
if (parentPort) {
parentPort.on('message', (params) => {
if (params.type === 'set') {
mempool = params.mempool;
} else if (params.type === 'update') {
params.added.forEach(tx => {
mempool[tx.txid] = tx;
});
params.removed.forEach(txid => {
delete mempool[txid];
});
}
const { blocks, clusters } = makeBlockTemplates(mempool);
// return the result to main thread.
if (parentPort) {
parentPort.postMessage({ blocks, clusters });
}
});
}
/*
* Build projected mempool blocks using an approximation of the transaction selection algorithm from Bitcoin Core
* (see BlockAssembler in https://github.com/bitcoin/bitcoin/blob/master/src/node/miner.cpp)
*/
function makeBlockTemplates(mempool: { [txid: string]: ThreadTransaction })
: { blocks: ThreadTransaction[][], clusters: { [root: string]: string[] } } {
const start = Date.now();
const auditPool: { [txid: string]: AuditTransaction } = {};
const mempoolArray: AuditTransaction[] = [];
const restOfArray: ThreadTransaction[] = [];
const cpfpClusters: { [root: string]: string[] } = {};
// grab the top feerate txs up to maxWeight
Object.values(mempool).sort((a, b) => b.feePerVsize - a.feePerVsize).forEach(tx => {
// initializing everything up front helps V8 optimize property access later
auditPool[tx.txid] = {
txid: tx.txid,
fee: tx.fee,
weight: tx.weight,
feePerVsize: tx.feePerVsize,
effectiveFeePerVsize: tx.feePerVsize,
vin: tx.vin,
relativesSet: false,
ancestorMap: new Map<string, AuditTransaction>(),
children: new Set<AuditTransaction>(),
ancestorFee: 0,
ancestorWeight: 0,
score: 0,
used: false,
modified: false,
modifiedNode: null,
};
mempoolArray.push(auditPool[tx.txid]);
});
// Build relatives graph & calculate ancestor scores
for (const tx of mempoolArray) {
if (!tx.relativesSet) {
setRelatives(tx, auditPool);
}
}
// Sort by descending ancestor score
mempoolArray.sort((a, b) => (b.score || 0) - (a.score || 0));
// Build blocks by greedily choosing the highest feerate package
// (i.e. the package rooted in the transaction with the best ancestor score)
const blocks: ThreadTransaction[][] = [];
let blockWeight = 4000;
let blockSize = 0;
let transactions: AuditTransaction[] = [];
const modified: PairingHeap<AuditTransaction> = new PairingHeap((a, b): boolean => (a.score || 0) > (b.score || 0));
let overflow: AuditTransaction[] = [];
let failures = 0;
let top = 0;
while ((top < mempoolArray.length || !modified.isEmpty())) {
// skip invalid transactions
while (top < mempoolArray.length && (mempoolArray[top].used || mempoolArray[top].modified)) {
top++;
}
// Select best next package
let nextTx;
const nextPoolTx = mempoolArray[top];
const nextModifiedTx = modified.peek();
if (nextPoolTx && (!nextModifiedTx || (nextPoolTx.score || 0) > (nextModifiedTx.score || 0))) {
nextTx = nextPoolTx;
top++;
} else {
modified.pop();
if (nextModifiedTx) {
nextTx = nextModifiedTx;
nextTx.modifiedNode = undefined;
}
}
if (nextTx && !nextTx?.used) {
// Check if the package fits into this block
if (blockWeight + nextTx.ancestorWeight < config.MEMPOOL.BLOCK_WEIGHT_UNITS) {
const ancestors: AuditTransaction[] = Array.from(nextTx.ancestorMap.values());
// sort ancestors by dependency graph (equivalent to sorting by ascending ancestor count)
const sortedTxSet = [...ancestors.sort((a, b) => { return (a.ancestorMap.size || 0) - (b.ancestorMap.size || 0); }), nextTx];
let isCluster = false;
if (sortedTxSet.length > 1) {
cpfpClusters[nextTx.txid] = sortedTxSet.map(tx => tx.txid);
isCluster = true;
}
const effectiveFeeRate = nextTx.ancestorFee / (nextTx.ancestorWeight / 4);
const used: AuditTransaction[] = [];
while (sortedTxSet.length) {
const ancestor = sortedTxSet.pop();
const mempoolTx = mempool[ancestor.txid];
ancestor.used = true;
ancestor.usedBy = nextTx.txid;
// update original copy of this tx with effective fee rate & relatives data
mempoolTx.effectiveFeePerVsize = effectiveFeeRate;
if (isCluster) {
mempoolTx.cpfpRoot = nextTx.txid;
}
mempoolTx.cpfpChecked = true;
transactions.push(ancestor);
blockSize += ancestor.size;
blockWeight += ancestor.weight;
used.push(ancestor);
}
// remove these as valid package ancestors for any descendants remaining in the mempool
if (used.length) {
used.forEach(tx => {
updateDescendants(tx, auditPool, modified);
});
}
failures = 0;
} else {
