311 lines
12 KiB
C

/**********************************************************************
* Copyright (c) 2014-2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_RANGEPROOF_MAIN
#define SECP256K1_MODULE_RANGEPROOF_MAIN
#include "group.h"
#include "modules/rangeproof/pedersen_impl.h"
#include "modules/rangeproof/borromean_impl.h"
#include "modules/rangeproof/rangeproof_impl.h"
/** Alternative generator for secp256k1.
* This is the sha256 of 'g' after standard encoding (without compression),
* which happens to be a point on the curve. More precisely, the generator is
* derived by running the following script with the sage mathematics software.
import hashlib
F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
G = '0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8'
H = EllipticCurve ([F (0), F (7)]).lift_x(F(int(hashlib.sha256(G.decode('hex')).hexdigest(),16)))
print('%x %x' % H.xy())
*/
static const secp256k1_generator secp256k1_generator_h_internal = {{
0x50, 0x92, 0x9b, 0x74, 0xc1, 0xa0, 0x49, 0x54, 0xb7, 0x8b, 0x4b, 0x60, 0x35, 0xe9, 0x7a, 0x5e,
0x07, 0x8a, 0x5a, 0x0f, 0x28, 0xec, 0x96, 0xd5, 0x47, 0xbf, 0xee, 0x9a, 0xce, 0x80, 0x3a, 0xc0,
0x31, 0xd3, 0xc6, 0x86, 0x39, 0x73, 0x92, 0x6e, 0x04, 0x9e, 0x63, 0x7c, 0xb1, 0xb5, 0xf4, 0x0a,
0x36, 0xda, 0xc2, 0x8a, 0xf1, 0x76, 0x69, 0x68, 0xc3, 0x0c, 0x23, 0x13, 0xf3, 0xa3, 0x89, 0x04
}};
const secp256k1_generator *secp256k1_generator_h = &secp256k1_generator_h_internal;
static void secp256k1_pedersen_commitment_load(secp256k1_ge* ge, const secp256k1_pedersen_commitment* commit) {
secp256k1_fe fe;
secp256k1_fe_set_b32(&fe, &commit->data[1]);
secp256k1_ge_set_xquad(ge, &fe);
if (commit->data[0] & 1) {
secp256k1_ge_neg(ge, ge);
}
}
static void secp256k1_pedersen_commitment_save(secp256k1_pedersen_commitment* commit, secp256k1_ge* ge) {
secp256k1_fe_normalize(&ge->x);
secp256k1_fe_get_b32(&commit->data[1], &ge->x);
commit->data[0] = 9 ^ secp256k1_fe_is_quad_var(&ge->y);
}
int secp256k1_pedersen_commitment_parse(const secp256k1_context* ctx, secp256k1_pedersen_commitment* commit, const unsigned char *input) {
secp256k1_fe x;
secp256k1_ge ge;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(input != NULL);
(void) ctx;
if ((input[0] & 0xFE) != 8 ||
!secp256k1_fe_set_b32(&x, &input[1]) ||
!secp256k1_ge_set_xquad(&ge, &x)) {
return 0;
}
if (input[0] & 1) {
secp256k1_ge_neg(&ge, &ge);
}
secp256k1_pedersen_commitment_save(commit, &ge);
return 1;
}
int secp256k1_pedersen_commitment_serialize(const secp256k1_context* ctx, unsigned char *output, const secp256k1_pedersen_commitment* commit) {
secp256k1_ge ge;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(commit != NULL);
secp256k1_pedersen_commitment_load(&ge, commit);
output[0] = 9 ^ secp256k1_fe_is_quad_var(&ge.y);
secp256k1_fe_normalize_var(&ge.x);
secp256k1_fe_get_b32(&output[1], &ge.x);
return 1;
}
/* Generates a pedersen commitment: *commit = blind * G + value * G2. The blinding factor is 32 bytes.*/
int secp256k1_pedersen_commit(const secp256k1_context* ctx, secp256k1_pedersen_commitment *commit, const unsigned char *blind, uint64_t value, const secp256k1_generator* gen) {
secp256k1_ge genp;
secp256k1_gej rj;
secp256k1_ge r;
secp256k1_scalar sec;
int overflow;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(commit != NULL);
ARG_CHECK(blind != NULL);
ARG_CHECK(gen != NULL);
secp256k1_generator_load(&genp, gen);
secp256k1_scalar_set_b32(&sec, blind, &overflow);
if (!overflow) {
secp256k1_pedersen_ecmult(&ctx->ecmult_gen_ctx, &rj, &sec, value, &genp);
if (!secp256k1_gej_is_infinity(&rj)) {
secp256k1_ge_set_gej(&r, &rj);
secp256k1_pedersen_commitment_save(commit, &r);
ret = 1;
}
secp256k1_gej_clear(&rj);
secp256k1_ge_clear(&r);
}
secp256k1_scalar_clear(&sec);
return ret;
}
/** Takes a list of n pointers to 32 byte blinding values, the first negs of which are treated with positive sign and the rest
* negative, then calculates an additional blinding value that adds to zero.
