6251 lines
265 KiB
C
6251 lines
265 KiB
C
/***********************************************************************
|
|
* Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
|
***********************************************************************/
|
|
|
|
#if defined HAVE_CONFIG_H
|
|
#include "libsecp256k1-config.h"
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <time.h>
|
|
|
|
#include "secp256k1.c"
|
|
#include "include/secp256k1.h"
|
|
#include "include/secp256k1_preallocated.h"
|
|
#include "testrand_impl.h"
|
|
#include "util.h"
|
|
|
|
#ifdef ENABLE_OPENSSL_TESTS
|
|
#include "openssl/bn.h"
|
|
#include "openssl/ec.h"
|
|
#include "openssl/ecdsa.h"
|
|
#include "openssl/obj_mac.h"
|
|
# if OPENSSL_VERSION_NUMBER < 0x10100000L
|
|
void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {*pr = sig->r; *ps = sig->s;}
|
|
# endif
|
|
#endif
|
|
|
|
#include "contrib/lax_der_parsing.c"
|
|
#include "contrib/lax_der_privatekey_parsing.c"
|
|
|
|
#include "modinv32_impl.h"
|
|
#ifdef SECP256K1_WIDEMUL_INT128
|
|
#include "modinv64_impl.h"
|
|
#endif
|
|
|
|
static int count = 64;
|
|
static secp256k1_context *ctx = NULL;
|
|
|
|
static void counting_illegal_callback_fn(const char* str, void* data) {
|
|
/* Dummy callback function that just counts. */
|
|
int32_t *p;
|
|
(void)str;
|
|
p = data;
|
|
(*p)++;
|
|
}
|
|
|
|
static void uncounting_illegal_callback_fn(const char* str, void* data) {
|
|
/* Dummy callback function that just counts (backwards). */
|
|
int32_t *p;
|
|
(void)str;
|
|
p = data;
|
|
(*p)--;
|
|
}
|
|
|
|
void random_field_element_test(secp256k1_fe *fe) {
|
|
do {
|
|
unsigned char b32[32];
|
|
secp256k1_testrand256_test(b32);
|
|
if (secp256k1_fe_set_b32(fe, b32)) {
|
|
break;
|
|
}
|
|
} while(1);
|
|
}
|
|
|
|
void random_field_element_magnitude(secp256k1_fe *fe) {
|
|
secp256k1_fe zero;
|
|
int n = secp256k1_testrand_int(9);
|
|
secp256k1_fe_normalize(fe);
|
|
if (n == 0) {
|
|
return;
|
|
}
|
|
secp256k1_fe_clear(&zero);
|
|
secp256k1_fe_negate(&zero, &zero, 0);
|
|
secp256k1_fe_mul_int(&zero, n - 1);
|
|
secp256k1_fe_add(fe, &zero);
|
|
#ifdef VERIFY
|
|
CHECK(fe->magnitude == n);
|
|
#endif
|
|
}
|
|
|
|
void random_group_element_test(secp256k1_ge *ge) {
|
|
secp256k1_fe fe;
|
|
do {
|
|
random_field_element_test(&fe);
|
|
if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_testrand_bits(1))) {
|
|
secp256k1_fe_normalize(&ge->y);
|
|
break;
|
|
}
|
|
} while(1);
|
|
ge->infinity = 0;
|
|
}
|
|
|
|
void random_group_element_jacobian_test(secp256k1_gej *gej, const secp256k1_ge *ge) {
|
|
secp256k1_fe z2, z3;
|
|
do {
|
|
random_field_element_test(&gej->z);
|
|
if (!secp256k1_fe_is_zero(&gej->z)) {
|
|
break;
|
|
}
|
|
} while(1);
|
|
secp256k1_fe_sqr(&z2, &gej->z);
|
|
secp256k1_fe_mul(&z3, &z2, &gej->z);
|
|
secp256k1_fe_mul(&gej->x, &ge->x, &z2);
|
|
secp256k1_fe_mul(&gej->y, &ge->y, &z3);
|
|
gej->infinity = ge->infinity;
|
|
}
|
|
|
|
void random_scalar_order_test(secp256k1_scalar *num) {
|
|
do {
|
|
unsigned char b32[32];
|
|
int overflow = 0;
|
|
secp256k1_testrand256_test(b32);
|
|
secp256k1_scalar_set_b32(num, b32, &overflow);
|
|
if (overflow || secp256k1_scalar_is_zero(num)) {
|
|
continue;
|
|
}
|
|
break;
|
|
} while(1);
|
|
}
|
|
|
|
void random_scalar_order(secp256k1_scalar *num) {
|
|
do {
|
|
unsigned char b32[32];
|
|
int overflow = 0;
|
|
secp256k1_testrand256(b32);
|
|
secp256k1_scalar_set_b32(num, b32, &overflow);
|
|
if (overflow || secp256k1_scalar_is_zero(num)) {
|
|
continue;
|
|
}
|
|
break;
|
|
} while(1);
|
|
}
|
|
|
|
void random_scalar_order_b32(unsigned char *b32) {
|
|
secp256k1_scalar num;
|
|
random_scalar_order(&num);
|
|
secp256k1_scalar_get_b32(b32, &num);
|
|
}
|
|
|
|
void run_context_tests(int use_prealloc) {
|
|
secp256k1_pubkey pubkey;
|
|
secp256k1_pubkey zero_pubkey;
|
|
secp256k1_ecdsa_signature sig;
|
|
unsigned char ctmp[32];
|
|
int32_t ecount;
|
|
int32_t ecount2;
|
|
secp256k1_context *none;
|
|
secp256k1_context *sign;
|
|
secp256k1_context *vrfy;
|
|
secp256k1_context *both;
|
|
void *none_prealloc = NULL;
|
|
void *sign_prealloc = NULL;
|
|
void *vrfy_prealloc = NULL;
|
|
void *both_prealloc = NULL;
|
|
|
|
secp256k1_gej pubj;
|
|
secp256k1_ge pub;
|
|
secp256k1_scalar msg, key, nonce;
|
|
secp256k1_scalar sigr, sigs;
|
|
|
|
if (use_prealloc) {
|
|
none_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE));
|
|
sign_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN));
|
|
vrfy_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY));
|
|
both_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY));
|
|
CHECK(none_prealloc != NULL);
|
|
CHECK(sign_prealloc != NULL);
|
|
CHECK(vrfy_prealloc != NULL);
|
|
CHECK(both_prealloc != NULL);
|
|
none = secp256k1_context_preallocated_create(none_prealloc, SECP256K1_CONTEXT_NONE);
|
|
sign = secp256k1_context_preallocated_create(sign_prealloc, SECP256K1_CONTEXT_SIGN);
|
|
vrfy = secp256k1_context_preallocated_create(vrfy_prealloc, SECP256K1_CONTEXT_VERIFY);
|
|
both = secp256k1_context_preallocated_create(both_prealloc, SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
|
} else {
|
|
none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
|
sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
|
vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
|
|
both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
|
}
|
|
|
|
memset(&zero_pubkey, 0, sizeof(zero_pubkey));
|
|
|
|
ecount = 0;
|
|
ecount2 = 10;
|
|
secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
|
|
secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount2);
|
|
/* set error callback (to a function that still aborts in case malloc() fails in secp256k1_context_clone() below) */
|
|
secp256k1_context_set_error_callback(sign, secp256k1_default_illegal_callback_fn, NULL);
|
|
CHECK(sign->error_callback.fn != vrfy->error_callback.fn);
|
|
CHECK(sign->error_callback.fn == secp256k1_default_illegal_callback_fn);
|
|
|
|
/* check if sizes for cloning are consistent */
|
|
CHECK(secp256k1_context_preallocated_clone_size(none) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE));
|
|
CHECK(secp256k1_context_preallocated_clone_size(sign) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN));
|
|
CHECK(secp256k1_context_preallocated_clone_size(vrfy) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY));
|
|
CHECK(secp256k1_context_preallocated_clone_size(both) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY));
|
|
|
|
/*** clone and destroy all of them to make sure cloning was complete ***/
|
|
{
|
|
secp256k1_context *ctx_tmp;
|
|
|
|
if (use_prealloc) {
|
|
/* clone into a non-preallocated context and then again into a new preallocated one. */
|
|
ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_preallocated_destroy(ctx_tmp);
|
|
free(none_prealloc); none_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); CHECK(none_prealloc != NULL);
|
|
ctx_tmp = none; none = secp256k1_context_preallocated_clone(none, none_prealloc); secp256k1_context_destroy(ctx_tmp);
|
|
|
|
ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_preallocated_destroy(ctx_tmp);
|
|
free(sign_prealloc); sign_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN)); CHECK(sign_prealloc != NULL);
|
|
ctx_tmp = sign; sign = secp256k1_context_preallocated_clone(sign, sign_prealloc); secp256k1_context_destroy(ctx_tmp);
|
|
|
|
ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_preallocated_destroy(ctx_tmp);
|
|
free(vrfy_prealloc); vrfy_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY)); CHECK(vrfy_prealloc != NULL);
|
|
ctx_tmp = vrfy; vrfy = secp256k1_context_preallocated_clone(vrfy, vrfy_prealloc); secp256k1_context_destroy(ctx_tmp);
|
|
|
|
ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_preallocated_destroy(ctx_tmp);
|
|
free(both_prealloc); both_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY)); CHECK(both_prealloc != NULL);
|
|
ctx_tmp = both; both = secp256k1_context_preallocated_clone(both, both_prealloc); secp256k1_context_destroy(ctx_tmp);
|
|
} else {
|
|
/* clone into a preallocated context and then again into a new non-preallocated one. */
|
|
void *prealloc_tmp;
|
|
|
|
prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); CHECK(prealloc_tmp != NULL);
|
|
ctx_tmp = none; none = secp256k1_context_preallocated_clone(none, prealloc_tmp); secp256k1_context_destroy(ctx_tmp);
|
|
ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_preallocated_destroy(ctx_tmp);
|
|
free(prealloc_tmp);
|
|
|
|
prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN)); CHECK(prealloc_tmp != NULL);
|
|
ctx_tmp = sign; sign = secp256k1_context_preallocated_clone(sign, prealloc_tmp); secp256k1_context_destroy(ctx_tmp);
|
|
ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_preallocated_destroy(ctx_tmp);
|
|
free(prealloc_tmp);
|
|
|
|
prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY)); CHECK(prealloc_tmp != NULL);
|
|
ctx_tmp = vrfy; vrfy = secp256k1_context_preallocated_clone(vrfy, prealloc_tmp); secp256k1_context_destroy(ctx_tmp);
|
|
ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_preallocated_destroy(ctx_tmp);
|
|
free(prealloc_tmp);
|
|
|
|
prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY)); CHECK(prealloc_tmp != NULL);
|
|
ctx_tmp = both; both = secp256k1_context_preallocated_clone(both, prealloc_tmp); secp256k1_context_destroy(ctx_tmp);
|
|
ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_preallocated_destroy(ctx_tmp);
|
|
free(prealloc_tmp);
|
|
}
|
|
}
|
|
|
|
/* Verify that the error callback makes it across the clone. */
|
|
CHECK(sign->error_callback.fn != vrfy->error_callback.fn);
|
|
CHECK(sign->error_callback.fn == secp256k1_default_illegal_callback_fn);
|
|
/* And that it resets back to default. */
|
|
secp256k1_context_set_error_callback(sign, NULL, NULL);
|
|
CHECK(vrfy->error_callback.fn == sign->error_callback.fn);
|
|
|
|
/*** attempt to use them ***/
|
|
random_scalar_order_test(&msg);
|
|
random_scalar_order_test(&key);
|
|
secp256k1_ecmult_gen(&both->ecmult_gen_ctx, &pubj, &key);
|
|
secp256k1_ge_set_gej(&pub, &pubj);
|
|
|
|
/* Verify context-type checking illegal-argument errors. */
|
|
memset(ctmp, 1, 32);
|
|
CHECK(secp256k1_ec_pubkey_create(vrfy, &pubkey, ctmp) == 0);
|
|
CHECK(ecount == 1);
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_create(sign, &pubkey, ctmp) == 1);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ecdsa_sign(vrfy, &sig, ctmp, ctmp, NULL, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
VG_UNDEF(&sig, sizeof(sig));
|
|
CHECK(secp256k1_ecdsa_sign(sign, &sig, ctmp, ctmp, NULL, NULL) == 1);
|
|
VG_CHECK(&sig, sizeof(sig));
|
|
CHECK(ecount2 == 10);
|
|
CHECK(secp256k1_ecdsa_verify(sign, &sig, ctmp, &pubkey) == 0);
|
|
CHECK(ecount2 == 11);
|
|
CHECK(secp256k1_ecdsa_verify(vrfy, &sig, ctmp, &pubkey) == 1);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_ec_pubkey_tweak_add(sign, &pubkey, ctmp) == 0);
|
|
CHECK(ecount2 == 12);
|
|
CHECK(secp256k1_ec_pubkey_tweak_add(vrfy, &pubkey, ctmp) == 1);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_ec_pubkey_tweak_mul(sign, &pubkey, ctmp) == 0);
|
|
CHECK(ecount2 == 13);
|
|
CHECK(secp256k1_ec_pubkey_negate(vrfy, &pubkey) == 1);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_ec_pubkey_negate(sign, &pubkey) == 1);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_ec_pubkey_negate(sign, NULL) == 0);
|
|
CHECK(ecount2 == 14);
|
|
CHECK(secp256k1_ec_pubkey_negate(vrfy, &zero_pubkey) == 0);
|
|
CHECK(ecount == 3);
|
|
CHECK(secp256k1_ec_pubkey_tweak_mul(vrfy, &pubkey, ctmp) == 1);
|
|
CHECK(ecount == 3);
|
|
CHECK(secp256k1_context_randomize(vrfy, ctmp) == 1);
|
|
CHECK(ecount == 3);
|
|
CHECK(secp256k1_context_randomize(vrfy, NULL) == 1);
|
|
CHECK(ecount == 3);
|
|
CHECK(secp256k1_context_randomize(sign, ctmp) == 1);
|
|
CHECK(ecount2 == 14);
|
|
CHECK(secp256k1_context_randomize(sign, NULL) == 1);
|
|
CHECK(ecount2 == 14);
|
|
secp256k1_context_set_illegal_callback(vrfy, NULL, NULL);
|
|
secp256k1_context_set_illegal_callback(sign, NULL, NULL);
|
|
|
|
/* obtain a working nonce */
|
|
do {
|
|
random_scalar_order_test(&nonce);
|
|
} while(!secp256k1_ecdsa_sig_sign(&both->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL));
|
|
|
|
/* try signing */
|
|
CHECK(secp256k1_ecdsa_sig_sign(&sign->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL));
|
|
CHECK(secp256k1_ecdsa_sig_sign(&both->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL));
|
|
|
|
/* try verifying */
|
|
CHECK(secp256k1_ecdsa_sig_verify(&vrfy->ecmult_ctx, &sigr, &sigs, &pub, &msg));
|
|
CHECK(secp256k1_ecdsa_sig_verify(&both->ecmult_ctx, &sigr, &sigs, &pub, &msg));
|
|
|
|
/* cleanup */
|
|
if (use_prealloc) {
|
|
secp256k1_context_preallocated_destroy(none);
|
|
secp256k1_context_preallocated_destroy(sign);
|
|
secp256k1_context_preallocated_destroy(vrfy);
|
|
secp256k1_context_preallocated_destroy(both);
|
|
free(none_prealloc);
|
|
free(sign_prealloc);
|
|
free(vrfy_prealloc);
|
|
free(both_prealloc);
|
|
} else {
|
|
secp256k1_context_destroy(none);
|
|
secp256k1_context_destroy(sign);
|
|
secp256k1_context_destroy(vrfy);
|
|
secp256k1_context_destroy(both);
|
|
}
|
|
/* Defined as no-op. */
|
|
secp256k1_context_destroy(NULL);
|
|
secp256k1_context_preallocated_destroy(NULL);
|
|
|
|
}
|
|
|
|
void run_scratch_tests(void) {
|
|
const size_t adj_alloc = ((500 + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT;
|
|
|
|
int32_t ecount = 0;
|
|
size_t checkpoint;
|
|
size_t checkpoint_2;
|
|
secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
|
secp256k1_scratch_space *scratch;
|
|
secp256k1_scratch_space local_scratch;
|
|
|
|
/* Test public API */
|
|
secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
|
|
secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount);
|
|
|
|
scratch = secp256k1_scratch_space_create(none, 1000);
|
|
CHECK(scratch != NULL);
|
|
CHECK(ecount == 0);
|
|
|
|
/* Test internal API */
|
|
CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000);
|
|
CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 1) == 1000 - (ALIGNMENT - 1));
|
|
CHECK(scratch->alloc_size == 0);
|
|
CHECK(scratch->alloc_size % ALIGNMENT == 0);
|
|
|
|
/* Allocating 500 bytes succeeds */
|
|
checkpoint = secp256k1_scratch_checkpoint(&none->error_callback, scratch);
|
|
CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) != NULL);
|
|
CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000 - adj_alloc);
|
|
CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 1) == 1000 - adj_alloc - (ALIGNMENT - 1));
|
|
CHECK(scratch->alloc_size != 0);
|
|
CHECK(scratch->alloc_size % ALIGNMENT == 0);
|
|
|
|
/* Allocating another 501 bytes fails */
|
|
CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 501) == NULL);
|
|
CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000 - adj_alloc);
|
|
CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 1) == 1000 - adj_alloc - (ALIGNMENT - 1));
|
|
CHECK(scratch->alloc_size != 0);
|
|
CHECK(scratch->alloc_size % ALIGNMENT == 0);
|
|
|
|
/* ...but it succeeds once we apply the checkpoint to undo it */
|
|
secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, checkpoint);
|
|
CHECK(scratch->alloc_size == 0);
|
|
CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000);
|
|
CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) != NULL);
|
|
CHECK(scratch->alloc_size != 0);
|
|
|
|
/* try to apply a bad checkpoint */
|
|
checkpoint_2 = secp256k1_scratch_checkpoint(&none->error_callback, scratch);
