Andrew Poelstra f948ca216d rangeproof: several API changes
* add summing function for blinded generators
* drop `excess` and `gen` from `verify_tally`
* add extra_commit to rangeproof sign and verify
2018-04-05 16:39:34 -07:00

371 lines
15 KiB
C

/**********************************************************************
* Copyright (c) 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_RANGEPROOF_TESTS
#define SECP256K1_MODULE_RANGEPROOF_TESTS
#include <string.h>
#include "group.h"
#include "scalar.h"
#include "testrand.h"
#include "util.h"
#include "include/secp256k1_rangeproof.h"
static void test_pedersen(void) {
secp256k1_pedersen_commitment commits[19];
const secp256k1_pedersen_commitment *cptr[19];
unsigned char blinds[32*19];
const unsigned char *bptr[19];
secp256k1_scalar s;
uint64_t values[19];
int64_t totalv;
int i;
int inputs;
int outputs;
int total;
inputs = (secp256k1_rand32() & 7) + 1;
outputs = (secp256k1_rand32() & 7) + 2;
total = inputs + outputs;
for (i = 0; i < 19; i++) {
cptr[i] = &commits[i];
bptr[i] = &blinds[i * 32];
}
totalv = 0;
for (i = 0; i < inputs; i++) {
values[i] = secp256k1_rands64(0, INT64_MAX - totalv);
totalv += values[i];
}
for (i = 0; i < outputs - 1; i++) {
values[i + inputs] = secp256k1_rands64(0, totalv);
totalv -= values[i + inputs];
}
values[total - 1] = totalv;
for (i = 0; i < total - 1; i++) {
random_scalar_order(&s);
secp256k1_scalar_get_b32(&blinds[i * 32], &s);
}
CHECK(secp256k1_pedersen_blind_sum(ctx, &blinds[(total - 1) * 32], bptr, total - 1, inputs));
for (i = 0; i < total; i++) {
CHECK(secp256k1_pedersen_commit(ctx, &commits[i], &blinds[i * 32], values[i], secp256k1_generator_h));
}
CHECK(secp256k1_pedersen_verify_tally(ctx, cptr, inputs, &cptr[inputs], outputs));
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[inputs], outputs, cptr, inputs));
if (inputs > 0 && values[0] > 0) {
CHECK(!secp256k1_pedersen_verify_tally(ctx, cptr, inputs - 1, &cptr[inputs], outputs));
}
random_scalar_order(&s);
for (i = 0; i < 4; i++) {
secp256k1_scalar_get_b32(&blinds[i * 32], &s);
}
values[0] = INT64_MAX;
values[1] = 0;
values[2] = 1;
for (i = 0; i < 3; i++) {
CHECK(secp256k1_pedersen_commit(ctx, &commits[i], &blinds[i * 32], values[i], secp256k1_generator_h));
}
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[0], 1, &cptr[0], 1));
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[1], 1, &cptr[1], 1));
}
static void test_borromean(void) {
unsigned char e0[32];
secp256k1_scalar s[64];
secp256k1_gej pubs[64];
secp256k1_scalar k[8];
secp256k1_scalar sec[8];
secp256k1_ge ge;
secp256k1_scalar one;
unsigned char m[32];
size_t rsizes[8];
size_t secidx[8];
size_t nrings;
size_t i;
size_t j;
int c;
secp256k1_rand256_test(m);
nrings = 1 + (secp256k1_rand32()&7);
c = 0;
secp256k1_scalar_set_int(&one, 1);
if (secp256k1_rand32()&1) {
secp256k1_scalar_negate(&one, &one);
}
for (i = 0; i < nrings; i++) {
rsizes[i] = 1 + (secp256k1_rand32()&7);
secidx[i] = secp256k1_rand32() % rsizes[i];
random_scalar_order(&sec[i]);
random_scalar_order(&k[i]);
if(secp256k1_rand32()&7) {
sec[i] = one;
}
if(secp256k1_rand32()&7) {
k[i] = one;
}
for (j = 0; j < rsizes[i]; j++) {
random_scalar_order(&s[c + j]);
if(secp256k1_rand32()&7) {
s[i] = one;
}
if (j == secidx[i]) {
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubs[c + j], &sec[i]);
} else {
random_group_element_test(&ge);
random_group_element_jacobian_test(&pubs[c + j],&ge);
}
}
c += rsizes[i];
}
CHECK(secp256k1_borromean_sign(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx, e0, s, pubs, k, sec, rsizes, secidx, nrings, m, 32));
CHECK(secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, e0, s, pubs, rsizes, nrings, m, 32));
i = secp256k1_rand32() % c;
secp256k1_scalar_negate(&s[i],&s[i]);
CHECK(!secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, e0, s, pubs, rsizes, nrings, m, 32));
secp256k1_scalar_negate(&s[i],&s[i]);
secp256k1_scalar_set_int(&one, 1);
for(j = 0; j < 4; j++) {
i = secp256k1_rand32() % c;
if (secp256k1_rand32() & 1) {
secp256k1_gej_double_var(&pubs[i],&pubs[i], NULL);
} else {
secp256k1_scalar_add(&s[i],&s[i],&one);
}
CHECK(!secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, e0, s, pubs, rsizes, nrings, m, 32));
}
}
static void test_rangeproof(void) {