// hold this package in an overflow list while we check for smaller options
overflow.push(nextTx);
failures++;
}
}
// this block is full
const exceededPackageTries = failures > 1000 && blockWeight > (config.MEMPOOL.BLOCK_WEIGHT_UNITS - 4000);
const queueEmpty = top >= mempoolArray.length && modified.isEmpty();
if ((exceededPackageTries || queueEmpty) && blocks.length < 7) {
// construct this block
if (transactions.length) {
blocks.push(transactions.map(t => mempool[t.txid]));
}
// reset for the next block
transactions = [];
blockSize = 0;
blockWeight = 4000;
// 'overflow' packages didn't fit in this block, but are valid candidates for the next
for (const overflowTx of overflow.reverse()) {
if (overflowTx.modified) {
overflowTx.modifiedNode = modified.add(overflowTx);
} else {
top--;
mempoolArray[top] = overflowTx;
}
}
overflow = [];
}
}
// pack any leftover transactions into the last block
for (const tx of overflow) {
if (!tx || tx?.used) {
continue;
}
blockWeight += tx.weight;
const mempoolTx = mempool[tx.txid];
// update original copy of this tx with effective fee rate & relatives data
mempoolTx.effectiveFeePerVsize = tx.score;
if (tx.ancestorMap.size > 0) {
cpfpClusters[tx.txid] = Array.from(tx.ancestorMap?.values()).map(a => a.txid);
mempoolTx.cpfpRoot = tx.txid;
}
mempoolTx.cpfpChecked = true;
transactions.push(tx);
tx.used = true;
}
const blockTransactions = transactions.map(t => mempool[t.txid]);
restOfArray.forEach(tx => {
blockWeight += tx.weight;
tx.effectiveFeePerVsize = tx.feePerVsize;
tx.cpfpChecked = false;
blockTransactions.push(tx);
});
if (blockTransactions.length) {
blocks.push(blockTransactions);
}
transactions = [];
const end = Date.now();
const time = end - start;
logger.debug('Mempool templates calculated in ' + time / 1000 + ' seconds');
return { blocks, clusters: cpfpClusters };
}
// traverse in-mempool ancestors
// recursion unavoidable, but should be limited to depth < 25 by mempool policy
function setRelatives(
tx: AuditTransaction,
mempool: { [txid: string]: AuditTransaction },
): void {
for (const parent of tx.vin) {
const parentTx = mempool[parent];
if (parentTx && !tx.ancestorMap?.has(parent)) {
tx.ancestorMap.set(parent, parentTx);
parentTx.children.add(tx);
// visit each node only once
if (!parentTx.relativesSet) {
setRelatives(parentTx, mempool);
}
parentTx.ancestorMap.forEach((ancestor) => {
tx.ancestorMap.set(ancestor.txid, ancestor);
});
}
};
tx.ancestorFee = tx.fee || 0;
tx.ancestorWeight = tx.weight || 0;
tx.ancestorMap.forEach((ancestor) => {
tx.ancestorFee += ancestor.fee;
tx.ancestorWeight += ancestor.weight;
});
tx.score = tx.ancestorFee / ((tx.ancestorWeight / 4) || 1);
tx.relativesSet = true;
}
// iterate over remaining descendants, removing the root as a valid ancestor & updating the ancestor score
// avoids recursion to limit call stack depth
function updateDescendants(
rootTx: AuditTransaction,
mempool: { [txid: string]: AuditTransaction },
modified: PairingHeap<AuditTransaction>,
): void {
const descendantSet: Set<AuditTransaction> = new Set();
// stack of nodes left to visit
const descendants: AuditTransaction[] = [];
let descendantTx;
let tmpScore;
rootTx.children.forEach(childTx => {
if (!descendantSet.has(childTx)) {
descendants.push(childTx);
descendantSet.add(childTx);
}
});
while (descendants.length) {
descendantTx = descendants.pop();
if (descendantTx && descendantTx.ancestorMap && descendantTx.ancestorMap.has(rootTx.txid)) {
// remove tx as ancestor
descendantTx.ancestorMap.delete(rootTx.txid);
descendantTx.ancestorFee -= rootTx.fee;
descendantTx.ancestorWeight -= rootTx.weight;
tmpScore = descendantTx.score;
descendantTx.score = descendantTx.ancestorFee / (descendantTx.ancestorWeight / 4);
if (!descendantTx.modifiedNode) {
descendantTx.modified = true;
descendantTx.modifiedNode = modified.add(descendantTx);
} else {
// rebalance modified heap if score has changed
if (descendantTx.score < tmpScore) {
modified.decreasePriority(descendantTx.modifiedNode);
} else if (descendantTx.score > tmpScore) {
modified.increasePriority(descendantTx.modifiedNode);
}
}
// add this node's children to the stack
descendantTx.children.forEach(childTx => {
// visit each node only once
if (!descendantSet.has(childTx)) {
descendants.push(childTx);
descendantSet.add(childTx);
}
});
}
}
}