|
|
secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, checkpoint);
|
|
CHECK(ecount == 0);
|
|
secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, checkpoint_2); /* checkpoint_2 is after checkpoint */
|
|
CHECK(ecount == 1);
|
|
secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, (size_t) -1); /* this is just wildly invalid */
|
|
CHECK(ecount == 2);
|
|
|
|
/* try to use badly initialized scratch space */
|
|
secp256k1_scratch_space_destroy(none, scratch);
|
|
memset(&local_scratch, 0, sizeof(local_scratch));
|
|
scratch = &local_scratch;
|
|
CHECK(!secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0));
|
|
CHECK(ecount == 3);
|
|
CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) == NULL);
|
|
CHECK(ecount == 4);
|
|
secp256k1_scratch_space_destroy(none, scratch);
|
|
CHECK(ecount == 5);
|
|
|
|
/* Test that large integers do not wrap around in a bad way */
|
|
scratch = secp256k1_scratch_space_create(none, 1000);
|
|
/* Try max allocation with a large number of objects. Only makes sense if
|
|
* ALIGNMENT is greater than 1 because otherwise the objects take no extra
|
|
* space. */
|
|
CHECK(ALIGNMENT <= 1 || !secp256k1_scratch_max_allocation(&none->error_callback, scratch, (SIZE_MAX / (ALIGNMENT - 1)) + 1));
|
|
/* Try allocating SIZE_MAX to test wrap around which only happens if
|
|
* ALIGNMENT > 1, otherwise it returns NULL anyway because the scratch
|
|
* space is too small. */
|
|
CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, SIZE_MAX) == NULL);
|
|
secp256k1_scratch_space_destroy(none, scratch);
|
|
|
|
/* cleanup */
|
|
secp256k1_scratch_space_destroy(none, NULL); /* no-op */
|
|
secp256k1_context_destroy(none);
|
|
}
|
|
|
|
void run_ctz_tests(void) {
|
|
static const uint32_t b32[] = {1, 0xffffffff, 0x5e56968f, 0xe0d63129};
|
|
static const uint64_t b64[] = {1, 0xffffffffffffffff, 0xbcd02462139b3fc3, 0x98b5f80c769693ef};
|
|
int shift;
|
|
unsigned i;
|
|
for (i = 0; i < sizeof(b32) / sizeof(b32[0]); ++i) {
|
|
for (shift = 0; shift < 32; ++shift) {
|
|
CHECK(secp256k1_ctz32_var_debruijn(b32[i] << shift) == shift);
|
|
CHECK(secp256k1_ctz32_var(b32[i] << shift) == shift);
|
|
}
|
|
}
|
|
for (i = 0; i < sizeof(b64) / sizeof(b64[0]); ++i) {
|
|
for (shift = 0; shift < 64; ++shift) {
|
|
CHECK(secp256k1_ctz64_var_debruijn(b64[i] << shift) == shift);
|
|
CHECK(secp256k1_ctz64_var(b64[i] << shift) == shift);
|
|
}
|
|
}
|
|
}
|
|
|
|
/***** HASH TESTS *****/
|
|
|
|
void run_sha256_tests(void) {
|
|
static const char *inputs[8] = {
|
|
"", "abc", "message digest", "secure hash algorithm", "SHA256 is considered to be safe",
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
"For this sample, this 63-byte string will be used as input data",
|
|
"This is exactly 64 bytes long, not counting the terminating byte"
|
|
};
|
|
static const unsigned char outputs[8][32] = {
|
|
{0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55},
|
|
{0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad},
|
|
{0xf7, 0x84, 0x6f, 0x55, 0xcf, 0x23, 0xe1, 0x4e, 0xeb, 0xea, 0xb5, 0xb4, 0xe1, 0x55, 0x0c, 0xad, 0x5b, 0x50, 0x9e, 0x33, 0x48, 0xfb, 0xc4, 0xef, 0xa3, 0xa1, 0x41, 0x3d, 0x39, 0x3c, 0xb6, 0x50},
|
|
{0xf3, 0x0c, 0xeb, 0x2b, 0xb2, 0x82, 0x9e, 0x79, 0xe4, 0xca, 0x97, 0x53, 0xd3, 0x5a, 0x8e, 0xcc, 0x00, 0x26, 0x2d, 0x16, 0x4c, 0xc0, 0x77, 0x08, 0x02, 0x95, 0x38, 0x1c, 0xbd, 0x64, 0x3f, 0x0d},
|
|
{0x68, 0x19, 0xd9, 0x15, 0xc7, 0x3f, 0x4d, 0x1e, 0x77, 0xe4, 0xe1, 0xb5, 0x2d, 0x1f, 0xa0, 0xf9, 0xcf, 0x9b, 0xea, 0xea, 0xd3, 0x93, 0x9f, 0x15, 0x87, 0x4b, 0xd9, 0x88, 0xe2, 0xa2, 0x36, 0x30},
|
|
{0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1},
|
|
{0xf0, 0x8a, 0x78, 0xcb, 0xba, 0xee, 0x08, 0x2b, 0x05, 0x2a, 0xe0, 0x70, 0x8f, 0x32, 0xfa, 0x1e, 0x50, 0xc5, 0xc4, 0x21, 0xaa, 0x77, 0x2b, 0xa5, 0xdb, 0xb4, 0x06, 0xa2, 0xea, 0x6b, 0xe3, 0x42},
|
|
{0xab, 0x64, 0xef, 0xf7, 0xe8, 0x8e, 0x2e, 0x46, 0x16, 0x5e, 0x29, 0xf2, 0xbc, 0xe4, 0x18, 0x26, 0xbd, 0x4c, 0x7b, 0x35, 0x52, 0xf6, 0xb3, 0x82, 0xa9, 0xe7, 0xd3, 0xaf, 0x47, 0xc2, 0x45, 0xf8}
|
|
};
|
|
int i;
|
|
for (i = 0; i < 8; i++) {
|
|
unsigned char out[32];
|
|
secp256k1_sha256 hasher;
|
|
secp256k1_sha256_initialize(&hasher);
|
|
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i]));
|
|
secp256k1_sha256_finalize(&hasher, out);
|
|
CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0);
|
|
if (strlen(inputs[i]) > 0) {
|
|
int split = secp256k1_testrand_int(strlen(inputs[i]));
|
|
secp256k1_sha256_initialize(&hasher);
|
|
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
|
|
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
|
|
secp256k1_sha256_finalize(&hasher, out);
|
|
CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void run_hmac_sha256_tests(void) {
|
|
static const char *keys[6] = {
|
|
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
|
|
"\x4a\x65\x66\x65",
|
|
"\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa",
|
|
"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19",
|
|
"\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa",
|
|
"\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
|
|
};
|
|
static const char *inputs[6] = {
|
|
"\x48\x69\x20\x54\x68\x65\x72\x65",
|
|
"\x77\x68\x61\x74\x20\x64\x6f\x20\x79\x61\x20\x77\x61\x6e\x74\x20\x66\x6f\x72\x20\x6e\x6f\x74\x68\x69\x6e\x67\x3f",
|
|
"\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd",
|
|
"\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd",
|
|
"\x54\x65\x73\x74\x20\x55\x73\x69\x6e\x67\x20\x4c\x61\x72\x67\x65\x72\x20\x54\x68\x61\x6e\x20\x42\x6c\x6f\x63\x6b\x2d\x53\x69\x7a\x65\x20\x4b\x65\x79\x20\x2d\x20\x48\x61\x73\x68\x20\x4b\x65\x79\x20\x46\x69\x72\x73\x74",
|
|
"\x54\x68\x69\x73\x20\x69\x73\x20\x61\x20\x74\x65\x73\x74\x20\x75\x73\x69\x6e\x67\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65\x20\x6b\x65\x79\x20\x61\x6e\x64\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65\x20\x64\x61\x74\x61\x2e\x20\x54\x68\x65\x20\x6b\x65\x79\x20\x6e\x65\x65\x64\x73\x20\x74\x6f\x20\x62\x65\x20\x68\x61\x73\x68\x65\x64\x20\x62\x65\x66\x6f\x72\x65\x20\x62\x65\x69\x6e\x67\x20\x75\x73\x65\x64\x20\x62\x79\x20\x74\x68\x65\x20\x48\x4d\x41\x43\x20\x61\x6c\x67\x6f\x72\x69\x74\x68\x6d\x2e"
|
|
};
|
|
static const unsigned char outputs[6][32] = {
|
|
{0xb0, 0x34, 0x4c, 0x61, 0xd8, 0xdb, 0x38, 0x53, 0x5c, 0xa8, 0xaf, 0xce, 0xaf, 0x0b, 0xf1, 0x2b, 0x88, 0x1d, 0xc2, 0x00, 0xc9, 0x83, 0x3d, 0xa7, 0x26, 0xe9, 0x37, 0x6c, 0x2e, 0x32, 0xcf, 0xf7},
|
|
{0x5b, 0xdc, 0xc1, 0x46, 0xbf, 0x60, 0x75, 0x4e, 0x6a, 0x04, 0x24, 0x26, 0x08, 0x95, 0x75, 0xc7, 0x5a, 0x00, 0x3f, 0x08, 0x9d, 0x27, 0x39, 0x83, 0x9d, 0xec, 0x58, 0xb9, 0x64, 0xec, 0x38, 0x43},
|
|
{0x77, 0x3e, 0xa9, 0x1e, 0x36, 0x80, 0x0e, 0x46, 0x85, 0x4d, 0xb8, 0xeb, 0xd0, 0x91, 0x81, 0xa7, 0x29, 0x59, 0x09, 0x8b, 0x3e, 0xf8, 0xc1, 0x22, 0xd9, 0x63, 0x55, 0x14, 0xce, 0xd5, 0x65, 0xfe},
|
|
{0x82, 0x55, 0x8a, 0x38, 0x9a, 0x44, 0x3c, 0x0e, 0xa4, 0xcc, 0x81, 0x98, 0x99, 0xf2, 0x08, 0x3a, 0x85, 0xf0, 0xfa, 0xa3, 0xe5, 0x78, 0xf8, 0x07, 0x7a, 0x2e, 0x3f, 0xf4, 0x67, 0x29, 0x66, 0x5b},
|
|
{0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54},
|
|
{0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2}
|
|
};
|
|
int i;
|
|
for (i = 0; i < 6; i++) {
|
|
secp256k1_hmac_sha256 hasher;
|
|
unsigned char out[32];
|
|
secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
|
|
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i]));
|
|
secp256k1_hmac_sha256_finalize(&hasher, out);
|
|
CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0);
|
|
if (strlen(inputs[i]) > 0) {
|
|
int split = secp256k1_testrand_int(strlen(inputs[i]));
|
|
secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
|
|
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
|
|
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
|
|
secp256k1_hmac_sha256_finalize(&hasher, out);
|
|
CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void run_rfc6979_hmac_sha256_tests(void) {
|
|
static const unsigned char key1[65] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x4b, 0xf5, 0x12, 0x2f, 0x34, 0x45, 0x54, 0xc5, 0x3b, 0xde, 0x2e, 0xbb, 0x8c, 0xd2, 0xb7, 0xe3, 0xd1, 0x60, 0x0a, 0xd6, 0x31, 0xc3, 0x85, 0xa5, 0xd7, 0xcc, 0xe2, 0x3c, 0x77, 0x85, 0x45, 0x9a, 0};
|
|
static const unsigned char out1[3][32] = {
|
|
{0x4f, 0xe2, 0x95, 0x25, 0xb2, 0x08, 0x68, 0x09, 0x15, 0x9a, 0xcd, 0xf0, 0x50, 0x6e, 0xfb, 0x86, 0xb0, 0xec, 0x93, 0x2c, 0x7b, 0xa4, 0x42, 0x56, 0xab, 0x32, 0x1e, 0x42, 0x1e, 0x67, 0xe9, 0xfb},
|
|
{0x2b, 0xf0, 0xff, 0xf1, 0xd3, 0xc3, 0x78, 0xa2, 0x2d, 0xc5, 0xde, 0x1d, 0x85, 0x65, 0x22, 0x32, 0x5c, 0x65, 0xb5, 0x04, 0x49, 0x1a, 0x0c, 0xbd, 0x01, 0xcb, 0x8f, 0x3a, 0xa6, 0x7f, 0xfd, 0x4a},
|
|
{0xf5, 0x28, 0xb4, 0x10, 0xcb, 0x54, 0x1f, 0x77, 0x00, 0x0d, 0x7a, 0xfb, 0x6c, 0x5b, 0x53, 0xc5, 0xc4, 0x71, 0xea, 0xb4, 0x3e, 0x46, 0x6d, 0x9a, 0xc5, 0x19, 0x0c, 0x39, 0xc8, 0x2f, 0xd8, 0x2e}
|
|
};
|
|
|
|
static const unsigned char key2[64] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
|
|
static const unsigned char out2[3][32] = {
|
|
{0x9c, 0x23, 0x6c, 0x16, 0x5b, 0x82, 0xae, 0x0c, 0xd5, 0x90, 0x65, 0x9e, 0x10, 0x0b, 0x6b, 0xab, 0x30, 0x36, 0xe7, 0xba, 0x8b, 0x06, 0x74, 0x9b, 0xaf, 0x69, 0x81, 0xe1, 0x6f, 0x1a, 0x2b, 0x95},
|
|
{0xdf, 0x47, 0x10, 0x61, 0x62, 0x5b, 0xc0, 0xea, 0x14, 0xb6, 0x82, 0xfe, 0xee, 0x2c, 0x9c, 0x02, 0xf2, 0x35, 0xda, 0x04, 0x20, 0x4c, 0x1d, 0x62, 0xa1, 0x53, 0x6c, 0x6e, 0x17, 0xae, 0xd7, 0xa9},
|
|
{0x75, 0x97, 0x88, 0x7c, 0xbd, 0x76, 0x32, 0x1f, 0x32, 0xe3, 0x04, 0x40, 0x67, 0x9a, 0x22, 0xcf, 0x7f, 0x8d, 0x9d, 0x2e, 0xac, 0x39, 0x0e, 0x58, 0x1f, 0xea, 0x09, 0x1c, 0xe2, 0x02, 0xba, 0x94}
|
|
};
|
|
|
|
secp256k1_rfc6979_hmac_sha256 rng;
|
|
unsigned char out[32];
|
|
int i;
|
|
|
|
secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 64);
|
|
for (i = 0; i < 3; i++) {
|
|
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
|
|
CHECK(secp256k1_memcmp_var(out, out1[i], 32) == 0);
|
|
}
|
|
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
|
|
|
|
secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 65);
|
|
for (i = 0; i < 3; i++) {
|
|
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
|
|
CHECK(secp256k1_memcmp_var(out, out1[i], 32) != 0);
|
|
}
|
|
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
|
|
|
|
secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 64);
|
|
for (i = 0; i < 3; i++) {
|
|
secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
|
|
CHECK(secp256k1_memcmp_var(out, out2[i], 32) == 0);
|
|
}
|
|
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
|
|
}
|
|
|
|
/***** RANDOM TESTS *****/
|
|
|
|
void test_rand_bits(int rand32, int bits) {
|
|
/* (1-1/2^B)^rounds[B] < 1/10^9, so rounds is the number of iterations to
|
|
* get a false negative chance below once in a billion */
|
|
static const unsigned int rounds[7] = {1, 30, 73, 156, 322, 653, 1316};
|
|
/* We try multiplying the results with various odd numbers, which shouldn't
|
|
* influence the uniform distribution modulo a power of 2. */
|
|
static const uint32_t mults[6] = {1, 3, 21, 289, 0x9999, 0x80402011};
|
|
/* We only select up to 6 bits from the output to analyse */
|
|
unsigned int usebits = bits > 6 ? 6 : bits;
|
|
unsigned int maxshift = bits - usebits;
|
|
/* For each of the maxshift+1 usebits-bit sequences inside a bits-bit
|
|
number, track all observed outcomes, one per bit in a uint64_t. */
|
|
uint64_t x[6][27] = {{0}};
|
|
unsigned int i, shift, m;
|
|
/* Multiply the output of all rand calls with the odd number m, which
|
|
should not change the uniformity of its distribution. */
|
|
for (i = 0; i < rounds[usebits]; i++) {
|
|
uint32_t r = (rand32 ? secp256k1_testrand32() : secp256k1_testrand_bits(bits));
|
|
CHECK((((uint64_t)r) >> bits) == 0);
|
|
for (m = 0; m < sizeof(mults) / sizeof(mults[0]); m++) {
|
|
uint32_t rm = r * mults[m];
|
|
for (shift = 0; shift <= maxshift; shift++) {
|
|
x[m][shift] |= (((uint64_t)1) << ((rm >> shift) & ((1 << usebits) - 1)));
|
|
}
|
|
}
|
|
}
|
|
for (m = 0; m < sizeof(mults) / sizeof(mults[0]); m++) {
|
|
for (shift = 0; shift <= maxshift; shift++) {
|
|
/* Test that the lower usebits bits of x[shift] are 1 */
|
|
CHECK(((~x[m][shift]) << (64 - (1 << usebits))) == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Subrange must be a whole divisor of range, and at most 64 */
|
|
void test_rand_int(uint32_t range, uint32_t subrange) {
|
|
/* (1-1/subrange)^rounds < 1/10^9 */
|
|
int rounds = (subrange * 2073) / 100;
|
|
int i;
|
|
uint64_t x = 0;
|
|
CHECK((range % subrange) == 0);
|
|
for (i = 0; i < rounds; i++) {
|
|
uint32_t r = secp256k1_testrand_int(range);
|
|
CHECK(r < range);
|
|
r = r % subrange;
|
|
x |= (((uint64_t)1) << r);
|
|
}
|
|
/* Test that the lower subrange bits of x are 1. */
|
|
CHECK(((~x) << (64 - subrange)) == 0);
|
|
}
|
|
|
|
void run_rand_bits(void) {
|
|
size_t b;
|
|
test_rand_bits(1, 32);
|
|
for (b = 1; b <= 32; b++) {
|
|
test_rand_bits(0, b);
|
|
}
|
|
}
|
|
|
|
void run_rand_int(void) {
|
|
static const uint32_t ms[] = {1, 3, 17, 1000, 13771, 999999, 33554432};
|
|
static const uint32_t ss[] = {1, 3, 6, 9, 13, 31, 64};
|
|
unsigned int m, s;
|
|
for (m = 0; m < sizeof(ms) / sizeof(ms[0]); m++) {
|
|
for (s = 0; s < sizeof(ss) / sizeof(ss[0]); s++) {
|
|
test_rand_int(ms[m] * ss[s], ss[s]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/***** NUM TESTS *****/
|
|
|
|
#ifndef USE_NUM_NONE
|
|
void random_num_negate(secp256k1_num *num) {
|
|
if (secp256k1_testrand_bits(1)) {
|
|
secp256k1_num_negate(num);
|
|
}
|
|
}
|
|
|
|
void random_num_order_test(secp256k1_num *num) {
|
|
secp256k1_scalar sc;
|
|
random_scalar_order_test(&sc);
|
|
secp256k1_scalar_get_num(num, &sc);
|
|
}
|
|
|
|
void random_num_order(secp256k1_num *num) {
|
|
secp256k1_scalar sc;
|
|
random_scalar_order(&sc);
|
|
secp256k1_scalar_get_num(num, &sc);
|
|
}
|
|
|
|
void test_num_negate(void) {
|
|
secp256k1_num n1;
|
|
secp256k1_num n2;
|
|
random_num_order_test(&n1); /* n1 = R */
|
|
random_num_negate(&n1);
|
|
secp256k1_num_copy(&n2, &n1); /* n2 = R */
|
|
secp256k1_num_sub(&n1, &n2, &n1); /* n1 = n2-n1 = 0 */
|
|
CHECK(secp256k1_num_is_zero(&n1));
|
|
secp256k1_num_copy(&n1, &n2); /* n1 = R */
|
|
secp256k1_num_negate(&n1); /* n1 = -R */
|
|
CHECK(!secp256k1_num_is_zero(&n1));
|
|
secp256k1_num_add(&n1, &n2, &n1); /* n1 = n2+n1 = 0 */
|
|
CHECK(secp256k1_num_is_zero(&n1));
|
|
secp256k1_num_copy(&n1, &n2); /* n1 = R */
|
|
secp256k1_num_negate(&n1); /* n1 = -R */
|
|
CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2));
|
|
secp256k1_num_negate(&n1); /* n1 = R */
|
|
CHECK(secp256k1_num_eq(&n1, &n2));
|
|
}
|
|
|
|
void test_num_add_sub(void) {
|
|
int i;
|
|
secp256k1_scalar s;
|
|
secp256k1_num n1;
|
|
secp256k1_num n2;
|
|
secp256k1_num n1p2, n2p1, n1m2, n2m1;
|
|
random_num_order_test(&n1); /* n1 = R1 */
|
|
if (secp256k1_testrand_bits(1)) {
|
|
random_num_negate(&n1);
|
|
}
|
|
random_num_order_test(&n2); /* n2 = R2 */
|
|
if (secp256k1_testrand_bits(1)) {
|
|
random_num_negate(&n2);
|
|
}
|
|
secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */
|
|
secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */
|
|
secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */
|
|
secp256k1_num_sub(&n2m1, &n2, &n1); /* n2m1 = R2 - R1 */
|
|
CHECK(secp256k1_num_eq(&n1p2, &n2p1));
|
|
CHECK(!secp256k1_num_eq(&n1p2, &n1m2));
|
|
secp256k1_num_negate(&n2m1); /* n2m1 = -R2 + R1 */
|
|
CHECK(secp256k1_num_eq(&n2m1, &n1m2));
|
|
CHECK(!secp256k1_num_eq(&n2m1, &n1));
|