const uint64_t testvs[11] = {0, 1, 5, 11, 65535, 65537, INT32_MAX, UINT32_MAX, INT64_MAX - 1, INT64_MAX, UINT64_MAX};
secp256k1_pedersen_commitment commit;
secp256k1_pedersen_commitment commit2;
unsigned char proof[5134];
unsigned char blind[32];
unsigned char blindout[32];
unsigned char message[4096];
size_t mlen;
uint64_t v;
uint64_t vout;
uint64_t vmin;
uint64_t minv;
uint64_t maxv;
size_t len;
size_t i;
size_t j;
size_t k;
/* Short message is a Simone de Beauvoir quote */
const unsigned char message_short[120] = "When I see my own likeness in the depths of someone else's consciousness, I always experience a moment of panic.";
/* Long message is 0xA5 with a bunch of this quote in the middle */
unsigned char message_long[3968];
memset(message_long, 0xa5, sizeof(message_long));
for (i = 1200; i < 3600; i += 120) {
memcpy(&message_long[i], message_short, sizeof(message_short));
}
secp256k1_rand256(blind);
for (i = 0; i < 11; i++) {
v = testvs[i];
CHECK(secp256k1_pedersen_commit(ctx, &commit, blind, v, secp256k1_generator_h));
for (vmin = 0; vmin < (i<9 && i > 0 ? 2 : 1); vmin++) {
const unsigned char *input_message = NULL;
size_t input_message_len = 0;
/* vmin is always either 0 or 1; if it is 1, then we have no room for a message.
* If it's 0, we use "minimum encoding" and only have room for a small message when
* `testvs[i]` is >= 4; for a large message when it's >= 2^32. */
if (vmin == 0 && i > 2) {
input_message = message_short;
input_message_len = sizeof(message_short);
}
if (vmin == 0 && i > 7) {
input_message = message_long;
input_message_len = sizeof(message_long);
}
len = 5134;
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, vmin, &commit, blind, commit.data, 0, 0, v, input_message, input_message_len, NULL, 0, secp256k1_generator_h));
CHECK(len <= 5134);
mlen = 4096;
CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, message, &mlen, commit.data, &minv, &maxv, &commit, proof, len, NULL, 0, secp256k1_generator_h));
if (input_message != NULL) {
CHECK(memcmp(message, input_message, input_message_len) == 0);
}
for (j = input_message_len; j < mlen; j++) {
CHECK(message[j] == 0);
}
CHECK(mlen <= 4096);
CHECK(memcmp(blindout, blind, 32) == 0);
CHECK(vout == v);
CHECK(minv <= v);
CHECK(maxv >= v);
len = 5134;
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, v, &commit, blind, commit.data, -1, 64, v, NULL, 0, NULL, 0, secp256k1_generator_h));
CHECK(len <= 73);
CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit.data, &minv, &maxv, &commit, proof, len, NULL, 0, secp256k1_generator_h));
CHECK(memcmp(blindout, blind, 32) == 0);
CHECK(vout == v);
CHECK(minv == v);
CHECK(maxv == v);
/* Check with a committed message */
len = 5134;
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, v, &commit, blind, commit.data, -1, 64, v, NULL, 0, message_short, sizeof(message_short), secp256k1_generator_h));
CHECK(len <= 73);
CHECK(!secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit.data, &minv, &maxv, &commit, proof, len, NULL, 0, secp256k1_generator_h));
CHECK(!secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit.data, &minv, &maxv, &commit, proof, len, message_long, sizeof(message_long), secp256k1_generator_h));
CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit.data, &minv, &maxv, &commit, proof, len, message_short, sizeof(message_short), secp256k1_generator_h));
CHECK(memcmp(blindout, blind, 32) == 0);
CHECK(vout == v);
CHECK(minv == v);
CHECK(maxv == v);
}
}
secp256k1_rand256(blind);
v = INT64_MAX - 1;
CHECK(secp256k1_pedersen_commit(ctx, &commit, blind, v, secp256k1_generator_h));
for (i = 0; i < 19; i++) {
len = 5134;
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, 0, &commit, blind, commit.data, i, 0, v, NULL, 0, NULL, 0, secp256k1_generator_h));
CHECK(secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit, proof, len, NULL, 0, secp256k1_generator_h));
CHECK(len <= 5134);
CHECK(minv <= v);
CHECK(maxv >= v);
/* Make sure it fails when validating with a committed message */
CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit, proof, len, message_short, sizeof(message_short), secp256k1_generator_h));
}
secp256k1_rand256(blind);
{
/*Malleability test.*/
v = secp256k1_rands64(0, 255);
CHECK(secp256k1_pedersen_commit(ctx, &commit, blind, v, secp256k1_generator_h));
len = 5134;