*/
int secp256k1_pedersen_blind_sum(const secp256k1_context* ctx, unsigned char *blind_out, const unsigned char * const *blinds, size_t n, size_t npositive) {
secp256k1_scalar acc;
secp256k1_scalar x;
size_t i;
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(blind_out != NULL);
ARG_CHECK(blinds != NULL);
ARG_CHECK(npositive <= n);
(void) ctx;
secp256k1_scalar_set_int(&acc, 0);
for (i = 0; i < n; i++) {
secp256k1_scalar_set_b32(&x, blinds[i], &overflow);
if (overflow) {
return 0;
}
if (i >= npositive) {
secp256k1_scalar_negate(&x, &x);
}
secp256k1_scalar_add(&acc, &acc, &x);
}
secp256k1_scalar_get_b32(blind_out, &acc);
secp256k1_scalar_clear(&acc);
secp256k1_scalar_clear(&x);
return 1;
}
/* Takes two lists of commitments and sums the first set and subtracts the second and verifies that they sum to excess. */
int secp256k1_pedersen_verify_tally(const secp256k1_context* ctx, const secp256k1_pedersen_commitment * const* commits, size_t pcnt, const secp256k1_pedersen_commitment * const* ncommits, size_t ncnt) {
secp256k1_gej accj;
secp256k1_ge add;
size_t i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(!pcnt || (commits != NULL));
ARG_CHECK(!ncnt || (ncommits != NULL));
(void) ctx;
secp256k1_gej_set_infinity(&accj);
for (i = 0; i < ncnt; i++) {
secp256k1_pedersen_commitment_load(&add, ncommits[i]);
secp256k1_gej_add_ge_var(&accj, &accj, &add, NULL);
}
secp256k1_gej_neg(&accj, &accj);
for (i = 0; i < pcnt; i++) {
secp256k1_pedersen_commitment_load(&add, commits[i]);
secp256k1_gej_add_ge_var(&accj, &accj, &add, NULL);
}
return secp256k1_gej_is_infinity(&accj);
}
int secp256k1_pedersen_blind_generator_blind_sum(const secp256k1_context* ctx, const uint64_t *value, const unsigned char* const* generator_blind, unsigned char* const* blinding_factor, size_t n_total, size_t n_inputs) {
secp256k1_scalar sum;
secp256k1_scalar tmp;
size_t i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(n_total == 0 || value != NULL);
ARG_CHECK(n_total == 0 || generator_blind != NULL);
ARG_CHECK(n_total == 0 || blinding_factor != NULL);
ARG_CHECK(n_total > n_inputs);
(void) ctx;
if (n_total == 0) {
return 1;
}
secp256k1_scalar_set_int(&sum, 0);
/* Here, n_total > 0. Thus the loop runs at least once.
Thus we may use a do-while loop, which checks the loop
condition only at the end.