|
secp256k1_num_add(&n2m1, &n2m1, &n2); /* n2m1 = -R2 + R1 + R2 = R1 */
|
|
CHECK(secp256k1_num_eq(&n2m1, &n1));
|
|
CHECK(!secp256k1_num_eq(&n2p1, &n1));
|
|
secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */
|
|
CHECK(secp256k1_num_eq(&n2p1, &n1));
|
|
|
|
/* check is_one */
|
|
secp256k1_scalar_set_int(&s, 1);
|
|
secp256k1_scalar_get_num(&n1, &s);
|
|
CHECK(secp256k1_num_is_one(&n1));
|
|
/* check that 2^n + 1 is never 1 */
|
|
secp256k1_scalar_get_num(&n2, &s);
|
|
for (i = 0; i < 250; ++i) {
|
|
secp256k1_num_add(&n1, &n1, &n1); /* n1 *= 2 */
|
|
secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = n1 + 1 */
|
|
CHECK(!secp256k1_num_is_one(&n1p2));
|
|
}
|
|
}
|
|
|
|
void test_num_mod(void) {
|
|
int i;
|
|
secp256k1_scalar s;
|
|
secp256k1_num order, n;
|
|
|
|
/* check that 0 mod anything is 0 */
|
|
random_scalar_order_test(&s);
|
|
secp256k1_scalar_get_num(&order, &s);
|
|
secp256k1_scalar_set_int(&s, 0);
|
|
secp256k1_scalar_get_num(&n, &s);
|
|
secp256k1_num_mod(&n, &order);
|
|
CHECK(secp256k1_num_is_zero(&n));
|
|
|
|
/* check that anything mod 1 is 0 */
|
|
secp256k1_scalar_set_int(&s, 1);
|
|
secp256k1_scalar_get_num(&order, &s);
|
|
secp256k1_scalar_get_num(&n, &s);
|
|
secp256k1_num_mod(&n, &order);
|
|
CHECK(secp256k1_num_is_zero(&n));
|
|
|
|
/* check that increasing the number past 2^256 does not break this */
|
|
random_scalar_order_test(&s);
|
|
secp256k1_scalar_get_num(&n, &s);
|
|
/* multiply by 2^8, which'll test this case with high probability */
|
|
for (i = 0; i < 8; ++i) {
|
|
secp256k1_num_add(&n, &n, &n);
|
|
}
|
|
secp256k1_num_mod(&n, &order);
|
|
CHECK(secp256k1_num_is_zero(&n));
|
|
}
|
|
|
|
void test_num_jacobi(void) {
|
|
secp256k1_scalar sqr;
|
|
secp256k1_scalar small;
|
|
secp256k1_scalar five; /* five is not a quadratic residue */
|
|
secp256k1_num order, n;
|
|
int i;
|
|
/* squares mod 5 are 1, 4 */
|
|
const int jacobi5[10] = { 0, 1, -1, -1, 1, 0, 1, -1, -1, 1 };
|
|
|
|
/* check some small values with 5 as the order */
|
|
secp256k1_scalar_set_int(&five, 5);
|
|
secp256k1_scalar_get_num(&order, &five);
|
|
for (i = 0; i < 10; ++i) {
|
|
secp256k1_scalar_set_int(&small, i);
|
|
secp256k1_scalar_get_num(&n, &small);
|
|
CHECK(secp256k1_num_jacobi(&n, &order) == jacobi5[i]);
|
|
}
|
|
|
|
/** test large values with 5 as group order */
|
|
secp256k1_scalar_get_num(&order, &five);
|
|
/* we first need a scalar which is not a multiple of 5 */
|
|
do {
|
|
secp256k1_num fiven;
|
|
random_scalar_order_test(&sqr);
|
|
secp256k1_scalar_get_num(&fiven, &five);
|
|
secp256k1_scalar_get_num(&n, &sqr);
|
|
secp256k1_num_mod(&n, &fiven);
|
|
} while (secp256k1_num_is_zero(&n));
|
|
/* next force it to be a residue. 2 is a nonresidue mod 5 so we can
|
|
* just multiply by two, i.e. add the number to itself */
|
|
if (secp256k1_num_jacobi(&n, &order) == -1) {
|
|
secp256k1_num_add(&n, &n, &n);
|
|
}
|
|
|
|
/* test residue */
|
|
CHECK(secp256k1_num_jacobi(&n, &order) == 1);
|
|
/* test nonresidue */
|
|
secp256k1_num_add(&n, &n, &n);
|
|
CHECK(secp256k1_num_jacobi(&n, &order) == -1);
|
|
|
|
/** test with secp group order as order */
|
|
secp256k1_scalar_order_get_num(&order);
|
|
random_scalar_order_test(&sqr);
|
|
secp256k1_scalar_mul(&sqr, &sqr, &sqr);
|
|
/* test residue */
|
|
secp256k1_scalar_get_num(&n, &sqr);
|
|
CHECK(secp256k1_num_jacobi(&n, &order) == 1);
|
|
/* test nonresidue */
|
|
secp256k1_scalar_mul(&sqr, &sqr, &five);
|
|
secp256k1_scalar_get_num(&n, &sqr);
|
|
CHECK(secp256k1_num_jacobi(&n, &order) == -1);
|
|
/* test multiple of the order*/
|
|
CHECK(secp256k1_num_jacobi(&order, &order) == 0);
|
|
|
|
/* check one less than the order */
|
|
secp256k1_scalar_set_int(&small, 1);
|
|
secp256k1_scalar_get_num(&n, &small);
|
|
secp256k1_num_sub(&n, &order, &n);
|
|
CHECK(secp256k1_num_jacobi(&n, &order) == 1); /* sage confirms this is 1 */
|
|
}
|
|
|
|
void run_num_smalltests(void) {
|
|
int i;
|
|
for (i = 0; i < 100*count; i++) {
|
|
test_num_negate();
|
|
test_num_add_sub();
|
|
test_num_mod();
|
|
test_num_jacobi();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/***** MODINV TESTS *****/
|
|
|
|
/* Compute the modular inverse of (odd) x mod 2^64. */
|
|
uint64_t modinv2p64(uint64_t x) {
|
|
/* If w = 1/x mod 2^(2^L), then w*(2 - w*x) = 1/x mod 2^(2^(L+1)). See
|
|
* Hacker's Delight second edition, Henry S. Warren, Jr., pages 245-247 for
|
|
* why. Start with L=0, for which it is true for every odd x that
|
|
* 1/x=1 mod 2. Iterating 6 times gives us 1/x mod 2^64. */
|
|
int l;
|
|
uint64_t w = 1;
|
|
CHECK(x & 1);
|
|
for (l = 0; l < 6; ++l) w *= (2 - w*x);
|
|
return w;
|
|
}
|
|
|
|
/* compute out = (a*b) mod m; if b=NULL, treat b=1.
|
|
*
|
|
* Out is a 512-bit number (represented as 32 uint16_t's in LE order). The other
|
|
* arguments are 256-bit numbers (represented as 16 uint16_t's in LE order). */
|
|
void mulmod256(uint16_t* out, const uint16_t* a, const uint16_t* b, const uint16_t* m) {
|
|
uint16_t mul[32];
|
|
uint64_t c = 0;
|
|
int i, j;
|
|
int m_bitlen = 0;
|
|
int mul_bitlen = 0;
|
|
|
|
if (b != NULL) {
|
|
/* Compute the product of a and b, and put it in mul. */
|
|
for (i = 0; i < 32; ++i) {
|
|
for (j = i <= 15 ? 0 : i - 15; j <= i && j <= 15; j++) {
|
|
c += (uint64_t)a[j] * b[i - j];
|
|
}
|
|
mul[i] = c & 0xFFFF;
|
|
c >>= 16;
|
|
}
|
|
CHECK(c == 0);
|
|
|
|
/* compute the highest set bit in mul */
|
|
for (i = 511; i >= 0; --i) {
|
|
if ((mul[i >> 4] >> (i & 15)) & 1) {
|
|
mul_bitlen = i;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
/* if b==NULL, set mul=a. */
|
|
memcpy(mul, a, 32);
|
|
memset(mul + 16, 0, 32);
|
|
/* compute the highest set bit in mul */
|
|
for (i = 255; i >= 0; --i) {
|
|
if ((mul[i >> 4] >> (i & 15)) & 1) {
|
|
mul_bitlen = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute the highest set bit in m. */
|
|
for (i = 255; i >= 0; --i) {
|
|
if ((m[i >> 4] >> (i & 15)) & 1) {
|
|
m_bitlen = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Try do mul -= m<<i, for i going down to 0, whenever the result is not negative */
|
|
for (i = mul_bitlen - m_bitlen; i >= 0; --i) {
|
|
uint16_t mul2[32];
|
|
int64_t cs;
|
|
|
|
/* Compute mul2 = mul - m<<i. */
|
|
cs = 0; /* accumulator */
|
|
for (j = 0; j < 32; ++j) { /* j loops over the output limbs in mul2. */
|
|
/* Compute sub: the 16 bits in m that will be subtracted from mul2[j]. */
|
|
uint16_t sub = 0;
|
|
int p;
|
|
for (p = 0; p < 16; ++p) { /* p loops over the bit positions in mul2[j]. */
|
|
int bitpos = j * 16 - i + p; /* bitpos is the correspond bit position in m. */
|
|
if (bitpos >= 0 && bitpos < 256) {
|
|
sub |= ((m[bitpos >> 4] >> (bitpos & 15)) & 1) << p;
|
|
}
|
|
}
|
|
/* Add mul[j]-sub to accumulator, and shift bottom 16 bits out to mul2[j]. */
|
|
cs += mul[j];
|
|
cs -= sub;
|
|
mul2[j] = (cs & 0xFFFF);
|
|
cs >>= 16;
|
|
}
|
|
/* If remainder of subtraction is 0, set mul = mul2. */
|
|
if (cs == 0) {
|
|
memcpy(mul, mul2, sizeof(mul));
|
|
}
|
|
}
|
|
/* Sanity check: test that all limbs higher than m's highest are zero */
|
|
for (i = (m_bitlen >> 4) + 1; i < 32; ++i) {
|
|
CHECK(mul[i] == 0);
|
|
}
|
|
memcpy(out, mul, 32);
|
|
}
|
|
|
|
/* Convert a 256-bit number represented as 16 uint16_t's to signed30 notation. */
|
|
void uint16_to_signed30(secp256k1_modinv32_signed30* out, const uint16_t* in) {
|
|
int i;
|
|
memset(out->v, 0, sizeof(out->v));
|
|
for (i = 0; i < 256; ++i) {
|
|
out->v[i / 30] |= (int32_t)(((in[i >> 4]) >> (i & 15)) & 1) << (i % 30);
|
|
}
|
|
}
|
|
|
|
/* Convert a 256-bit number in signed30 notation to a representation as 16 uint16_t's. */
|
|
void signed30_to_uint16(uint16_t* out, const secp256k1_modinv32_signed30* in) {
|
|
int i;
|
|
memset(out, 0, 32);
|
|
for (i = 0; i < 256; ++i) {
|
|
out[i >> 4] |= (((in->v[i / 30]) >> (i % 30)) & 1) << (i & 15);
|
|
}
|
|
}
|
|
|
|
/* Randomly mutate the sign of limbs in signed30 representation, without changing the value. */
|
|
void mutate_sign_signed30(secp256k1_modinv32_signed30* x) {
|
|
int i;
|
|
for (i = 0; i < 16; ++i) {
|
|
int pos = secp256k1_testrand_int(8);
|
|
if (x->v[pos] > 0 && x->v[pos + 1] <= 0x3fffffff) {
|
|
x->v[pos] -= 0x40000000;
|
|
x->v[pos + 1] += 1;
|
|
} else if (x->v[pos] < 0 && x->v[pos + 1] >= 0x3fffffff) {
|
|
x->v[pos] += 0x40000000;
|
|
x->v[pos + 1] -= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Test secp256k1_modinv32{_var}, using inputs in 16-bit limb format, and returning inverse. */
|
|
void test_modinv32_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod) {
|
|
uint16_t tmp[16];
|
|
secp256k1_modinv32_signed30 x;
|
|
secp256k1_modinv32_modinfo m;
|
|
int i, vartime, nonzero;
|
|
|
|
uint16_to_signed30(&x, in);
|
|
nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4] | x.v[5] | x.v[6] | x.v[7] | x.v[8]) != 0;
|
|
uint16_to_signed30(&m.modulus, mod);
|
|
mutate_sign_signed30(&m.modulus);
|
|
|
|
/* compute 1/modulus mod 2^30 */
|
|
m.modulus_inv30 = modinv2p64(m.modulus.v[0]) & 0x3fffffff;
|
|
CHECK(((m.modulus_inv30 * m.modulus.v[0]) & 0x3fffffff) == 1);
|
|
|
|
for (vartime = 0; vartime < 2; ++vartime) {
|
|
/* compute inverse */
|
|
(vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m);
|
|
|
|
/* produce output */
|
|
signed30_to_uint16(out, &x);
|
|
|
|
/* check if the inverse times the input is 1 (mod m), unless x is 0. */
|
|
mulmod256(tmp, out, in, mod);
|
|
CHECK(tmp[0] == nonzero);
|
|
for (i = 1; i < 16; ++i) CHECK(tmp[i] == 0);
|
|
|
|
/* invert again */
|
|
(vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m);
|
|
|
|
/* check if the result is equal to the input */
|
|
signed30_to_uint16(tmp, &x);
|
|
for (i = 0; i < 16; ++i) CHECK(tmp[i] == in[i]);
|
|
}
|
|
}
|
|
|
|
#ifdef SECP256K1_WIDEMUL_INT128
|
|
/* Convert a 256-bit number represented as 16 uint16_t's to signed62 notation. */
|
|
void uint16_to_signed62(secp256k1_modinv64_signed62* out, const uint16_t* in) {
|
|
int i;
|
|
memset(out->v, 0, sizeof(out->v));
|
|
for (i = 0; i < 256; ++i) {
|
|
out->v[i / 62] |= (int64_t)(((in[i >> 4]) >> (i & 15)) & 1) << (i % 62);
|
|
}
|
|
}
|
|
|
|
/* Convert a 256-bit number in signed62 notation to a representation as 16 uint16_t's. */
|
|
void signed62_to_uint16(uint16_t* out, const secp256k1_modinv64_signed62* in) {
|
|
int i;
|
|
memset(out, 0, 32);
|
|
for (i = 0; i < 256; ++i) {
|
|
out[i >> 4] |= (((in->v[i / 62]) >> (i % 62)) & 1) << (i & 15);
|
|
}
|
|
}
|
|
|
|
/* Randomly mutate the sign of limbs in signed62 representation, without changing the value. */
|
|
void mutate_sign_signed62(secp256k1_modinv64_signed62* x) {
|
|
static const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
|
|
int i;
|
|
for (i = 0; i < 8; ++i) {
|
|
int pos = secp256k1_testrand_int(4);
|
|
if (x->v[pos] > 0 && x->v[pos + 1] <= M62) {
|
|
x->v[pos] -= (M62 + 1);
|
|
x->v[pos + 1] += 1;
|
|
} else if (x->v[pos] < 0 && x->v[pos + 1] >= -M62) {
|
|
x->v[pos] += (M62 + 1);
|
|
x->v[pos + 1] -= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Test secp256k1_modinv64{_var}, using inputs in 16-bit limb format, and returning inverse. */
|
|
void test_modinv64_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod) {
|
|
static const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
|
|
uint16_t tmp[16];
|
|
secp256k1_modinv64_signed62 x;
|
|
secp256k1_modinv64_modinfo m;
|
|
int i, vartime, nonzero;
|
|
|
|
uint16_to_signed62(&x, in);
|
|
nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4]) != 0;
|
|
uint16_to_signed62(&m.modulus, mod);
|
|
mutate_sign_signed62(&m.modulus);
|
|
|
|
/* compute 1/modulus mod 2^62 */
|
|
m.modulus_inv62 = modinv2p64(m.modulus.v[0]) & M62;
|
|
CHECK(((m.modulus_inv62 * m.modulus.v[0]) & M62) == 1);
|
|
|
|
for (vartime = 0; vartime < 2; ++vartime) {
|
|
/* compute inverse */
|
|
(vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m);
|
|
|
|
/* produce output */
|
|
signed62_to_uint16(out, &x);
|
|
|
|
/* check if the inverse times the input is 1 (mod m), unless x is 0. */
|
|
mulmod256(tmp, out, in, mod);
|
|
CHECK(tmp[0] == nonzero);
|
|
for (i = 1; i < 16; ++i) CHECK(tmp[i] == 0);
|
|
|
|
/* invert again */
|
|
(vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m);
|
|
|
|
/* check if the result is equal to the input */
|
|
signed62_to_uint16(tmp, &x);
|
|
for (i = 0; i < 16; ++i) CHECK(tmp[i] == in[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* test if a and b are coprime */
|
|
int coprime(const uint16_t* a, const uint16_t* b) {
|
|
uint16_t x[16], y[16], t[16];
|
|
int i;
|
|
int iszero;
|
|
memcpy(x, a, 32);
|
|
memcpy(y, b, 32);
|
|
|
|
/* simple gcd loop: while x!=0, (x,y)=(y%x,x) */
|
|
while (1) {
|
|
iszero = 1;
|
|
for (i = 0; i < 16; ++i) {
|
|
if (x[i] != 0) {
|
|
iszero = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (iszero) break;
|
|
mulmod256(t, y, NULL, x);
|
|
memcpy(y, x, 32);
|
|
memcpy(x, t, 32);
|
|
}
|
|
|
|
/* return whether y=1 */
|
|
if (y[0] != 1) return 0;
|
|
for (i = 1; i < 16; ++i) {
|
|
if (y[i] != 0) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void run_modinv_tests(void) {
|
|
/* Fixed test cases. Each tuple is (input, modulus, output), each as 16x16 bits in LE order. */
|
|
static const uint16_t CASES[][3][16] = {
|
|
/* Test case known to need 713 divsteps */
|
|
{{0x1513, 0x5389, 0x54e9, 0x2798, 0x1957, 0x66a0, 0x8057, 0x3477,
|
|
0x7784, 0x1052, 0x326a, 0x9331, 0x6506, 0xa95c, 0x91f3, 0xfb5e},
|
|
{0x2bdd, 0x8df4, 0xcc61, 0x481f, 0xdae5, 0x5ca7, 0xf43b, 0x7d54,
|
|
0x13d6, 0x469b, 0x2294, 0x20f4, 0xb2a4, 0xa2d1, 0x3ff1, 0xfd4b},
|
|
{0xffd8, 0xd9a0, 0x456e, 0x81bb, 0xbabd, 0x6cea, 0x6dbd, 0x73ab,
|
|
0xbb94, 0x3d3c, 0xdf08, 0x31c4, 0x3e32, 0xc179, 0x2486, 0xb86b}},
|
|
/* Test case known to need 589 divsteps, reaching delta=-140 and
|
|
delta=141. */
|
|
{{0x3fb1, 0x903b, 0x4eb7, 0x4813, 0xd863, 0x26bf, 0xd89f, 0xa8a9,
|
|
0x02fe, 0x57c6, 0x554a, 0x4eab, 0x165e, 0x3d61, 0xee1e, 0x456c},
|
|
{0x9295, 0x823b, 0x5c1f, 0x5386, 0x48e0, 0x02ff, 0x4c2a, 0xa2da,
|
|
0xe58f, 0x967c, 0xc97e, 0x3f5a, 0x69fb, 0x52d9, 0x0a86, 0xb4a3},
|
|
{0x3d30, 0xb893, 0xa809, 0xa7a8, 0x26f5, 0x5b42, 0x55be, 0xf4d0,
|
|
0x12c2, 0x7e6a, 0xe41a, 0x90c7, 0xebfa, 0xf920, 0x304e, 0x1419}},
|
|
/* Test case known to need 650 divsteps, and doing 65 consecutive (f,g/2) steps. */
|
|
{{0x8583, 0x5058, 0xbeae, 0xeb69, 0x48bc, 0x52bb, 0x6a9d, 0xcc94,
|
|
0x2a21, 0x87d5, 0x5b0d, 0x42f6, 0x5b8a, 0x2214, 0xe9d6, 0xa040},
|
|
{0x7531, 0x27cb, 0x7e53, 0xb739, 0x6a5f, 0x83f5, 0xa45c, 0xcb1d,
|
|
0x8a87, 0x1c9c, 0x51d7, 0x851c, 0xb9d8, 0x1fbe, 0xc241, 0xd4a3},
|
|
{0xcdb4, 0x275c, 0x7d22, 0xa906, 0x0173, 0xc054, 0x7fdf, 0x5005,
|
|
0x7fb8, 0x9059, 0xdf51, 0x99df, 0x2654, 0x8f6e, 0x070f, 0xb347}},
|
|
/* Test case with the group order as modulus, needing 635 divsteps. */
|
|
{{0x95ed, 0x6c01, 0xd113, 0x5ff1, 0xd7d0, 0x29cc, 0x5817, 0x6120,
|
|
0xca8e, 0xaad1, 0x25ae, 0x8e84, 0x9af6, 0x30bf, 0xf0ed, 0x1686},
|
|
{0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae,
|
|
0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x1631, 0xbf4a, 0x286a, 0x2716, 0x469f, 0x2ac8, 0x1312, 0xe9bc,
|
|
0x04f4, 0x304b, 0x9931, 0x113b, 0xd932, 0xc8f4, 0x0d0d, 0x01a1}},
|
|
/* Test case with the field size as modulus, needing 637 divsteps. */
|
|
{{0x9ec3, 0x1919, 0xca84, 0x7c11, 0xf996, 0x06f3, 0x5408, 0x6688,
|
|
0x1320, 0xdb8a, 0x632a, 0x0dcb, 0x8a84, 0x6bee, 0x9c95, 0xe34e},
|
|
{0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x18e5, 0x19b6, 0xdf92, 0x1aaa, 0x09fb, 0x8a3f, 0x52b0, 0x8701,
|
|