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, 0, &commit, blind, commit.data, 0, 3, v, NULL, 0, NULL, 0, secp256k1_generator_h));
CHECK(len <= 5134);
for (i = 0; i < len*8; i++) {
proof[i >> 3] ^= 1 << (i & 7);
CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit, proof, len, NULL, 0, secp256k1_generator_h));
proof[i >> 3] ^= 1 << (i & 7);
}
CHECK(secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit, proof, len, NULL, 0, secp256k1_generator_h));
CHECK(minv <= v);
CHECK(maxv >= v);
}
memcpy(&commit2, &commit, sizeof(commit));
for (i = 0; i < 10 * (size_t) count; i++) {
int exp;
int min_bits;
v = secp256k1_rands64(0, UINT64_MAX >> (secp256k1_rand32()&63));
vmin = 0;
if ((v < INT64_MAX) && (secp256k1_rand32()&1)) {
vmin = secp256k1_rands64(0, v);
}
secp256k1_rand256(blind);
CHECK(secp256k1_pedersen_commit(ctx, &commit, blind, v, secp256k1_generator_h));
len = 5134;
exp = (int)secp256k1_rands64(0,18)-(int)secp256k1_rands64(0,18);
if (exp < 0) {
exp = -exp;
}
min_bits = (int)secp256k1_rands64(0,64)-(int)secp256k1_rands64(0,64);
if (min_bits < 0) {
min_bits = -min_bits;
}
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, vmin, &commit, blind, commit.data, exp, min_bits, v, NULL, 0, NULL, 0, secp256k1_generator_h));
CHECK(len <= 5134);
mlen = 4096;
CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, message, &mlen, commit.data, &minv, &maxv, &commit, proof, len, NULL, 0, secp256k1_generator_h));
for (j = 0; j < mlen; j++) {
CHECK(message[j] == 0);
}
CHECK(mlen <= 4096);
CHECK(memcmp(blindout, blind, 32) == 0);
CHECK(vout == v);
CHECK(minv <= v);
CHECK(maxv >= v);
CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit.data, &minv, &maxv, &commit, proof, len, NULL, 0, secp256k1_generator_h));
memcpy(&commit2, &commit, sizeof(commit));
}
for (j = 0; j < 10; j++) {
for (i = 0; i < 96; i++) {
secp256k1_rand256(&proof[i * 32]);
}
for (k = 0; k < 128; k++) {
len = k;
CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit2, proof, len, NULL, 0, secp256k1_generator_h));
}
len = secp256k1_rands64(0, 3072);
CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit2, proof, len, NULL, 0, secp256k1_generator_h));
}
}
#define MAX_N_GENS 30
void test_multiple_generators(void) {
const size_t n_inputs = (secp256k1_rand32() % (MAX_N_GENS / 2)) + 1;
const size_t n_outputs = (secp256k1_rand32() % (MAX_N_GENS / 2)) + 1;
const size_t n_generators = n_inputs + n_outputs;
unsigned char *generator_blind[MAX_N_GENS];
unsigned char *pedersen_blind[MAX_N_GENS];
secp256k1_generator generator[MAX_N_GENS];
secp256k1_pedersen_commitment commit[MAX_N_GENS];
const secp256k1_pedersen_commitment *commit_ptr[MAX_N_GENS];
size_t i;
int64_t total_value;
uint64_t value[MAX_N_GENS];
secp256k1_scalar s;
unsigned char generator_seed[32];
random_scalar_order(&s);
secp256k1_scalar_get_b32(generator_seed, &s);
/* Create all the needed generators */
for (i = 0; i < n_generators; i++) {
generator_blind[i] = (unsigned char*) malloc(32);
pedersen_blind[i] = (unsigned char*) malloc(32);
random_scalar_order(&s);
secp256k1_scalar_get_b32(generator_blind[i], &s);
random_scalar_order(&s);
secp256k1_scalar_get_b32(pedersen_blind[i], &s);
CHECK(secp256k1_generator_generate_blinded(ctx, &generator[i], generator_seed, generator_blind[i]));
commit_ptr[i] = &commit[i];
}
/* Compute all the values -- can be positive or negative */
total_value = 0;
for (i = 0; i < n_outputs; i++) {
value[n_inputs + i] = secp256k1_rands64(0, INT64_MAX - total_value);
total_value += value[n_inputs + i];
}
for (i = 0; i < n_inputs - 1; i++) {
value[i] = secp256k1_rands64(0, total_value);
total_value -= value[i];
}
value[i] = total_value;
/* Correct for blinding factors and do the commitments */
CHECK(secp256k1_pedersen_blind_generator_blind_sum(ctx, value, (const unsigned char * const *) generator_blind, pedersen_blind, n_generators, n_inputs));
for (i = 0; i < n_generators; i++) {
CHECK(secp256k1_pedersen_commit(ctx, &commit[i], pedersen_blind[i], value[i], &generator[i]));
}
/* Verify */
CHECK(secp256k1_pedersen_verify_tally(ctx, &commit_ptr[0], n_inputs, &commit_ptr[n_inputs], n_outputs));
}
void run_rangeproof_tests(void) {
int i;
for (i = 0; i < 10*count; i++) {
test_pedersen();
}
for (i = 0; i < 10*count; i++) {
test_borromean();
}
test_rangeproof();
test_multiple_generators();
}
#endif