The do-while loop helps GCC prove that the loop runs at least
once and suppresses a -Wmaybe-uninitialized warning. */
i = 0;
do {
int overflow = 0;
secp256k1_scalar addend;
secp256k1_scalar_set_u64(&addend, value[i]); /* s = v */
secp256k1_scalar_set_b32(&tmp, generator_blind[i], &overflow);
if (overflow == 1) {
secp256k1_scalar_clear(&tmp);
secp256k1_scalar_clear(&addend);
secp256k1_scalar_clear(&sum);
return 0;
}
secp256k1_scalar_mul(&addend, &addend, &tmp); /* s = vr */
secp256k1_scalar_set_b32(&tmp, blinding_factor[i], &overflow);
if (overflow == 1) {
secp256k1_scalar_clear(&tmp);
secp256k1_scalar_clear(&addend);
secp256k1_scalar_clear(&sum);
return 0;
}
secp256k1_scalar_add(&addend, &addend, &tmp); /* s = vr + r' */
secp256k1_scalar_cond_negate(&addend, i < n_inputs); /* s is negated if it's an input */
secp256k1_scalar_add(&sum, &sum, &addend); /* sum += s */
secp256k1_scalar_clear(&addend);
i++;
} while (i < n_total);
/* Right now tmp has the last pedersen blinding factor. Subtract the sum from it. */
secp256k1_scalar_negate(&sum, &sum);
secp256k1_scalar_add(&tmp, &tmp, &sum);
secp256k1_scalar_get_b32(blinding_factor[n_total - 1], &tmp);
secp256k1_scalar_clear(&tmp);
secp256k1_scalar_clear(&sum);
return 1;
}
int secp256k1_rangeproof_info(const secp256k1_context* ctx, int *exp, int *mantissa,
uint64_t *min_value, uint64_t *max_value, const unsigned char *proof, size_t plen) {
size_t offset;
uint64_t scale;
ARG_CHECK(exp != NULL);
ARG_CHECK(mantissa != NULL);
ARG_CHECK(min_value != NULL);
ARG_CHECK(max_value != NULL);
ARG_CHECK(proof != NULL);
offset = 0;
scale = 1;
(void)ctx;
return secp256k1_rangeproof_getheader_impl(&offset, exp, mantissa, &scale, min_value, max_value, proof, plen);
}
int secp256k1_rangeproof_rewind(const secp256k1_context* ctx,
unsigned char *blind_out, uint64_t *value_out, unsigned char *message_out, size_t *outlen, const unsigned char *nonce,
uint64_t *min_value, uint64_t *max_value,
const secp256k1_pedersen_commitment *commit, const unsigned char *proof, size_t plen, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_generator* gen) {
secp256k1_ge commitp;
secp256k1_ge genp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(proof != NULL);
ARG_CHECK(min_value != NULL);
ARG_CHECK(max_value != NULL);
ARG_CHECK(message_out != NULL || outlen == NULL);
ARG_CHECK(nonce != NULL);
ARG_CHECK(extra_commit != NULL || extra_commit_len == 0);
ARG_CHECK(gen != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
secp256k1_pedersen_commitment_load(&commitp, commit);
secp256k1_generator_load(&genp, gen);
return secp256k1_rangeproof_verify_impl(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx,
blind_out, value_out, message_out, outlen, nonce, min_value, max_value, &commitp, proof, plen, extra_commit, extra_commit_len, &genp);
}
int secp256k1_rangeproof_verify(const secp256k1_context* ctx, uint64_t *min_value, uint64_t *max_value,
const secp256k1_pedersen_commitment *commit, const unsigned char *proof, size_t plen, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_generator* gen) {
secp256k1_ge commitp;
secp256k1_ge genp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(proof != NULL);
ARG_CHECK(min_value != NULL);
ARG_CHECK(max_value != NULL);
ARG_CHECK(extra_commit != NULL || extra_commit_len == 0);
ARG_CHECK(gen != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
secp256k1_pedersen_commitment_load(&commitp, commit);
secp256k1_generator_load(&genp, gen);
return secp256k1_rangeproof_verify_impl(&ctx->ecmult_ctx, NULL,
NULL, NULL, NULL, NULL, NULL, min_value, max_value, &commitp, proof, plen, extra_commit, extra_commit_len, &genp);
}
int secp256k1_rangeproof_sign(const secp256k1_context* ctx, unsigned char *proof, size_t *plen, uint64_t min_value,
const secp256k1_pedersen_commitment *commit, const unsigned char *blind, const unsigned char *nonce, int exp, int min_bits, uint64_t value,
const unsigned char *message, size_t msg_len, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_generator* gen){
secp256k1_ge commitp;
secp256k1_ge genp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(proof != NULL);
ARG_CHECK(plen != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(blind != NULL);
ARG_CHECK(nonce != NULL);
ARG_CHECK(message != NULL || msg_len == 0);
ARG_CHECK(extra_commit != NULL || extra_commit_len == 0);
ARG_CHECK(gen != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
secp256k1_pedersen_commitment_load(&commitp, commit);
secp256k1_generator_load(&genp, gen);
return secp256k1_rangeproof_sign_impl(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx,
proof, plen, min_value, &commitp, blind, nonce, exp, min_bits, value, message, msg_len, extra_commit, extra_commit_len, &genp);
}
#endif