0xac0c, 0x2582, 0xda44, 0x9bcc, 0x6828, 0x1c53, 0xbd8f, 0xbd2c}},
|
|
/* Test case with the field size as modulus, needing 935 divsteps with
|
|
broken eta handling. */
|
|
{{0x1b37, 0xbdc3, 0x8bcd, 0x25e3, 0x1eae, 0x567d, 0x30b6, 0xf0d8,
|
|
0x9277, 0x0cf8, 0x9c2e, 0xecd7, 0x631d, 0xe38f, 0xd4f8, 0x5c93},
|
|
{0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x1622, 0xe05b, 0xe880, 0x7de9, 0x3e45, 0xb682, 0xee6c, 0x67ed,
|
|
0xa179, 0x15db, 0x6b0d, 0xa656, 0x7ccb, 0x8ef7, 0xa2ff, 0xe279}},
|
|
/* Test case with the group size as modulus, needing 981 divsteps with
|
|
broken eta handling. */
|
|
{{0xfeb9, 0xb877, 0xee41, 0x7fa3, 0x87da, 0x94c4, 0x9d04, 0xc5ae,
|
|
0x5708, 0x0994, 0xfc79, 0x0916, 0xbf32, 0x3ad8, 0xe11c, 0x5ca2},
|
|
{0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae,
|
|
0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x0f12, 0x075e, 0xce1c, 0x6f92, 0xc80f, 0xca92, 0x9a04, 0x6126,
|
|
0x4b6c, 0x57d6, 0xca31, 0x97f3, 0x1f99, 0xf4fd, 0xda4d, 0x42ce}},
|
|
/* Test case with the field size as modulus, input = 0. */
|
|
{{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
|
|
{0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}},
|
|
/* Test case with the field size as modulus, input = 1. */
|
|
{{0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
|
|
{0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}},
|
|
/* Test case with the field size as modulus, input = 2. */
|
|
{{0x0002, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
|
|
{0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0xfe18, 0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x7fff}},
|
|
/* Test case with the field size as modulus, input = field - 1. */
|
|
{{0xfc2e, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0xfc2e, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}},
|
|
/* Test case with the group size as modulus, input = 0. */
|
|
{{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
|
|
{0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae,
|
|
0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}},
|
|
/* Test case with the group size as modulus, input = 1. */
|
|
{{0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
|
|
{0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae,
|
|
0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}},
|
|
/* Test case with the group size as modulus, input = 2. */
|
|
{{0x0002, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
|
|
{0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae,
|
|
0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x20a1, 0x681b, 0x2f46, 0xdfe9, 0x501d, 0x57a4, 0x6e73, 0x5d57,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x7fff}},
|
|
/* Test case with the group size as modulus, input = group - 1. */
|
|
{{0x4140, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae,
|
|
0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae,
|
|
0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff},
|
|
{0x4140, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae,
|
|
0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}}
|
|
};
|
|
|
|
int i, j, ok;
|
|
|
|
/* Test known inputs/outputs */
|
|
for (i = 0; (size_t)i < sizeof(CASES) / sizeof(CASES[0]); ++i) {
|
|
uint16_t out[16];
|
|
test_modinv32_uint16(out, CASES[i][0], CASES[i][1]);
|
|
for (j = 0; j < 16; ++j) CHECK(out[j] == CASES[i][2][j]);
|
|
#ifdef SECP256K1_WIDEMUL_INT128
|
|
test_modinv64_uint16(out, CASES[i][0], CASES[i][1]);
|
|
for (j = 0; j < 16; ++j) CHECK(out[j] == CASES[i][2][j]);
|
|
#endif
|
|
}
|
|
|
|
for (i = 0; i < 100 * count; ++i) {
|
|
/* 256-bit numbers in 16-uint16_t's notation */
|
|
static const uint16_t ZERO[16] = {0};
|
|
uint16_t xd[16]; /* the number (in range [0,2^256)) to be inverted */
|
|
uint16_t md[16]; /* the modulus (odd, in range [3,2^256)) */
|
|
uint16_t id[16]; /* the inverse of xd mod md */
|
|
|
|
/* generate random xd and md, so that md is odd, md>1, xd<md, and gcd(xd,md)=1 */
|
|
do {
|
|
/* generate random xd and md (with many subsequent 0s and 1s) */
|
|
secp256k1_testrand256_test((unsigned char*)xd);
|
|
secp256k1_testrand256_test((unsigned char*)md);
|
|
md[0] |= 1; /* modulus must be odd */
|
|
/* If modulus is 1, find another one. */
|
|
ok = md[0] != 1;
|
|
for (j = 1; j < 16; ++j) ok |= md[j] != 0;
|
|
mulmod256(xd, xd, NULL, md); /* Make xd = xd mod md */
|
|
} while (!(ok && coprime(xd, md)));
|
|
|
|
test_modinv32_uint16(id, xd, md);
|
|
#ifdef SECP256K1_WIDEMUL_INT128
|
|
test_modinv64_uint16(id, xd, md);
|
|
#endif
|
|
|
|
/* In a few cases, also test with input=0 */
|
|
if (i < count) {
|
|
test_modinv32_uint16(id, ZERO, md);
|
|
#ifdef SECP256K1_WIDEMUL_INT128
|
|
test_modinv64_uint16(id, ZERO, md);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/***** SCALAR TESTS *****/
|
|
|
|
|
|
void scalar_test(void) {
|
|
secp256k1_scalar s;
|
|
secp256k1_scalar s1;
|
|
secp256k1_scalar s2;
|
|
#ifndef USE_NUM_NONE
|
|
secp256k1_num snum, s1num, s2num;
|
|
secp256k1_num order, half_order;
|
|
#endif
|
|
unsigned char c[32];
|
|
|
|
/* Set 's' to a random scalar, with value 'snum'. */
|
|
random_scalar_order_test(&s);
|
|
|
|
/* Set 's1' to a random scalar, with value 's1num'. */
|
|
random_scalar_order_test(&s1);
|
|
|
|
/* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
|
|
random_scalar_order_test(&s2);
|
|
secp256k1_scalar_get_b32(c, &s2);
|
|
|
|
#ifndef USE_NUM_NONE
|
|
secp256k1_scalar_get_num(&snum, &s);
|
|
secp256k1_scalar_get_num(&s1num, &s1);
|
|
secp256k1_scalar_get_num(&s2num, &s2);
|
|
|
|
secp256k1_scalar_order_get_num(&order);
|
|
half_order = order;
|
|
secp256k1_num_shift(&half_order, 1);
|
|
#endif
|
|
|
|
{
|
|
int i;
|
|
/* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
|
|
secp256k1_scalar n;
|
|
secp256k1_scalar_set_int(&n, 0);
|
|
for (i = 0; i < 256; i += 4) {
|
|
secp256k1_scalar t;
|
|
int j;
|
|
secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
|
|
for (j = 0; j < 4; j++) {
|
|
secp256k1_scalar_add(&n, &n, &n);
|
|
}
|
|
secp256k1_scalar_add(&n, &n, &t);
|
|
}
|
|
CHECK(secp256k1_scalar_eq(&n, &s));
|
|
}
|
|
|
|
{
|
|
/* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */
|
|
secp256k1_scalar n;
|
|
int i = 0;
|
|
secp256k1_scalar_set_int(&n, 0);
|
|
while (i < 256) {
|
|
secp256k1_scalar t;
|
|
int j;
|
|
int now = secp256k1_testrand_int(15) + 1;
|
|
if (now + i > 256) {
|
|
now = 256 - i;
|
|
}
|
|
secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now));
|
|
for (j = 0; j < now; j++) {
|
|
secp256k1_scalar_add(&n, &n, &n);
|
|
}
|
|
secp256k1_scalar_add(&n, &n, &t);
|
|
i += now;
|
|
}
|
|
CHECK(secp256k1_scalar_eq(&n, &s));
|
|
}
|
|
|
|
#ifndef USE_NUM_NONE
|
|
{
|
|
/* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
|
|
secp256k1_num rnum;
|
|
secp256k1_num r2num;
|
|
secp256k1_scalar r;
|
|
secp256k1_num_add(&rnum, &snum, &s2num);
|
|
secp256k1_num_mod(&rnum, &order);
|
|
secp256k1_scalar_add(&r, &s, &s2);
|
|
secp256k1_scalar_get_num(&r2num, &r);
|
|
CHECK(secp256k1_num_eq(&rnum, &r2num));
|
|
}
|
|
|
|
{
|
|
/* Test that multiplying the scalars is equal to multiplying their numbers modulo the order. */
|
|
secp256k1_scalar r;
|
|
secp256k1_num r2num;
|
|
secp256k1_num rnum;
|
|
secp256k1_num_mul(&rnum, &snum, &s2num);
|
|
secp256k1_num_mod(&rnum, &order);
|
|
secp256k1_scalar_mul(&r, &s, &s2);
|
|
secp256k1_scalar_get_num(&r2num, &r);
|
|
CHECK(secp256k1_num_eq(&rnum, &r2num));
|
|
/* The result can only be zero if at least one of the factors was zero. */
|
|
CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
|
|
/* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
|
|
CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
|
|
CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
|
|
}
|
|
|
|
{
|
|
secp256k1_scalar neg;
|
|
secp256k1_num negnum;
|
|
secp256k1_num negnum2;
|
|
/* Check that comparison with zero matches comparison with zero on the number. */
|
|
CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
|
|
/* Check that comparison with the half order is equal to testing for high scalar. */
|
|
CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0));
|
|
secp256k1_scalar_negate(&neg, &s);
|
|
secp256k1_num_sub(&negnum, &order, &snum);
|
|
secp256k1_num_mod(&negnum, &order);
|
|
/* Check that comparison with the half order is equal to testing for high scalar after negation. */
|
|
CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0));
|
|
/* Negating should change the high property, unless the value was already zero. */
|
|
CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
|
|
secp256k1_scalar_get_num(&negnum2, &neg);
|
|
/* Negating a scalar should be equal to (order - n) mod order on the number. */
|
|
CHECK(secp256k1_num_eq(&negnum, &negnum2));
|
|
secp256k1_scalar_add(&neg, &neg, &s);
|
|
/* Adding a number to its negation should result in zero. */
|
|
CHECK(secp256k1_scalar_is_zero(&neg));
|
|
secp256k1_scalar_negate(&neg, &neg);
|
|
/* Negating zero should still result in zero. */
|
|
CHECK(secp256k1_scalar_is_zero(&neg));
|
|
}
|
|
|
|
{
|
|
/* Test secp256k1_scalar_mul_shift_var. */
|
|
secp256k1_scalar r;
|
|
secp256k1_num one;
|
|
secp256k1_num rnum;
|
|
secp256k1_num rnum2;
|
|
unsigned char cone[1] = {0x01};
|
|
unsigned int shift = 256 + secp256k1_testrand_int(257);
|
|
secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift);
|
|
secp256k1_num_mul(&rnum, &s1num, &s2num);
|
|
secp256k1_num_shift(&rnum, shift - 1);
|
|
secp256k1_num_set_bin(&one, cone, 1);
|
|
secp256k1_num_add(&rnum, &rnum, &one);
|
|
secp256k1_num_shift(&rnum, 1);
|
|
secp256k1_scalar_get_num(&rnum2, &r);
|
|
CHECK(secp256k1_num_eq(&rnum, &rnum2));
|
|
}
|
|
|
|
{
|
|
/* test secp256k1_scalar_shr_int */
|
|
secp256k1_scalar r;
|
|
int i;
|
|
random_scalar_order_test(&r);
|
|
for (i = 0; i < 100; ++i) {
|
|
int low;
|
|
int shift = 1 + secp256k1_testrand_int(15);
|
|
int expected = r.d[0] % (1 << shift);
|
|
low = secp256k1_scalar_shr_int(&r, shift);
|
|
CHECK(expected == low);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
{
|
|
/* Test commutativity of add. */
|
|
secp256k1_scalar r1, r2;
|
|
secp256k1_scalar_add(&r1, &s1, &s2);
|
|
secp256k1_scalar_add(&r2, &s2, &s1);
|
|
CHECK(secp256k1_scalar_eq(&r1, &r2));
|
|
}
|
|
|
|
{
|
|
secp256k1_scalar r1, r2;
|
|
secp256k1_scalar b;
|
|
int i;
|
|
/* Test add_bit. */
|
|
int bit = secp256k1_testrand_bits(8);
|
|
secp256k1_scalar_set_int(&b, 1);
|
|
CHECK(secp256k1_scalar_is_one(&b));
|
|
for (i = 0; i < bit; i++) {
|
|
secp256k1_scalar_add(&b, &b, &b);
|
|
}
|
|
r1 = s1;
|
|
r2 = s1;
|
|
if (!secp256k1_scalar_add(&r1, &r1, &b)) {
|
|
/* No overflow happened. */
|
|
secp256k1_scalar_cadd_bit(&r2, bit, 1);
|
|
CHECK(secp256k1_scalar_eq(&r1, &r2));
|
|
/* cadd is a noop when flag is zero */
|
|
secp256k1_scalar_cadd_bit(&r2, bit, 0);
|
|
CHECK(secp256k1_scalar_eq(&r1, &r2));
|
|
}
|
|
}
|
|
|
|
{
|
|
/* Test commutativity of mul. */
|
|
secp256k1_scalar r1, r2;
|
|
secp256k1_scalar_mul(&r1, &s1, &s2);
|
|
secp256k1_scalar_mul(&r2, &s2, &s1);
|
|
CHECK(secp256k1_scalar_eq(&r1, &r2));
|
|
}
|
|
|
|
{
|
|
/* Test associativity of add. */
|
|
secp256k1_scalar r1, r2;
|
|
secp256k1_scalar_add(&r1, &s1, &s2);
|
|
secp256k1_scalar_add(&r1, &r1, &s);
|
|
secp256k1_scalar_add(&r2, &s2, &s);
|
|
secp256k1_scalar_add(&r2, &s1, &r2);
|
|
CHECK(secp256k1_scalar_eq(&r1, &r2));
|
|
}
|
|
|
|
{
|
|
/* Test associativity of mul. */
|
|
secp256k1_scalar r1, r2;
|
|
secp256k1_scalar_mul(&r1, &s1, &s2);
|
|
secp256k1_scalar_mul(&r1, &r1, &s);
|
|
secp256k1_scalar_mul(&r2, &s2, &s);
|
|
secp256k1_scalar_mul(&r2, &s1, &r2);
|
|
CHECK(secp256k1_scalar_eq(&r1, &r2));
|
|
}
|
|
|
|
{
|
|
/* Test distributitivity of mul over add. */
|
|
secp256k1_scalar r1, r2, t;
|
|
secp256k1_scalar_add(&r1, &s1, &s2);
|
|
secp256k1_scalar_mul(&r1, &r1, &s);
|
|
secp256k1_scalar_mul(&r2, &s1, &s);
|
|
secp256k1_scalar_mul(&t, &s2, &s);
|
|
secp256k1_scalar_add(&r2, &r2, &t);
|
|
CHECK(secp256k1_scalar_eq(&r1, &r2));
|
|
}
|
|
|
|
{
|
|
/* Test multiplicative identity. */
|
|
secp256k1_scalar r1, v1;
|
|
secp256k1_scalar_set_int(&v1,1);
|
|
secp256k1_scalar_mul(&r1, &s1, &v1);
|
|
CHECK(secp256k1_scalar_eq(&r1, &s1));
|
|
}
|
|
|
|
{
|
|
/* Test additive identity. */
|
|
secp256k1_scalar r1, v0;
|
|
secp256k1_scalar_set_int(&v0,0);
|
|
secp256k1_scalar_add(&r1, &s1, &v0);
|
|
CHECK(secp256k1_scalar_eq(&r1, &s1));
|
|
}
|
|
|
|
{
|
|
/* Test zero product property. */
|
|
secp256k1_scalar r1, v0;
|
|
secp256k1_scalar_set_int(&v0,0);
|
|
secp256k1_scalar_mul(&r1, &s1, &v0);
|
|
CHECK(secp256k1_scalar_eq(&r1, &v0));
|
|
}
|
|
|
|
}
|
|
|
|
void run_scalar_set_b32_seckey_tests(void) {
|
|
unsigned char b32[32];
|
|
secp256k1_scalar s1;
|
|
secp256k1_scalar s2;
|
|
|
|
/* Usually set_b32 and set_b32_seckey give the same result */
|
|
random_scalar_order_b32(b32);
|
|
secp256k1_scalar_set_b32(&s1, b32, NULL);
|
|
CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 1);
|
|
CHECK(secp256k1_scalar_eq(&s1, &s2) == 1);
|
|
|
|
memset(b32, 0, sizeof(b32));
|
|
CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 0);
|
|
memset(b32, 0xFF, sizeof(b32));
|
|
CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 0);
|
|
}
|
|
|
|
void run_scalar_tests(void) {
|
|
int i;
|
|
for (i = 0; i < 128 * count; i++) {
|
|
scalar_test();
|
|
}
|
|
for (i = 0; i < count; i++) {
|
|
run_scalar_set_b32_seckey_tests();
|
|
}
|
|
|
|
{
|
|
/* (-1)+1 should be zero. */
|
|
secp256k1_scalar s, o;
|
|
secp256k1_scalar_set_int(&s, 1);
|
|
CHECK(secp256k1_scalar_is_one(&s));
|
|
secp256k1_scalar_negate(&o, &s);
|
|
secp256k1_scalar_add(&o, &o, &s);
|
|
CHECK(secp256k1_scalar_is_zero(&o));
|
|
secp256k1_scalar_negate(&o, &o);
|
|
CHECK(secp256k1_scalar_is_zero(&o));
|
|
}
|
|
|
|
#ifndef USE_NUM_NONE
|
|
{
|
|
/* Test secp256k1_scalar_set_b32 boundary conditions */
|
|
secp256k1_num order;
|
|
secp256k1_scalar scalar;
|
|
unsigned char bin[32];
|
|
unsigned char bin_tmp[32];
|
|
int overflow = 0;
|
|
/* 2^256-1 - order */
|
|
static const secp256k1_scalar all_ones_minus_order = SECP256K1_SCALAR_CONST(
|
|
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000001UL,
|
|
0x45512319UL, 0x50B75FC4UL, 0x402DA173UL, 0x2FC9BEBEUL
|
|
);
|
|
|
|
/* A scalar set to 0s should be 0. */
|
|
memset(bin, 0, 32);
|
|
secp256k1_scalar_set_b32(&scalar, bin, &overflow);
|
|
CHECK(overflow == 0);
|
|
CHECK(secp256k1_scalar_is_zero(&scalar));
|
|
|
|
/* A scalar with value of the curve order should be 0. */
|
|
secp256k1_scalar_order_get_num(&order);
|
|
secp256k1_num_get_bin(bin, 32, &order);
|
|
secp256k1_scalar_set_b32(&scalar, bin, &overflow);
|
|
CHECK(overflow == 1);
|
|
CHECK(secp256k1_scalar_is_zero(&scalar));
|
|
|
|
/* A scalar with value of the curve order minus one should not overflow. */
|
|
bin[31] -= 1;
|
|
secp256k1_scalar_set_b32(&scalar, bin, &overflow);
|
|
CHECK(overflow == 0);
|
|
secp256k1_scalar_get_b32(bin_tmp, &scalar);
|
|
CHECK(secp256k1_memcmp_var(bin, bin_tmp, 32) == 0);
|
|
|
|
/* A scalar set to all 1s should overflow. */
|
|
memset(bin, 0xFF, 32);
|
|
secp256k1_scalar_set_b32(&scalar, bin, &overflow);
|
|
CHECK(overflow == 1);
|
|
CHECK(secp256k1_scalar_eq(&scalar, &all_ones_minus_order));
|
|
}
|
|
#endif
|
|
|
|
{
|
|
/* Does check_overflow check catch all ones? */
|
|
static const secp256k1_scalar overflowed = SECP256K1_SCALAR_CONST(
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL
|
|
);
|
|
CHECK(secp256k1_scalar_check_overflow(&overflowed));
|
|
}
|
|
|
|
{
|
|
/* Static test vectors.
|
|
* These were reduced from ~10^12 random vectors based on comparison-decision
|
|
* and edge-case coverage on 32-bit and 64-bit implementations.
|
|
* The responses were generated with Sage 5.9.
|
|
*/
|
|
secp256k1_scalar x;
|
|
secp256k1_scalar y;
|
|
secp256k1_scalar z;
|
|
secp256k1_scalar zz;
|
|
secp256k1_scalar one;
|
|
secp256k1_scalar r1;
|
|
secp256k1_scalar r2;
|
|
#if defined(USE_SCALAR_INV_NUM)
|
|
secp256k1_scalar zzv;
|
|
#endif
|
|
int overflow;
|
|
unsigned char chal[33][2][32] = {
|
|
{{0xff, 0xff, 0x03, 0x07, 0x00, 0x00, 0x00, 0x00,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff,
|
|
0xff, 0xff, 0x03, 0x00, 0xc0, 0xff, 0xff, 0xff},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff}},
|
|
{{0xef, 0xff, 0x1f, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0,
|
|
0xff, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0x7f, 0x00, 0x80, 0xff}},
|
|
{{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00,
|
|
0x80, 0x00, 0x00, 0x80, 0xff, 0x3f, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0x00},
|
|
{0x00, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff, 0x80,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, 0x00, 0xe0,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x7f, 0xff, 0xff, 0xff}},
|
|
{{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0x00, 0x1e, 0xf8, 0xff, 0xff, 0xff, 0xfd, 0xff},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f,
|
|
0x00, 0x00, 0x00, 0xf8, 0xff, 0x03, 0x00, 0xe0,
|
|
0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0xf0, 0xff,
|
|
0xf3, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}},
|
|
{{0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0x00,
|
|
0x00, 0x1c, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xe0, 0xff, 0xff, 0xff, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00,
|
|
0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0x1f, 0x00, 0x00, 0x80, 0xff, 0xff, 0x3f,
|
|
0x00, 0xfe, 0xff, 0xff, 0xff, 0xdf, 0xff, 0xff}},
|
|
{{0xff, 0xff, 0xff, 0xff, 0x00, 0x0f, 0xfc, 0x9f,
|
|
0xff, 0xff, 0xff, 0x00, 0x80, 0x00, 0x00, 0x80,
|
|
0xff, 0x0f, 0xfc, 0xff, 0x7f, 0x00, 0x00, 0x00,
|
|
0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00},
|
|
{0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
|
|
0x00, 0x00, 0xf8, 0xff, 0x0f, 0xc0, 0xff, 0xff,
|
|
0xff, 0x1f, 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0x07, 0x80, 0xff, 0xff, 0xff}},
|
|
{{0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00,
|
|
0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff,
|
|
0xf7, 0xff, 0xff, 0xef, 0xff, 0xff, 0xff, 0x00,
|
|
0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xf0},
|
|
{0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}},
|
|
{{0x00, 0xf8, 0xff, 0x03, 0xff, 0xff, 0xff, 0x00,
|
|
0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0x03, 0xc0, 0xff, 0x0f, 0xfc, 0xff},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xe0, 0xff, 0xff,
|
|
0xff, 0x01, 0x00, 0x00, 0x00, 0x3f, 0x00, 0xc0,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}},
|
|
{{0x8f, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0x7f, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
|
|
{{0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0x03, 0x00, 0x80, 0x00, 0x00, 0x80,
|
|
0xff, 0xff, 0xff, 0x00, 0x00, 0x80, 0xff, 0x7f},
|
|
{0xff, 0xcf, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00,
|
|
0x00, 0xc0, 0xff, 0xcf, 0xff, 0xff, 0xff, 0xff,
|
|
0xbf, 0xff, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x80, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00}},
|
|
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff,
|
|
0xff, 0xff, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0x00, 0x80, 0x00, 0x00, 0x80,
|
|
0xff, 0x01, 0xfc, 0xff, 0x01, 0x00, 0xfe, 0xff},
|
|
{0xff, 0xff, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00}},
|
|
{{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0xe0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0x7f, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0xf8, 0xff, 0x01, 0x00, 0xf0, 0xff, 0xff,
|
|
0xe0, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
|
|
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0x00},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00,
|
|
0xfc, 0xff, 0xff, 0x3f, 0xf0, 0xff, 0xff, 0x3f,
|
|
0x00, 0x00, 0xf8, 0x07, 0x00, 0x00, 0x00, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0x0f, 0x7e, 0x00, 0x00}},
|
|
{{0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0x1f, 0x00, 0x00, 0xfe, 0x07, 0x00},
|
|
{0x00, 0x00, 0x00, 0xf0, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xfb, 0xff, 0x07, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60}},
|
|
{{0xff, 0x01, 0x00, 0xff, 0xff, 0xff, 0x0f, 0x00,
|
|
0x80, 0x7f, 0xfe, 0xff, 0xff, 0xff, 0xff, 0x03,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
|
|
{0xff, 0xff, 0x1f, 0x00, 0xf0, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0x3f, 0x00, 0x00, 0x00, 0x00}},
|
|
{{0x80, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
|
|
0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff}},
|
|
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0xc0, 0xff, 0xff, 0xcf, 0xff, 0x1f, 0x00, 0x00,
|
|
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x7e,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
|
|
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x00},
|
|
{0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
|
|
0xff, 0xff, 0x7f, 0x00, 0x80, 0x00, 0x00, 0x00,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0x00, 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff}},
|
|
{{0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x80,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00},
|
|
{0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00, 0x80,
|
|
0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff,
|
|
0xff, 0x7f, 0xf8, 0xff, 0xff, 0x1f, 0x00, 0xfe}},
|
|
{{0xff, 0xff, 0xff, 0x3f, 0xf8, 0xff, 0xff, 0xff,
|
|
0xff, 0x03, 0xfe, 0x01, 0x00, 0x00, 0x00, 0x00,
|
|
0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
|
|
0xff, 0xff, 0xff, 0xff, 0x01, 0x80, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}},
|
|
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
|
|
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
|
|
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40}},
|
|
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
|
|
{{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
|
|
{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}},
|
|
{{0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0xc0,
|
|
0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, 0x00,
|
|
0xf0, 0xff, 0xff, 0xff, 0xff, 0x07, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0x01, 0xff, 0xff, 0xff}},
|
|
{{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02}},
|
|
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
|
|
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
|
|
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}},
|
|
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0x7e, 0x00, 0x00, 0xc0, 0xff, 0xff, 0x07, 0x00,
|
|
0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00,
|
|
0xfc, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
|
|
{0xff, 0x01, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x80,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00, 0x00,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}},
|
|
{{0xff, 0xff, 0xf0, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0x00, 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01,
|
|
0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff,
|
|
0xff, 0xff, 0x3f, 0x00, 0xf8, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0x3f, 0x00, 0x00, 0xc0, 0xf1, 0x7f, 0x00}},
|
|
{{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0x00},
|
|
{0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff,
|
|
0xff, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x80, 0x1f,
|
|
0x00, 0x00, 0xfc, 0xff, 0xff, 0x01, 0xff, 0xff}},
|
|
{{0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0x80, 0x00, 0x00, 0x80, 0xff, 0x03, 0xe0, 0x01,
|
|
0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0xfc, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00},
|
|
{0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
|
|
0xfe, 0xff, 0xff, 0xf0, 0x07, 0x00, 0x3c, 0x80,
|
|
0xff, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0x07, 0xe0, 0xff, 0x00, 0x00, 0x00}},
|
|
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0xfc, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0xf8,
|
|
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80},
|
|
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0x0c, 0x80, 0x00,
|
|
0x00, 0x00, 0x00, 0xc0, 0x7f, 0xfe, 0xff, 0x1f,
|
|
0x00, 0xfe, 0xff, 0x03, 0x00, 0x00, 0xfe, 0xff}},
|
|
{{0xff, 0xff, 0x81, 0xff, 0xff, 0xff, 0xff, 0x00,
|
|
0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x83,
|
|
0xff, 0xff, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80,
|
|
0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00, 0xf0},
|
|
{0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x00,
|
|
0xf8, 0x07, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xc7, 0xff, 0xff, 0xe0, 0xff, 0xff, 0xff}},
|
|
{{0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
|
|
0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0x6f, 0x03, 0xfb,
|
|
0xfa, 0x8a, 0x7d, 0xdf, 0x13, 0x86, 0xe2, 0x03},
|
|
{0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
|
|
0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0x6f, 0x03, 0xfb,
|
|
0xfa, 0x8a, 0x7d, 0xdf, 0x13, 0x86, 0xe2, 0x03}}
|
|
};
|
|
unsigned char res[33][2][32] = {
|
|
{{0x0c, 0x3b, 0x0a, 0xca, 0x8d, 0x1a, 0x2f, 0xb9,
|
|
0x8a, 0x7b, 0x53, 0x5a, 0x1f, 0xc5, 0x22, 0xa1,
|
|
0x07, 0x2a, 0x48, 0xea, 0x02, 0xeb, 0xb3, 0xd6,
|
|
0x20, 0x1e, 0x86, 0xd0, 0x95, 0xf6, 0x92, 0x35},
|
|
{0xdc, 0x90, 0x7a, 0x07, 0x2e, 0x1e, 0x44, 0x6d,
|
|
0xf8, 0x15, 0x24, 0x5b, 0x5a, 0x96, 0x37, 0x9c,
|
|
0x37, 0x7b, 0x0d, 0xac, 0x1b, 0x65, 0x58, 0x49,
|
|
0x43, 0xb7, 0x31, 0xbb, 0xa7, 0xf4, 0x97, 0x15}},
|
|
{{0xf1, 0xf7, 0x3a, 0x50, 0xe6, 0x10, 0xba, 0x22,
|
|
0x43, 0x4d, 0x1f, 0x1f, 0x7c, 0x27, 0xca, 0x9c,
|
|
0xb8, 0xb6, 0xa0, 0xfc, 0xd8, 0xc0, 0x05, 0x2f,
|
|
0xf7, 0x08, 0xe1, 0x76, 0xdd, 0xd0, 0x80, 0xc8},
|
|
{0xe3, 0x80, 0x80, 0xb8, 0xdb, 0xe3, 0xa9, 0x77,
|
|
0x00, 0xb0, 0xf5, 0x2e, 0x27, 0xe2, 0x68, 0xc4,
|
|
0x88, 0xe8, 0x04, 0xc1, 0x12, 0xbf, 0x78, 0x59,
|
|
0xe6, 0xa9, 0x7c, 0xe1, 0x81, 0xdd, 0xb9, 0xd5}},
|
|
{{0x96, 0xe2, 0xee, 0x01, 0xa6, 0x80, 0x31, 0xef,
|
|
0x5c, 0xd0, 0x19, 0xb4, 0x7d, 0x5f, 0x79, 0xab,
|
|
0xa1, 0x97, 0xd3, 0x7e, 0x33, 0xbb, 0x86, 0x55,
|
|
0x60, 0x20, 0x10, 0x0d, 0x94, 0x2d, 0x11, 0x7c},
|
|
{0xcc, 0xab, 0xe0, 0xe8, 0x98, 0x65, 0x12, 0x96,
|
|
0x38, 0x5a, 0x1a, 0xf2, 0x85, 0x23, 0x59, 0x5f,
|
|
0xf9, 0xf3, 0xc2, 0x81, 0x70, 0x92, 0x65, 0x12,
|
|
0x9c, 0x65, 0x1e, 0x96, 0x00, 0xef, 0xe7, 0x63}},
|
|
{{0xac, 0x1e, 0x62, 0xc2, 0x59, 0xfc, 0x4e, 0x5c,
|
|
0x83, 0xb0, 0xd0, 0x6f, 0xce, 0x19, 0xf6, 0xbf,
|
|
0xa4, 0xb0, 0xe0, 0x53, 0x66, 0x1f, 0xbf, 0xc9,
|
|
0x33, 0x47, 0x37, 0xa9, 0x3d, 0x5d, 0xb0, 0x48},
|
|
{0x86, 0xb9, 0x2a, 0x7f, 0x8e, 0xa8, 0x60, 0x42,
|
|
0x26, 0x6d, 0x6e, 0x1c, 0xa2, 0xec, 0xe0, 0xe5,
|
|
0x3e, 0x0a, 0x33, 0xbb, 0x61, 0x4c, 0x9f, 0x3c,
|
|
0xd1, 0xdf, 0x49, 0x33, 0xcd, 0x72, 0x78, 0x18}},
|
|
{{0xf7, 0xd3, 0xcd, 0x49, 0x5c, 0x13, 0x22, 0xfb,
|
|
0x2e, 0xb2, 0x2f, 0x27, 0xf5, 0x8a, 0x5d, 0x74,
|
|
0xc1, 0x58, 0xc5, 0xc2, 0x2d, 0x9f, 0x52, 0xc6,
|
|
0x63, 0x9f, 0xba, 0x05, 0x76, 0x45, 0x7a, 0x63},
|
|
{0x8a, 0xfa, 0x55, 0x4d, 0xdd, 0xa3, 0xb2, 0xc3,
|
|
0x44, 0xfd, 0xec, 0x72, 0xde, 0xef, 0xc0, 0x99,
|
|
0xf5, 0x9f, 0xe2, 0x52, 0xb4, 0x05, 0x32, 0x58,
|
|
0x57, 0xc1, 0x8f, 0xea, 0xc3, 0x24, 0x5b, 0x94}},
|
|
{{0x05, 0x83, 0xee, 0xdd, 0x64, 0xf0, 0x14, 0x3b,
|
|
0xa0, 0x14, 0x4a, 0x3a, 0x41, 0x82, 0x7c, 0xa7,
|
|
0x2c, 0xaa, 0xb1, 0x76, 0xbb, 0x59, 0x64, 0x5f,
|
|
0x52, 0xad, 0x25, 0x29, 0x9d, 0x8f, 0x0b, 0xb0},
|
|
{0x7e, 0xe3, 0x7c, 0xca, 0xcd, 0x4f, 0xb0, 0x6d,
|
|
0x7a, 0xb2, 0x3e, 0xa0, 0x08, 0xb9, 0xa8, 0x2d,
|
|
0xc2, 0xf4, 0x99, 0x66, 0xcc, 0xac, 0xd8, 0xb9,
|
|
0x72, 0x2a, 0x4a, 0x3e, 0x0f, 0x7b, 0xbf, 0xf4}},
|
|
{{0x8c, 0x9c, 0x78, 0x2b, 0x39, 0x61, 0x7e, 0xf7,
|
|
0x65, 0x37, 0x66, 0x09, 0x38, 0xb9, 0x6f, 0x70,
|
|
0x78, 0x87, 0xff, 0xcf, 0x93, 0xca, 0x85, 0x06,
|
|
0x44, 0x84, 0xa7, 0xfe, 0xd3, 0xa4, 0xe3, 0x7e},
|
|
{0xa2, 0x56, 0x49, 0x23, 0x54, 0xa5, 0x50, 0xe9,
|
|
0x5f, 0xf0, 0x4d, 0xe7, 0xdc, 0x38, 0x32, 0x79,
|
|
0x4f, 0x1c, 0xb7, 0xe4, 0xbb, 0xf8, 0xbb, 0x2e,
|
|
0x40, 0x41, 0x4b, 0xcc, 0xe3, 0x1e, 0x16, 0x36}},
|
|
{{0x0c, 0x1e, 0xd7, 0x09, 0x25, 0x40, 0x97, 0xcb,
|
|
0x5c, 0x46, 0xa8, 0xda, 0xef, 0x25, 0xd5, 0xe5,
|
|
0x92, 0x4d, 0xcf, 0xa3, 0xc4, 0x5d, 0x35, 0x4a,
|
|
0xe4, 0x61, 0x92, 0xf3, 0xbf, 0x0e, 0xcd, 0xbe},
|
|
{0xe4, 0xaf, 0x0a, 0xb3, 0x30, 0x8b, 0x9b, 0x48,
|
|
0x49, 0x43, 0xc7, 0x64, 0x60, 0x4a, 0x2b, 0x9e,
|
|
0x95, 0x5f, 0x56, 0xe8, 0x35, 0xdc, 0xeb, 0xdc,
|
|
0xc7, 0xc4, 0xfe, 0x30, 0x40, 0xc7, 0xbf, 0xa4}},
|
|
{{0xd4, 0xa0, 0xf5, 0x81, 0x49, 0x6b, 0xb6, 0x8b,
|
|
0x0a, 0x69, 0xf9, 0xfe, 0xa8, 0x32, 0xe5, 0xe0,
|
|
0xa5, 0xcd, 0x02, 0x53, 0xf9, 0x2c, 0xe3, 0x53,
|
|
0x83, 0x36, 0xc6, 0x02, 0xb5, 0xeb, 0x64, 0xb8},
|
|
{0x1d, 0x42, 0xb9, 0xf9, 0xe9, 0xe3, 0x93, 0x2c,
|
|
0x4c, 0xee, 0x6c, 0x5a, 0x47, 0x9e, 0x62, 0x01,
|
|
0x6b, 0x04, 0xfe, 0xa4, 0x30, 0x2b, 0x0d, 0x4f,
|
|
0x71, 0x10, 0xd3, 0x55, 0xca, 0xf3, 0x5e, 0x80}},
|
|
{{0x77, 0x05, 0xf6, 0x0c, 0x15, 0x9b, 0x45, 0xe7,
|
|
0xb9, 0x11, 0xb8, 0xf5, 0xd6, 0xda, 0x73, 0x0c,
|
|
0xda, 0x92, 0xea, 0xd0, 0x9d, 0xd0, 0x18, 0x92,
|
|
0xce, 0x9a, 0xaa, 0xee, 0x0f, 0xef, 0xde, 0x30},
|
|
{0xf1, 0xf1, 0xd6, 0x9b, 0x51, 0xd7, 0x77, 0x62,
|
|
0x52, 0x10, 0xb8, 0x7a, 0x84, 0x9d, 0x15, 0x4e,
|
|
0x07, 0xdc, 0x1e, 0x75, 0x0d, 0x0c, 0x3b, 0xdb,
|
|
0x74, 0x58, 0x62, 0x02, 0x90, 0x54, 0x8b, 0x43}},
|
|
{{0xa6, 0xfe, 0x0b, 0x87, 0x80, 0x43, 0x67, 0x25,
|
|
0x57, 0x5d, 0xec, 0x40, 0x50, 0x08, 0xd5, 0x5d,
|
|
0x43, 0xd7, 0xe0, 0xaa, 0xe0, 0x13, 0xb6, 0xb0,
|
|
0xc0, 0xd4, 0xe5, 0x0d, 0x45, 0x83, 0xd6, 0x13},
|
|
{0x40, 0x45, 0x0a, 0x92, 0x31, 0xea, 0x8c, 0x60,
|
|
0x8c, 0x1f, 0xd8, 0x76, 0x45, 0xb9, 0x29, 0x00,
|
|
0x26, 0x32, 0xd8, 0xa6, 0x96, 0x88, 0xe2, 0xc4,
|
|
0x8b, 0xdb, 0x7f, 0x17, 0x87, 0xcc, 0xc8, 0xf2}},
|
|
{{0xc2, 0x56, 0xe2, 0xb6, 0x1a, 0x81, 0xe7, 0x31,
|
|
0x63, 0x2e, 0xbb, 0x0d, 0x2f, 0x81, 0x67, 0xd4,
|
|
0x22, 0xe2, 0x38, 0x02, 0x25, 0x97, 0xc7, 0x88,
|
|
0x6e, 0xdf, 0xbe, 0x2a, 0xa5, 0x73, 0x63, 0xaa},
|
|
{0x50, 0x45, 0xe2, 0xc3, 0xbd, 0x89, 0xfc, 0x57,
|
|
0xbd, 0x3c, 0xa3, 0x98, 0x7e, 0x7f, 0x36, 0x38,
|
|
0x92, 0x39, 0x1f, 0x0f, 0x81, 0x1a, 0x06, 0x51,
|
|
0x1f, 0x8d, 0x6a, 0xff, 0x47, 0x16, 0x06, 0x9c}},
|
|
{{0x33, 0x95, 0xa2, 0x6f, 0x27, 0x5f, 0x9c, 0x9c,
|
|
0x64, 0x45, 0xcb, 0xd1, 0x3c, 0xee, 0x5e, 0x5f,
|
|
0x48, 0xa6, 0xaf, 0xe3, 0x79, 0xcf, 0xb1, 0xe2,
|
|
0xbf, 0x55, 0x0e, 0xa2, 0x3b, 0x62, 0xf0, 0xe4},
|
|
{0x14, 0xe8, 0x06, 0xe3, 0xbe, 0x7e, 0x67, 0x01,
|
|
0xc5, 0x21, 0x67, 0xd8, 0x54, 0xb5, 0x7f, 0xa4,
|
|
0xf9, 0x75, 0x70, 0x1c, 0xfd, 0x79, 0xdb, 0x86,
|
|
0xad, 0x37, 0x85, 0x83, 0x56, 0x4e, 0xf0, 0xbf}},
|
|
{{0xbc, 0xa6, 0xe0, 0x56, 0x4e, 0xef, 0xfa, 0xf5,
|
|
0x1d, 0x5d, 0x3f, 0x2a, 0x5b, 0x19, 0xab, 0x51,
|
|
0xc5, 0x8b, 0xdd, 0x98, 0x28, 0x35, 0x2f, 0xc3,
|
|
0x81, 0x4f, 0x5c, 0xe5, 0x70, 0xb9, 0xeb, 0x62},
|
|
{0xc4, 0x6d, 0x26, 0xb0, 0x17, 0x6b, 0xfe, 0x6c,
|
|
0x12, 0xf8, 0xe7, 0xc1, 0xf5, 0x2f, 0xfa, 0x91,
|
|
0x13, 0x27, 0xbd, 0x73, 0xcc, 0x33, 0x31, 0x1c,
|
|
0x39, 0xe3, 0x27, 0x6a, 0x95, 0xcf, 0xc5, 0xfb}},
|
|
{{0x30, 0xb2, 0x99, 0x84, 0xf0, 0x18, 0x2a, 0x6e,
|
|
0x1e, 0x27, 0xed, 0xa2, 0x29, 0x99, 0x41, 0x56,
|
|
0xe8, 0xd4, 0x0d, 0xef, 0x99, 0x9c, 0xf3, 0x58,
|
|
0x29, 0x55, 0x1a, 0xc0, 0x68, 0xd6, 0x74, 0xa4},
|
|
{0x07, 0x9c, 0xe7, 0xec, 0xf5, 0x36, 0x73, 0x41,
|
|
0xa3, 0x1c, 0xe5, 0x93, 0x97, 0x6a, 0xfd, 0xf7,
|
|
0x53, 0x18, 0xab, 0xaf, 0xeb, 0x85, 0xbd, 0x92,
|
|
0x90, 0xab, 0x3c, 0xbf, 0x30, 0x82, 0xad, 0xf6}},
|
|
{{0xc6, 0x87, 0x8a, 0x2a, 0xea, 0xc0, 0xa9, 0xec,
|
|
0x6d, 0xd3, 0xdc, 0x32, 0x23, 0xce, 0x62, 0x19,
|
|
0xa4, 0x7e, 0xa8, 0xdd, 0x1c, 0x33, 0xae, 0xd3,
|
|
0x4f, 0x62, 0x9f, 0x52, 0xe7, 0x65, 0x46, 0xf4},
|
|
{0x97, 0x51, 0x27, 0x67, 0x2d, 0xa2, 0x82, 0x87,
|
|
0x98, 0xd3, 0xb6, 0x14, 0x7f, 0x51, 0xd3, 0x9a,
|
|
0x0b, 0xd0, 0x76, 0x81, 0xb2, 0x4f, 0x58, 0x92,
|
|
0xa4, 0x86, 0xa1, 0xa7, 0x09, 0x1d, 0xef, 0x9b}},
|
|
{{0xb3, 0x0f, 0x2b, 0x69, 0x0d, 0x06, 0x90, 0x64,
|
|
0xbd, 0x43, 0x4c, 0x10, 0xe8, 0x98, 0x1c, 0xa3,
|
|
0xe1, 0x68, 0xe9, 0x79, 0x6c, 0x29, 0x51, 0x3f,
|
|
0x41, 0xdc, 0xdf, 0x1f, 0xf3, 0x60, 0xbe, 0x33},
|
|
{0xa1, 0x5f, 0xf7, 0x1d, 0xb4, 0x3e, 0x9b, 0x3c,
|
|
0xe7, 0xbd, 0xb6, 0x06, 0xd5, 0x60, 0x06, 0x6d,
|
|
0x50, 0xd2, 0xf4, 0x1a, 0x31, 0x08, 0xf2, 0xea,
|
|
0x8e, 0xef, 0x5f, 0x7d, 0xb6, 0xd0, 0xc0, 0x27}},
|
|
{{0x62, 0x9a, 0xd9, 0xbb, 0x38, 0x36, 0xce, 0xf7,
|
|
0x5d, 0x2f, 0x13, 0xec, 0xc8, 0x2d, 0x02, 0x8a,
|
|
0x2e, 0x72, 0xf0, 0xe5, 0x15, 0x9d, 0x72, 0xae,
|
|
0xfc, 0xb3, 0x4f, 0x02, 0xea, 0xe1, 0x09, 0xfe},
|
|
{0x00, 0x00, 0x00, 0x00, 0xfa, 0x0a, 0x3d, 0xbc,
|
|
0xad, 0x16, 0x0c, 0xb6, 0xe7, 0x7c, 0x8b, 0x39,
|
|
0x9a, 0x43, 0xbb, 0xe3, 0xc2, 0x55, 0x15, 0x14,
|
|
0x75, 0xac, 0x90, 0x9b, 0x7f, 0x9a, 0x92, 0x00}},
|
|
{{0x8b, 0xac, 0x70, 0x86, 0x29, 0x8f, 0x00, 0x23,
|
|
0x7b, 0x45, 0x30, 0xaa, 0xb8, 0x4c, 0xc7, 0x8d,
|
|
0x4e, 0x47, 0x85, 0xc6, 0x19, 0xe3, 0x96, 0xc2,
|
|
0x9a, 0xa0, 0x12, 0xed, 0x6f, 0xd7, 0x76, 0x16},
|
|
{0x45, 0xaf, 0x7e, 0x33, 0xc7, 0x7f, 0x10, 0x6c,
|
|
0x7c, 0x9f, 0x29, 0xc1, 0xa8, 0x7e, 0x15, 0x84,
|
|
0xe7, 0x7d, 0xc0, 0x6d, 0xab, 0x71, 0x5d, 0xd0,
|
|
0x6b, 0x9f, 0x97, 0xab, 0xcb, 0x51, 0x0c, 0x9f}},
|
|
{{0x9e, 0xc3, 0x92, 0xb4, 0x04, 0x9f, 0xc8, 0xbb,
|
|
0xdd, 0x9e, 0xc6, 0x05, 0xfd, 0x65, 0xec, 0x94,
|
|
0x7f, 0x2c, 0x16, 0xc4, 0x40, 0xac, 0x63, 0x7b,
|
|
0x7d, 0xb8, 0x0c, 0xe4, 0x5b, 0xe3, 0xa7, 0x0e},
|
|
{0x43, 0xf4, 0x44, 0xe8, 0xcc, 0xc8, 0xd4, 0x54,
|
|
0x33, 0x37, 0x50, 0xf2, 0x87, 0x42, 0x2e, 0x00,
|
|
0x49, 0x60, 0x62, 0x02, 0xfd, 0x1a, 0x7c, 0xdb,
|
|
0x29, 0x6c, 0x6d, 0x54, 0x53, 0x08, 0xd1, 0xc8}},
|
|
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
|
|
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}},
|
|
{{0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1,
|
|
0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0,
|
|
0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59,
|
|
0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92},
|
|
{0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1,
|
|
0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0,
|
|
0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59,
|
|
0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92}},
|
|
{{0x28, 0x56, 0xac, 0x0e, 0x4f, 0x98, 0x09, 0xf0,
|
|
0x49, 0xfa, 0x7f, 0x84, 0xac, 0x7e, 0x50, 0x5b,
|
|
0x17, 0x43, 0x14, 0x89, 0x9c, 0x53, 0xa8, 0x94,
|
|
0x30, 0xf2, 0x11, 0x4d, 0x92, 0x14, 0x27, 0xe8},
|
|
{0x39, 0x7a, 0x84, 0x56, 0x79, 0x9d, 0xec, 0x26,
|
|
0x2c, 0x53, 0xc1, 0x94, 0xc9, 0x8d, 0x9e, 0x9d,
|
|
0x32, 0x1f, 0xdd, 0x84, 0x04, 0xe8, 0xe2, 0x0a,
|
|
0x6b, 0xbe, 0xbb, 0x42, 0x40, 0x67, 0x30, 0x6c}},
|
|
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4,
|
|
0x40, 0x2d, 0xa1, 0x73, 0x2f, 0xc9, 0xbe, 0xbd},
|
|
{0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1,
|
|
0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0,
|
|
0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59,
|
|
0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92}},
|
|
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
|
|
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
|
|
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}},
|
|
{{0x1c, 0xc4, 0xf7, 0xda, 0x0f, 0x65, 0xca, 0x39,
|
|
0x70, 0x52, 0x92, 0x8e, 0xc3, 0xc8, 0x15, 0xea,
|
|
0x7f, 0x10, 0x9e, 0x77, 0x4b, 0x6e, 0x2d, 0xdf,
|
|
0xe8, 0x30, 0x9d, 0xda, 0xe8, 0x9a, 0x65, 0xae},
|
|
{0x02, 0xb0, 0x16, 0xb1, 0x1d, 0xc8, 0x57, 0x7b,
|
|
0xa2, 0x3a, 0xa2, 0xa3, 0x38, 0x5c, 0x8f, 0xeb,
|
|
0x66, 0x37, 0x91, 0xa8, 0x5f, 0xef, 0x04, 0xf6,
|
|
0x59, 0x75, 0xe1, 0xee, 0x92, 0xf6, 0x0e, 0x30}},
|
|
{{0x8d, 0x76, 0x14, 0xa4, 0x14, 0x06, 0x9f, 0x9a,
|
|
0xdf, 0x4a, 0x85, 0xa7, 0x6b, 0xbf, 0x29, 0x6f,
|
|
0xbc, 0x34, 0x87, 0x5d, 0xeb, 0xbb, 0x2e, 0xa9,
|
|
0xc9, 0x1f, 0x58, 0xd6, 0x9a, 0x82, 0xa0, 0x56},
|
|
{0xd4, 0xb9, 0xdb, 0x88, 0x1d, 0x04, 0xe9, 0x93,
|
|
0x8d, 0x3f, 0x20, 0xd5, 0x86, 0xa8, 0x83, 0x07,
|
|
0xdb, 0x09, 0xd8, 0x22, 0x1f, 0x7f, 0xf1, 0x71,
|
|
0xc8, 0xe7, 0x5d, 0x47, 0xaf, 0x8b, 0x72, 0xe9}},
|
|
{{0x83, 0xb9, 0x39, 0xb2, 0xa4, 0xdf, 0x46, 0x87,
|
|
0xc2, 0xb8, 0xf1, 0xe6, 0x4c, 0xd1, 0xe2, 0xa9,
|
|
0xe4, 0x70, 0x30, 0x34, 0xbc, 0x52, 0x7c, 0x55,
|
|
0xa6, 0xec, 0x80, 0xa4, 0xe5, 0xd2, 0xdc, 0x73},
|
|
{0x08, 0xf1, 0x03, 0xcf, 0x16, 0x73, 0xe8, 0x7d,
|
|
0xb6, 0x7e, 0x9b, 0xc0, 0xb4, 0xc2, 0xa5, 0x86,
|
|
0x02, 0x77, 0xd5, 0x27, 0x86, 0xa5, 0x15, 0xfb,
|
|
0xae, 0x9b, 0x8c, 0xa9, 0xf9, 0xf8, 0xa8, 0x4a}},
|
|
{{0x8b, 0x00, 0x49, 0xdb, 0xfa, 0xf0, 0x1b, 0xa2,
|
|
0xed, 0x8a, 0x9a, 0x7a, 0x36, 0x78, 0x4a, 0xc7,
|
|
0xf7, 0xad, 0x39, 0xd0, 0x6c, 0x65, 0x7a, 0x41,
|
|
0xce, 0xd6, 0xd6, 0x4c, 0x20, 0x21, 0x6b, 0xc7},
|
|
{0xc6, 0xca, 0x78, 0x1d, 0x32, 0x6c, 0x6c, 0x06,
|
|
0x91, 0xf2, 0x1a, 0xe8, 0x43, 0x16, 0xea, 0x04,
|
|
0x3c, 0x1f, 0x07, 0x85, 0xf7, 0x09, 0x22, 0x08,
|
|
0xba, 0x13, 0xfd, 0x78, 0x1e, 0x3f, 0x6f, 0x62}},
|
|
{{0x25, 0x9b, 0x7c, 0xb0, 0xac, 0x72, 0x6f, 0xb2,
|
|
0xe3, 0x53, 0x84, 0x7a, 0x1a, 0x9a, 0x98, 0x9b,
|
|
0x44, 0xd3, 0x59, 0xd0, 0x8e, 0x57, 0x41, 0x40,
|
|
0x78, 0xa7, 0x30, 0x2f, 0x4c, 0x9c, 0xb9, 0x68},
|
|
{0xb7, 0x75, 0x03, 0x63, 0x61, 0xc2, 0x48, 0x6e,
|
|
0x12, 0x3d, 0xbf, 0x4b, 0x27, 0xdf, 0xb1, 0x7a,
|
|
0xff, 0x4e, 0x31, 0x07, 0x83, 0xf4, 0x62, 0x5b,
|
|
0x19, 0xa5, 0xac, 0xa0, 0x32, 0x58, 0x0d, 0xa7}},
|
|
{{0x43, 0x4f, 0x10, 0xa4, 0xca, 0xdb, 0x38, 0x67,
|
|
0xfa, 0xae, 0x96, 0xb5, 0x6d, 0x97, 0xff, 0x1f,
|
|
0xb6, 0x83, 0x43, 0xd3, 0xa0, 0x2d, 0x70, 0x7a,
|
|
0x64, 0x05, 0x4c, 0xa7, 0xc1, 0xa5, 0x21, 0x51},
|
|
{0xe4, 0xf1, 0x23, 0x84, 0xe1, 0xb5, 0x9d, 0xf2,
|
|
0xb8, 0x73, 0x8b, 0x45, 0x2b, 0x35, 0x46, 0x38,
|
|
0x10, 0x2b, 0x50, 0xf8, 0x8b, 0x35, 0xcd, 0x34,
|
|
0xc8, 0x0e, 0xf6, 0xdb, 0x09, 0x35, 0xf0, 0xda}},
|
|
{{0xdb, 0x21, 0x5c, 0x8d, 0x83, 0x1d, 0xb3, 0x34,
|
|
0xc7, 0x0e, 0x43, 0xa1, 0x58, 0x79, 0x67, 0x13,
|
|
0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46,
|
|
0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5},
|
|
{0xdb, 0x21, 0x5c, 0x8d, 0x83, 0x1d, 0xb3, 0x34,
|
|
0xc7, 0x0e, 0x43, 0xa1, 0x58, 0x79, 0x67, 0x13,
|
|
0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46,
|
|
0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5}}
|
|
};
|
|
secp256k1_scalar_set_int(&one, 1);
|
|
for (i = 0; i < 33; i++) {
|
|
secp256k1_scalar_set_b32(&x, chal[i][0], &overflow);
|
|
CHECK(!overflow);
|
|
secp256k1_scalar_set_b32(&y, chal[i][1], &overflow);
|
|
CHECK(!overflow);
|
|
secp256k1_scalar_set_b32(&r1, res[i][0], &overflow);
|
|
CHECK(!overflow);
|
|
secp256k1_scalar_set_b32(&r2, res[i][1], &overflow);
|
|
CHECK(!overflow);
|
|
secp256k1_scalar_mul(&z, &x, &y);
|
|
CHECK(!secp256k1_scalar_check_overflow(&z));
|
|
CHECK(secp256k1_scalar_eq(&r1, &z));
|
|
if (!secp256k1_scalar_is_zero(&y)) {
|
|
secp256k1_scalar_inverse(&zz, &y);
|
|
CHECK(!secp256k1_scalar_check_overflow(&zz));
|
|
#if defined(USE_SCALAR_INV_NUM)
|
|
secp256k1_scalar_inverse_var(&zzv, &y);
|
|
CHECK(secp256k1_scalar_eq(&zzv, &zz));
|
|
#endif
|
|
secp256k1_scalar_mul(&z, &z, &zz);
|
|
CHECK(!secp256k1_scalar_check_overflow(&z));
|
|
CHECK(secp256k1_scalar_eq(&x, &z));
|
|
secp256k1_scalar_mul(&zz, &zz, &y);
|
|
CHECK(!secp256k1_scalar_check_overflow(&zz));
|
|
CHECK(secp256k1_scalar_eq(&one, &zz));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/***** FIELD TESTS *****/
|
|
|
|
void random_fe(secp256k1_fe *x) {
|
|
unsigned char bin[32];
|
|
do {
|
|
secp256k1_testrand256(bin);
|
|
if (secp256k1_fe_set_b32(x, bin)) {
|
|
return;
|
|
}
|
|
} while(1);
|
|
}
|
|
|
|
void random_fe_test(secp256k1_fe *x) {
|
|
unsigned char bin[32];
|
|
do {
|
|
secp256k1_testrand256_test(bin);
|
|
if (secp256k1_fe_set_b32(x, bin)) {
|
|
return;
|
|
}
|
|
} while(1);
|
|
}
|
|
|
|
void random_fe_non_zero(secp256k1_fe *nz) {
|
|
int tries = 10;
|
|
while (--tries >= 0) {
|
|
random_fe(nz);
|
|
secp256k1_fe_normalize(nz);
|
|
if (!secp256k1_fe_is_zero(nz)) {
|
|
break;
|
|
}
|
|
}
|
|
/* Infinitesimal probability of spurious failure here */
|
|
CHECK(tries >= 0);
|
|
}
|
|
|
|
void random_fe_non_square(secp256k1_fe *ns) {
|
|
secp256k1_fe r;
|
|
random_fe_non_zero(ns);
|
|
if (secp256k1_fe_sqrt(&r, ns)) {
|
|
secp256k1_fe_negate(ns, ns, 1);
|
|
}
|
|
}
|
|
|
|
int check_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
|
|
secp256k1_fe an = *a;
|
|
secp256k1_fe bn = *b;
|
|
secp256k1_fe_normalize_weak(&an);
|
|
secp256k1_fe_normalize_var(&bn);
|
|
return secp256k1_fe_equal_var(&an, &bn);
|
|
}
|
|
|
|
void run_field_convert(void) {
|
|
static const unsigned char b32[32] = {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
|
|
0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
|
|
0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40
|
|
};
|
|
static const secp256k1_fe_storage fes = SECP256K1_FE_STORAGE_CONST(
|
|
0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
|
|
0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
|
|
);
|
|
static const secp256k1_fe fe = SECP256K1_FE_CONST(
|
|
0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
|
|
0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
|
|
);
|
|
secp256k1_fe fe2;
|
|
unsigned char b322[32];
|
|
secp256k1_fe_storage fes2;
|
|
/* Check conversions to fe. */
|
|
CHECK(secp256k1_fe_set_b32(&fe2, b32));
|
|
CHECK(secp256k1_fe_equal_var(&fe, &fe2));
|
|
secp256k1_fe_from_storage(&fe2, &fes);
|
|
CHECK(secp256k1_fe_equal_var(&fe, &fe2));
|
|
/* Check conversion from fe. */
|
|
secp256k1_fe_get_b32(b322, &fe);
|
|
CHECK(secp256k1_memcmp_var(b322, b32, 32) == 0);
|
|
secp256k1_fe_to_storage(&fes2, &fe);
|
|
CHECK(secp256k1_memcmp_var(&fes2, &fes, sizeof(fes)) == 0);
|
|
}
|
|
|
|
int fe_secp256k1_memcmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
|
secp256k1_fe t = *b;
|
|
#ifdef VERIFY
|
|
t.magnitude = a->magnitude;
|
|
t.normalized = a->normalized;
|
|
#endif
|
|
return secp256k1_memcmp_var(a, &t, sizeof(secp256k1_fe));
|
|
}
|
|
|
|
void run_field_misc(void) {
|
|
secp256k1_fe x;
|
|
secp256k1_fe y;
|
|
secp256k1_fe z;
|
|
secp256k1_fe q;
|
|
secp256k1_fe fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5);
|
|
int i, j;
|
|
for (i = 0; i < 5*count; i++) {
|
|
secp256k1_fe_storage xs, ys, zs;
|
|
random_fe(&x);
|
|
random_fe_non_zero(&y);
|
|
/* Test the fe equality and comparison operations. */
|
|
CHECK(secp256k1_fe_cmp_var(&x, &x) == 0);
|
|
CHECK(secp256k1_fe_equal_var(&x, &x));
|
|
z = x;
|
|
secp256k1_fe_add(&z,&y);
|
|
/* Test fe conditional move; z is not normalized here. */
|
|
q = x;
|
|
secp256k1_fe_cmov(&x, &z, 0);
|
|
#ifdef VERIFY
|
|
CHECK(x.normalized && x.magnitude == 1);
|
|
#endif
|
|
secp256k1_fe_cmov(&x, &x, 1);
|
|
CHECK(fe_secp256k1_memcmp_var(&x, &z) != 0);
|
|
CHECK(fe_secp256k1_memcmp_var(&x, &q) == 0);
|
|
secp256k1_fe_cmov(&q, &z, 1);
|
|
#ifdef VERIFY
|
|
CHECK(!q.normalized && q.magnitude == z.magnitude);
|
|
#endif
|
|
CHECK(fe_secp256k1_memcmp_var(&q, &z) == 0);
|
|
secp256k1_fe_normalize_var(&x);
|
|
secp256k1_fe_normalize_var(&z);
|
|
CHECK(!secp256k1_fe_equal_var(&x, &z));
|
|
secp256k1_fe_normalize_var(&q);
|
|
secp256k1_fe_cmov(&q, &z, (i&1));
|
|
#ifdef VERIFY
|
|
CHECK(q.normalized && q.magnitude == 1);
|
|
#endif
|
|
for (j = 0; j < 6; j++) {
|
|
secp256k1_fe_negate(&z, &z, j+1);
|
|
secp256k1_fe_normalize_var(&q);
|
|
secp256k1_fe_cmov(&q, &z, (j&1));
|
|
#ifdef VERIFY
|
|
CHECK((q.normalized != (j&1)) && q.magnitude == ((j&1) ? z.magnitude : 1));
|
|
#endif
|
|
}
|
|
secp256k1_fe_normalize_var(&z);
|
|
/* Test storage conversion and conditional moves. */
|
|
secp256k1_fe_to_storage(&xs, &x);
|
|
secp256k1_fe_to_storage(&ys, &y);
|
|
secp256k1_fe_to_storage(&zs, &z);
|
|
secp256k1_fe_storage_cmov(&zs, &xs, 0);
|
|
secp256k1_fe_storage_cmov(&zs, &zs, 1);
|
|
CHECK(secp256k1_memcmp_var(&xs, &zs, sizeof(xs)) != 0);
|
|
secp256k1_fe_storage_cmov(&ys, &xs, 1);
|
|
CHECK(secp256k1_memcmp_var(&xs, &ys, sizeof(xs)) == 0);
|
|
secp256k1_fe_from_storage(&x, &xs);
|
|
secp256k1_fe_from_storage(&y, &ys);
|
|
secp256k1_fe_from_storage(&z, &zs);
|
|
/* Test that mul_int, mul, and add agree. */
|
|
secp256k1_fe_add(&y, &x);
|
|
secp256k1_fe_add(&y, &x);
|
|
z = x;
|
|
secp256k1_fe_mul_int(&z, 3);
|
|
CHECK(check_fe_equal(&y, &z));
|
|
secp256k1_fe_add(&y, &x);
|
|
secp256k1_fe_add(&z, &x);
|
|
CHECK(check_fe_equal(&z, &y));
|
|
z = x;
|
|
secp256k1_fe_mul_int(&z, 5);
|
|
secp256k1_fe_mul(&q, &x, &fe5);
|
|
CHECK(check_fe_equal(&z, &q));
|
|
secp256k1_fe_negate(&x, &x, 1);
|
|
secp256k1_fe_add(&z, &x);
|
|
secp256k1_fe_add(&q, &x);
|
|
CHECK(check_fe_equal(&y, &z));
|
|
CHECK(check_fe_equal(&q, &y));
|
|
}
|
|
}
|
|
|
|
void run_sqr(void) {
|
|
secp256k1_fe x, s;
|
|
|
|
{
|
|
int i;
|
|
secp256k1_fe_set_int(&x, 1);
|
|
secp256k1_fe_negate(&x, &x, 1);
|
|
|
|
for (i = 1; i <= 512; ++i) {
|
|
secp256k1_fe_mul_int(&x, 2);
|
|
secp256k1_fe_normalize(&x);
|
|
secp256k1_fe_sqr(&s, &x);
|
|
}
|
|
}
|
|
}
|
|
|
|
void test_sqrt(const secp256k1_fe *a, const secp256k1_fe *k) {
|
|
secp256k1_fe r1, r2;
|
|
int v = secp256k1_fe_sqrt(&r1, a);
|
|
CHECK((v == 0) == (k == NULL));
|
|
|
|
if (k != NULL) {
|
|
/* Check that the returned root is +/- the given known answer */
|
|
secp256k1_fe_negate(&r2, &r1, 1);
|
|
secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k);
|
|
secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2);
|
|
CHECK(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2));
|
|
}
|
|
}
|
|
|
|
void run_sqrt(void) {
|
|
secp256k1_fe ns, x, s, t;
|
|
int i;
|
|
|
|
/* Check sqrt(0) is 0 */
|
|
secp256k1_fe_set_int(&x, 0);
|
|
secp256k1_fe_sqr(&s, &x);
|
|
test_sqrt(&s, &x);
|
|
|
|
/* Check sqrt of small squares (and their negatives) */
|
|
for (i = 1; i <= 100; i++) {
|
|
secp256k1_fe_set_int(&x, i);
|
|
secp256k1_fe_sqr(&s, &x);
|
|
test_sqrt(&s, &x);
|
|
secp256k1_fe_negate(&t, &s, 1);
|
|
test_sqrt(&t, NULL);
|
|
}
|
|
|
|
/* Consistency checks for large random values */
|
|
for (i = 0; i < 10; i++) {
|
|
int j;
|
|
random_fe_non_square(&ns);
|
|
for (j = 0; j < count; j++) {
|
|
random_fe(&x);
|
|
secp256k1_fe_sqr(&s, &x);
|
|
test_sqrt(&s, &x);
|
|
secp256k1_fe_negate(&t, &s, 1);
|
|
test_sqrt(&t, NULL);
|
|
secp256k1_fe_mul(&t, &s, &ns);
|
|
test_sqrt(&t, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/***** FIELD/SCALAR INVERSE TESTS *****/
|
|
|
|
static const secp256k1_scalar scalar_minus_one = SECP256K1_SCALAR_CONST(
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE,
|
|
0xBAAEDCE6, 0xAF48A03B, 0xBFD25E8C, 0xD0364140
|
|
);
|
|
|
|
static const secp256k1_fe fe_minus_one = SECP256K1_FE_CONST(
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
|
|
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFC2E
|
|
);
|
|
|
|
/* These tests test the following identities:
|
|
*
|
|
* for x==0: 1/x == 0
|
|
* for x!=0: x*(1/x) == 1
|
|
* for x!=0 and x!=1: 1/(1/x - 1) + 1 == -1/(x-1)
|
|
*/
|
|
|
|
void test_inverse_scalar(secp256k1_scalar* out, const secp256k1_scalar* x, int var)
|
|
{
|
|
secp256k1_scalar l, r, t;
|
|
|
|
(var ? secp256k1_scalar_inverse_var : secp256k1_scalar_inverse_var)(&l, x); /* l = 1/x */
|
|
if (out) *out = l;
|
|
if (secp256k1_scalar_is_zero(x)) {
|
|
CHECK(secp256k1_scalar_is_zero(&l));
|
|
return;
|
|
}
|
|
secp256k1_scalar_mul(&t, x, &l); /* t = x*(1/x) */
|
|
CHECK(secp256k1_scalar_is_one(&t)); /* x*(1/x) == 1 */
|
|
secp256k1_scalar_add(&r, x, &scalar_minus_one); /* r = x-1 */
|
|
if (secp256k1_scalar_is_zero(&r)) return;
|
|
(var ? secp256k1_scalar_inverse_var : secp256k1_scalar_inverse_var)(&r, &r); /* r = 1/(x-1) */
|
|
secp256k1_scalar_add(&l, &scalar_minus_one, &l); /* l = 1/x-1 */
|
|
(var ? secp256k1_scalar_inverse_var : secp256k1_scalar_inverse_var)(&l, &l); /* l = 1/(1/x-1) */
|
|
secp256k1_scalar_add(&l, &l, &secp256k1_scalar_one); /* l = 1/(1/x-1)+1 */
|
|
secp256k1_scalar_add(&l, &r, &l); /* l = 1/(1/x-1)+1 + 1/(x-1) */
|
|
CHECK(secp256k1_scalar_is_zero(&l)); /* l == 0 */
|
|
}
|
|
|
|
void test_inverse_field(secp256k1_fe* out, const secp256k1_fe* x, int var)
|
|
{
|
|
secp256k1_fe l, r, t;
|
|
|
|
(var ? secp256k1_fe_inv_var : secp256k1_fe_inv)(&l, x) ; /* l = 1/x */
|
|
if (out) *out = l;
|
|
t = *x; /* t = x */
|
|
if (secp256k1_fe_normalizes_to_zero_var(&t)) {
|
|
CHECK(secp256k1_fe_normalizes_to_zero(&l));
|
|
return;
|
|
}
|
|
secp256k1_fe_mul(&t, x, &l); /* t = x*(1/x) */
|
|
secp256k1_fe_add(&t, &fe_minus_one); /* t = x*(1/x)-1 */
|
|
CHECK(secp256k1_fe_normalizes_to_zero(&t)); /* x*(1/x)-1 == 0 */
|
|
r = *x; /* r = x */
|
|
secp256k1_fe_add(&r, &fe_minus_one); /* r = x-1 */
|
|
if (secp256k1_fe_normalizes_to_zero_var(&r)) return;
|
|
(var ? secp256k1_fe_inv_var : secp256k1_fe_inv)(&r, &r); /* r = 1/(x-1) */
|
|
secp256k1_fe_add(&l, &fe_minus_one); /* l = 1/x-1 */
|
|
(var ? secp256k1_fe_inv_var : secp256k1_fe_inv)(&l, &l); /* l = 1/(1/x-1) */
|
|
secp256k1_fe_add(&l, &secp256k1_fe_one); /* l = 1/(1/x-1)+1 */
|
|
secp256k1_fe_add(&l, &r); /* l = 1/(1/x-1)+1 + 1/(x-1) */
|
|
CHECK(secp256k1_fe_normalizes_to_zero_var(&l)); /* l == 0 */
|
|
}
|
|
|
|
void run_inverse_tests(void)
|
|
{
|
|
/* Fixed test cases for field inverses: pairs of (x, 1/x) mod p. */
|
|
static const secp256k1_fe fe_cases[][2] = {
|
|
/* 0 */
|
|
{SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0),
|
|
SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)},
|
|
/* 1 */
|
|
{SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1),
|
|
SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1)},
|
|
/* -1 */
|
|
{SECP256K1_FE_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xfffffc2e),
|
|
SECP256K1_FE_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xfffffc2e)},
|
|
/* 2 */
|
|
{SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2),
|
|
SECP256K1_FE_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x7ffffe18)},
|
|
/* 2**128 */
|
|
{SECP256K1_FE_CONST(0, 0, 0, 1, 0, 0, 0, 0),
|
|
SECP256K1_FE_CONST(0xbcb223fe, 0xdc24a059, 0xd838091d, 0xd2253530, 0xffffffff, 0xffffffff, 0xffffffff, 0x434dd931)},
|
|
/* Input known to need 637 divsteps */
|
|
{SECP256K1_FE_CONST(0xe34e9c95, 0x6bee8a84, 0x0dcb632a, 0xdb8a1320, 0x66885408, 0x06f3f996, 0x7c11ca84, 0x19199ec3),
|
|
SECP256K1_FE_CONST(0xbd2cbd8f, 0x1c536828, 0x9bccda44, 0x2582ac0c, 0x870152b0, 0x8a3f09fb, 0x1aaadf92, 0x19b618e5)}
|
|
};
|
|
/* Fixed test cases for scalar inverses: pairs of (x, 1/x) mod n. */
|
|
static const secp256k1_scalar scalar_cases[][2] = {
|
|
/* 0 */
|
|
{SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0),
|
|
SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0)},
|
|
/* 1 */
|
|
{SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1),
|
|
SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1)},
|
|
/* -1 */
|
|
{SECP256K1_SCALAR_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xbaaedce6, 0xaf48a03b, 0xbfd25e8c, 0xd0364140),
|
|
SECP256K1_SCALAR_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xbaaedce6, 0xaf48a03b, 0xbfd25e8c, 0xd0364140)},
|
|
/* 2 */
|
|
{SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 2),
|
|
SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x5d576e73, 0x57a4501d, 0xdfe92f46, 0x681b20a1)},
|
|
/* 2**128 */
|
|
{SECP256K1_SCALAR_CONST(0, 0, 0, 1, 0, 0, 0, 0),
|
|
SECP256K1_SCALAR_CONST(0x50a51ac8, 0x34b9ec24, 0x4b0dff66, 0x5588b13e, 0x9984d5b3, 0xcf80ef0f, 0xd6a23766, 0xa3ee9f22)},
|
|
/* Input known to need 635 divsteps */
|
|
{SECP256K1_SCALAR_CONST(0xcb9f1d35, 0xdd4416c2, 0xcd71bf3f, 0x6365da66, 0x3c9b3376, 0x8feb7ae9, 0x32a5ef60, 0x19199ec3),
|
|
SECP256K1_SCALAR_CONST(0x1d7c7bba, 0xf1893d53, 0xb834bd09, 0x36b411dc, 0x42c2e42f, 0xec72c428, 0x5e189791, 0x8e9bc708)}
|
|
};
|
|
int i, var, testrand;
|
|
unsigned char b32[32];
|
|
secp256k1_fe x_fe;
|
|
secp256k1_scalar x_scalar;
|
|
memset(b32, 0, sizeof(b32));
|
|
/* Test fixed test cases through test_inverse_{scalar,field}, both ways. */
|
|
for (i = 0; (size_t)i < sizeof(fe_cases)/sizeof(fe_cases[0]); ++i) {
|
|
for (var = 0; var <= 1; ++var) {
|
|
test_inverse_field(&x_fe, &fe_cases[i][0], var);
|
|
check_fe_equal(&x_fe, &fe_cases[i][1]);
|
|
test_inverse_field(&x_fe, &fe_cases[i][1], var);
|
|
check_fe_equal(&x_fe, &fe_cases[i][0]);
|
|
}
|
|
}
|
|
for (i = 0; (size_t)i < sizeof(scalar_cases)/sizeof(scalar_cases[0]); ++i) {
|
|
for (var = 0; var <= 1; ++var) {
|
|
test_inverse_scalar(&x_scalar, &scalar_cases[i][0], var);
|
|
CHECK(secp256k1_scalar_eq(&x_scalar, &scalar_cases[i][1]));
|
|
test_inverse_scalar(&x_scalar, &scalar_cases[i][1], var);
|
|
CHECK(secp256k1_scalar_eq(&x_scalar, &scalar_cases[i][0]));
|
|
}
|
|
}
|
|
/* Test inputs 0..999 and their respective negations. */
|
|
for (i = 0; i < 1000; ++i) {
|
|
b32[31] = i & 0xff;
|
|
b32[30] = (i >> 8) & 0xff;
|
|
secp256k1_scalar_set_b32(&x_scalar, b32, NULL);
|
|
secp256k1_fe_set_b32(&x_fe, b32);
|
|
for (var = 0; var <= 1; ++var) {
|
|
test_inverse_scalar(NULL, &x_scalar, var);
|
|
test_inverse_field(NULL, &x_fe, var);
|
|
}
|
|
secp256k1_scalar_negate(&x_scalar, &x_scalar);
|
|
secp256k1_fe_negate(&x_fe, &x_fe, 1);
|
|
for (var = 0; var <= 1; ++var) {
|
|
test_inverse_scalar(NULL, &x_scalar, var);
|
|
test_inverse_field(NULL, &x_fe, var);
|
|
}
|
|
}
|
|
/* test 128*count random inputs; half with testrand256_test, half with testrand256 */
|
|
for (testrand = 0; testrand <= 1; ++testrand) {
|
|
for (i = 0; i < 64 * count; ++i) {
|
|
(testrand ? secp256k1_testrand256_test : secp256k1_testrand256)(b32);
|
|
secp256k1_scalar_set_b32(&x_scalar, b32, NULL);
|
|
secp256k1_fe_set_b32(&x_fe, b32);
|
|
for (var = 0; var <= 1; ++var) {
|
|
test_inverse_scalar(NULL, &x_scalar, var);
|
|
test_inverse_field(NULL, &x_fe, var);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/***** GROUP TESTS *****/
|
|
|
|
void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
|
|
CHECK(a->infinity == b->infinity);
|
|
if (a->infinity) {
|
|
return;
|
|
}
|
|
CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
|
|
CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
|
|
}
|
|
|
|
/* This compares jacobian points including their Z, not just their geometric meaning. */
|
|
int gej_xyz_equals_gej(const secp256k1_gej *a, const secp256k1_gej *b) {
|
|
secp256k1_gej a2;
|
|
secp256k1_gej b2;
|
|
int ret = 1;
|
|
ret &= a->infinity == b->infinity;
|
|
if (ret && !a->infinity) {
|
|
a2 = *a;
|
|
b2 = *b;
|
|
secp256k1_fe_normalize(&a2.x);
|
|
secp256k1_fe_normalize(&a2.y);
|
|
secp256k1_fe_normalize(&a2.z);
|
|
secp256k1_fe_normalize(&b2.x);
|
|
secp256k1_fe_normalize(&b2.y);
|
|
secp256k1_fe_normalize(&b2.z);
|
|
ret &= secp256k1_fe_cmp_var(&a2.x, &b2.x) == 0;
|
|
ret &= secp256k1_fe_cmp_var(&a2.y, &b2.y) == 0;
|
|
ret &= secp256k1_fe_cmp_var(&a2.z, &b2.z) == 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
|
|
secp256k1_fe z2s;
|
|
secp256k1_fe u1, u2, s1, s2;
|
|
CHECK(a->infinity == b->infinity);
|
|
if (a->infinity) {
|
|
return;
|
|
}
|
|
/* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
|
|
secp256k1_fe_sqr(&z2s, &b->z);
|
|
secp256k1_fe_mul(&u1, &a->x, &z2s);
|
|
u2 = b->x; secp256k1_fe_normalize_weak(&u2);
|
|
secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
|
|
s2 = b->y; secp256k1_fe_normalize_weak(&s2);
|
|
CHECK(secp256k1_fe_equal_var(&u1, &u2));
|
|
CHECK(secp256k1_fe_equal_var(&s1, &s2));
|
|
}
|
|
|
|
void test_ge(void) {
|
|
int i, i1;
|
|
int runs = 6;
|
|
/* 25 points are used:
|
|
* - infinity
|
|
* - for each of four random points p1 p2 p3 p4, we add the point, its
|
|
* negation, and then those two again but with randomized Z coordinate.
|
|
* - The same is then done for lambda*p1 and lambda^2*p1.
|
|
*/
|
|
secp256k1_ge *ge = (secp256k1_ge *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_ge) * (1 + 4 * runs));
|
|
secp256k1_gej *gej = (secp256k1_gej *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_gej) * (1 + 4 * runs));
|
|
secp256k1_fe zf;
|
|
secp256k1_fe zfi2, zfi3;
|
|
|
|
secp256k1_gej_set_infinity(&gej[0]);
|
|
secp256k1_ge_clear(&ge[0]);
|
|
secp256k1_ge_set_gej_var(&ge[0], &gej[0]);
|
|
for (i = 0; i < runs; i++) {
|
|
int j;
|
|
secp256k1_ge g;
|
|
random_group_element_test(&g);
|
|
if (i >= runs - 2) {
|
|
secp256k1_ge_mul_lambda(&g, &ge[1]);
|
|
}
|
|
if (i >= runs - 1) {
|
|
secp256k1_ge_mul_lambda(&g, &g);
|
|
}
|
|
ge[1 + 4 * i] = g;
|
|
ge[2 + 4 * i] = g;
|
|
secp256k1_ge_neg(&ge[3 + 4 * i], &g);
|
|
secp256k1_ge_neg(&ge[4 + 4 * i], &g);
|
|
secp256k1_gej_set_ge(&gej[1 + 4 * i], &ge[1 + 4 * i]);
|
|
random_group_element_jacobian_test(&gej[2 + 4 * i], &ge[2 + 4 * i]);
|
|
secp256k1_gej_set_ge(&gej[3 + 4 * i], &ge[3 + 4 * i]);
|
|
random_group_element_jacobian_test(&gej[4 + 4 * i], &ge[4 + 4 * i]);
|
|
for (j = 0; j < 4; j++) {
|
|
random_field_element_magnitude(&ge[1 + j + 4 * i].x);
|
|
random_field_element_magnitude(&ge[1 + j + 4 * i].y);
|
|
random_field_element_magnitude(&gej[1 + j + 4 * i].x);
|
|
random_field_element_magnitude(&gej[1 + j + 4 * i].y);
|
|
random_field_element_magnitude(&gej[1 + j + 4 * i].z);
|
|
}
|
|
}
|
|
|
|
/* Generate random zf, and zfi2 = 1/zf^2, zfi3 = 1/zf^3 */
|
|
do {
|
|
random_field_element_test(&zf);
|
|
} while(secp256k1_fe_is_zero(&zf));
|
|
random_field_element_magnitude(&zf);
|
|
secp256k1_fe_inv_var(&zfi3, &zf);
|
|
secp256k1_fe_sqr(&zfi2, &zfi3);
|
|
secp256k1_fe_mul(&zfi3, &zfi3, &zfi2);
|
|
|
|
for (i1 = 0; i1 < 1 + 4 * runs; i1++) {
|
|
int i2;
|
|
for (i2 = 0; i2 < 1 + 4 * runs; i2++) {
|
|
/* Compute reference result using gej + gej (var). */
|
|
secp256k1_gej refj, resj;
|
|
secp256k1_ge ref;
|
|
secp256k1_fe zr;
|
|
secp256k1_gej_add_var(&refj, &gej[i1], &gej[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr);
|
|
/* Check Z ratio. */
|
|
if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&refj)) {
|
|
secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z);
|
|
CHECK(secp256k1_fe_equal_var(&zrz, &refj.z));
|
|
}
|
|
secp256k1_ge_set_gej_var(&ref, &refj);
|
|
|
|
/* Test gej + ge with Z ratio result (var). */
|
|
secp256k1_gej_add_ge_var(&resj, &gej[i1], &ge[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr);
|
|
ge_equals_gej(&ref, &resj);
|
|
if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&resj)) {
|
|
secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z);
|
|
CHECK(secp256k1_fe_equal_var(&zrz, &resj.z));
|
|
}
|
|
|
|
/* Test gej + ge (var, with additional Z factor). */
|
|
{
|
|
secp256k1_ge ge2_zfi = ge[i2]; /* the second term with x and y rescaled for z = 1/zf */
|
|
secp256k1_fe_mul(&ge2_zfi.x, &ge2_zfi.x, &zfi2);
|
|
secp256k1_fe_mul(&ge2_zfi.y, &ge2_zfi.y, &zfi3);
|
|
random_field_element_magnitude(&ge2_zfi.x);
|
|
random_field_element_magnitude(&ge2_zfi.y);
|
|
secp256k1_gej_add_zinv_var(&resj, &gej[i1], &ge2_zfi, &zf);
|
|
ge_equals_gej(&ref, &resj);
|
|
}
|
|
|
|
/* Test gej + ge (const). */
|
|
if (i2 != 0) {
|
|
/* secp256k1_gej_add_ge does not support its second argument being infinity. */
|
|
secp256k1_gej_add_ge(&resj, &gej[i1], &ge[i2]);
|
|
ge_equals_gej(&ref, &resj);
|
|
}
|
|
|
|
/* Test doubling (var). */
|
|
if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 == ((i2 + 3)%4)/2)) {
|
|
secp256k1_fe zr2;
|
|
/* Normal doubling with Z ratio result. */
|
|
secp256k1_gej_double_var(&resj, &gej[i1], &zr2);
|
|
ge_equals_gej(&ref, &resj);
|
|
/* Check Z ratio. */
|
|
secp256k1_fe_mul(&zr2, &zr2, &gej[i1].z);
|
|
CHECK(secp256k1_fe_equal_var(&zr2, &resj.z));
|
|
/* Normal doubling. */
|
|
secp256k1_gej_double_var(&resj, &gej[i2], NULL);
|
|
ge_equals_gej(&ref, &resj);
|
|
/* Constant-time doubling. */
|
|
secp256k1_gej_double(&resj, &gej[i2]);
|
|
ge_equals_gej(&ref, &resj);
|
|
}
|
|
|
|
/* Test adding opposites. */
|
|
if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 != ((i2 + 3)%4)/2)) {
|
|
CHECK(secp256k1_ge_is_infinity(&ref));
|
|
}
|
|
|
|
/* Test adding infinity. */
|
|
if (i1 == 0) {
|
|
CHECK(secp256k1_ge_is_infinity(&ge[i1]));
|
|
CHECK(secp256k1_gej_is_infinity(&gej[i1]));
|
|
ge_equals_gej(&ref, &gej[i2]);
|
|
}
|
|
if (i2 == 0) {
|
|
CHECK(secp256k1_ge_is_infinity(&ge[i2]));
|
|
CHECK(secp256k1_gej_is_infinity(&gej[i2]));
|
|
ge_equals_gej(&ref, &gej[i1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Test adding all points together in random order equals infinity. */
|
|
{
|
|
secp256k1_gej sum = SECP256K1_GEJ_CONST_INFINITY;
|
|
secp256k1_gej *gej_shuffled = (secp256k1_gej *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_gej));
|
|
for (i = 0; i < 4 * runs + 1; i++) {
|
|
gej_shuffled[i] = gej[i];
|
|
}
|
|
for (i = 0; i < 4 * runs + 1; i++) {
|
|
int swap = i + secp256k1_testrand_int(4 * runs + 1 - i);
|
|
if (swap != i) {
|
|
secp256k1_gej t = gej_shuffled[i];
|
|
gej_shuffled[i] = gej_shuffled[swap];
|
|
gej_shuffled[swap] = t;
|
|
}
|
|
}
|
|
for (i = 0; i < 4 * runs + 1; i++) {
|
|
secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i], NULL);
|
|
}
|
|
CHECK(secp256k1_gej_is_infinity(&sum));
|
|
free(gej_shuffled);
|
|
}
|
|
|
|
/* Test batch gej -> ge conversion without known z ratios. */
|
|
{
|
|
secp256k1_ge *ge_set_all = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge));
|
|
secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1);
|
|
for (i = 0; i < 4 * runs + 1; i++) {
|
|
secp256k1_fe s;
|
|
random_fe_non_zero(&s);
|
|
secp256k1_gej_rescale(&gej[i], &s);
|
|
ge_equals_gej(&ge_set_all[i], &gej[i]);
|
|
}
|
|
free(ge_set_all);
|
|
}
|
|
|
|
/* Test batch gej -> ge conversion with many infinities. */
|
|
for (i = 0; i < 4 * runs + 1; i++) {
|
|
random_group_element_test(&ge[i]);
|
|
/* randomly set half the points to infinity */
|
|
if(secp256k1_fe_is_odd(&ge[i].x)) {
|
|
secp256k1_ge_set_infinity(&ge[i]);
|
|
}
|
|
secp256k1_gej_set_ge(&gej[i], &ge[i]);
|
|
}
|
|
/* batch invert */
|
|
secp256k1_ge_set_all_gej_var(ge, gej, 4 * runs + 1);
|
|
/* check result */
|
|
for (i = 0; i < 4 * runs + 1; i++) {
|
|
ge_equals_gej(&ge[i], &gej[i]);
|
|
}
|
|
|
|
free(ge);
|
|
free(gej);
|
|
}
|
|
|
|
|
|
void test_intialized_inf(void) {
|
|
secp256k1_ge p;
|
|
secp256k1_gej pj, npj, infj1, infj2, infj3;
|
|
secp256k1_fe zinv;
|
|
|
|
/* Test that adding P+(-P) results in a fully initalized infinity*/
|
|
random_group_element_test(&p);
|
|
secp256k1_gej_set_ge(&pj, &p);
|
|
secp256k1_gej_neg(&npj, &pj);
|
|
|
|
secp256k1_gej_add_var(&infj1, &pj, &npj, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&infj1));
|
|
CHECK(secp256k1_fe_is_zero(&infj1.x));
|
|
CHECK(secp256k1_fe_is_zero(&infj1.y));
|
|
CHECK(secp256k1_fe_is_zero(&infj1.z));
|
|
|
|
secp256k1_gej_add_ge_var(&infj2, &npj, &p, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&infj2));
|
|
CHECK(secp256k1_fe_is_zero(&infj2.x));
|
|
CHECK(secp256k1_fe_is_zero(&infj2.y));
|
|
CHECK(secp256k1_fe_is_zero(&infj2.z));
|
|
|
|
secp256k1_fe_set_int(&zinv, 1);
|
|
secp256k1_gej_add_zinv_var(&infj3, &npj, &p, &zinv);
|
|
CHECK(secp256k1_gej_is_infinity(&infj3));
|
|
CHECK(secp256k1_fe_is_zero(&infj3.x));
|
|
CHECK(secp256k1_fe_is_zero(&infj3.y));
|
|
CHECK(secp256k1_fe_is_zero(&infj3.z));
|
|
|
|
|
|
}
|
|
|
|
void test_add_neg_y_diff_x(void) {
|
|
/* The point of this test is to check that we can add two points
|
|
* whose y-coordinates are negatives of each other but whose x
|
|
* coordinates differ. If the x-coordinates were the same, these
|
|
* points would be negatives of each other and their sum is
|
|
* infinity. This is cool because it "covers up" any degeneracy
|
|
* in the addition algorithm that would cause the xy coordinates
|
|
* of the sum to be wrong (since infinity has no xy coordinates).
|
|
* HOWEVER, if the x-coordinates are different, infinity is the
|
|
* wrong answer, and such degeneracies are exposed. This is the
|
|
* root of https://github.com/bitcoin-core/secp256k1/issues/257
|
|
* which this test is a regression test for.
|
|
*
|
|
* These points were generated in sage as
|
|
* # secp256k1 params
|
|
* F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
|
|
* C = EllipticCurve ([F (0), F (7)])
|
|
* G = C.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
|
|
* N = FiniteField(G.order())
|
|
*
|
|
* # endomorphism values (lambda is 1^{1/3} in N, beta is 1^{1/3} in F)
|
|
* x = polygen(N)
|
|
* lam = (1 - x^3).roots()[1][0]
|
|
*
|
|
* # random "bad pair"
|
|
* P = C.random_element()
|
|
* Q = -int(lam) * P
|
|
* print " P: %x %x" % P.xy()
|
|
* print " Q: %x %x" % Q.xy()
|
|
* print "P + Q: %x %x" % (P + Q).xy()
|
|
*/
|
|
secp256k1_gej aj = SECP256K1_GEJ_CONST(
|
|
0x8d24cd95, 0x0a355af1, 0x3c543505, 0x44238d30,
|
|
0x0643d79f, 0x05a59614, 0x2f8ec030, 0xd58977cb,
|
|
0x001e337a, 0x38093dcd, 0x6c0f386d, 0x0b1293a8,
|
|
0x4d72c879, 0xd7681924, 0x44e6d2f3, 0x9190117d
|
|
);
|
|
secp256k1_gej bj = SECP256K1_GEJ_CONST(
|
|
0xc7b74206, 0x1f788cd9, 0xabd0937d, 0x164a0d86,
|
|
0x95f6ff75, 0xf19a4ce9, 0xd013bd7b, 0xbf92d2a7,
|
|
0xffe1cc85, 0xc7f6c232, 0x93f0c792, 0xf4ed6c57,
|
|
0xb28d3786, 0x2897e6db, 0xbb192d0b, 0x6e6feab2
|
|
);
|
|
secp256k1_gej sumj = SECP256K1_GEJ_CONST(
|
|
0x671a63c0, 0x3efdad4c, 0x389a7798, 0x24356027,
|
|
0xb3d69010, 0x278625c3, 0x5c86d390, 0x184a8f7a,
|
|
0x5f6409c2, 0x2ce01f2b, 0x511fd375, 0x25071d08,
|
|
0xda651801, 0x70e95caf, 0x8f0d893c, 0xbed8fbbe
|
|
);
|
|
secp256k1_ge b;
|
|
secp256k1_gej resj;
|
|
secp256k1_ge res;
|
|
secp256k1_ge_set_gej(&b, &bj);
|
|
|
|
secp256k1_gej_add_var(&resj, &aj, &bj, NULL);
|
|
secp256k1_ge_set_gej(&res, &resj);
|
|
ge_equals_gej(&res, &sumj);
|
|
|
|
secp256k1_gej_add_ge(&resj, &aj, &b);
|
|
secp256k1_ge_set_gej(&res, &resj);
|
|
ge_equals_gej(&res, &sumj);
|
|
|
|
secp256k1_gej_add_ge_var(&resj, &aj, &b, NULL);
|
|
secp256k1_ge_set_gej(&res, &resj);
|
|
ge_equals_gej(&res, &sumj);
|
|
}
|
|
|
|
void run_ge(void) {
|
|
int i;
|
|
for (i = 0; i < count * 32; i++) {
|
|
test_ge();
|
|
}
|
|
test_add_neg_y_diff_x();
|
|
test_intialized_inf();
|
|
}
|
|
|
|
void test_ec_combine(void) {
|
|
secp256k1_scalar sum = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
|
secp256k1_pubkey data[6];
|
|
const secp256k1_pubkey* d[6];
|
|
secp256k1_pubkey sd;
|
|
secp256k1_pubkey sd2;
|
|
secp256k1_gej Qj;
|
|
secp256k1_ge Q;
|
|
int i;
|
|
for (i = 1; i <= 6; i++) {
|
|
secp256k1_scalar s;
|
|
random_scalar_order_test(&s);
|
|
secp256k1_scalar_add(&sum, &sum, &s);
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &s);
|
|
secp256k1_ge_set_gej(&Q, &Qj);
|
|
secp256k1_pubkey_save(&data[i - 1], &Q);
|
|
d[i - 1] = &data[i - 1];
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &sum);
|
|
secp256k1_ge_set_gej(&Q, &Qj);
|
|
secp256k1_pubkey_save(&sd, &Q);
|
|
CHECK(secp256k1_ec_pubkey_combine(ctx, &sd2, d, i) == 1);
|
|
CHECK(secp256k1_memcmp_var(&sd, &sd2, sizeof(sd)) == 0);
|
|
}
|
|
}
|
|
|
|
void run_ec_combine(void) {
|
|
int i;
|
|
for (i = 0; i < count * 8; i++) {
|
|
test_ec_combine();
|
|
}
|
|
}
|
|
|
|
void test_group_decompress(const secp256k1_fe* x) {
|
|
/* The input itself, normalized. */
|
|
secp256k1_fe fex = *x;
|
|
secp256k1_fe fez;
|
|
/* Results of set_xquad_var, set_xo_var(..., 0), set_xo_var(..., 1). */
|
|
secp256k1_ge ge_quad, ge_even, ge_odd;
|
|
secp256k1_gej gej_quad;
|
|
/* Return values of the above calls. */
|
|
int res_quad, res_even, res_odd;
|
|
|
|
secp256k1_fe_normalize_var(&fex);
|
|
|
|
res_quad = secp256k1_ge_set_xquad(&ge_quad, &fex);
|
|
res_even = secp256k1_ge_set_xo_var(&ge_even, &fex, 0);
|
|
res_odd = secp256k1_ge_set_xo_var(&ge_odd, &fex, 1);
|
|
|
|
CHECK(res_quad == res_even);
|
|
CHECK(res_quad == res_odd);
|
|
|
|
if (res_quad) {
|
|
secp256k1_fe_normalize_var(&ge_quad.x);
|
|
secp256k1_fe_normalize_var(&ge_odd.x);
|
|
secp256k1_fe_normalize_var(&ge_even.x);
|
|
secp256k1_fe_normalize_var(&ge_quad.y);
|
|
secp256k1_fe_normalize_var(&ge_odd.y);
|
|
secp256k1_fe_normalize_var(&ge_even.y);
|
|
|
|
/* No infinity allowed. */
|
|
CHECK(!ge_quad.infinity);
|
|
CHECK(!ge_even.infinity);
|
|
CHECK(!ge_odd.infinity);
|
|
|
|
/* Check that the x coordinates check out. */
|
|
CHECK(secp256k1_fe_equal_var(&ge_quad.x, x));
|
|
CHECK(secp256k1_fe_equal_var(&ge_even.x, x));
|
|
CHECK(secp256k1_fe_equal_var(&ge_odd.x, x));
|
|
|
|
/* Check that the Y coordinate result in ge_quad is a square. */
|
|
CHECK(secp256k1_fe_is_quad_var(&ge_quad.y));
|
|
|
|
/* Check odd/even Y in ge_odd, ge_even. */
|
|
CHECK(secp256k1_fe_is_odd(&ge_odd.y));
|
|
CHECK(!secp256k1_fe_is_odd(&ge_even.y));
|
|
|
|
/* Check secp256k1_gej_has_quad_y_var. */
|
|
secp256k1_gej_set_ge(&gej_quad, &ge_quad);
|
|
CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
|
|
do {
|
|
random_fe_test(&fez);
|
|
} while (secp256k1_fe_is_zero(&fez));
|
|
secp256k1_gej_rescale(&gej_quad, &fez);
|
|
CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
|
|
secp256k1_gej_neg(&gej_quad, &gej_quad);
|
|
CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad));
|
|
do {
|
|
random_fe_test(&fez);
|
|
} while (secp256k1_fe_is_zero(&fez));
|
|
secp256k1_gej_rescale(&gej_quad, &fez);
|
|
CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad));
|
|
secp256k1_gej_neg(&gej_quad, &gej_quad);
|
|
CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
|
|
}
|
|
}
|
|
|
|
void run_group_decompress(void) {
|
|
int i;
|
|
for (i = 0; i < count * 4; i++) {
|
|
secp256k1_fe fe;
|
|
random_fe_test(&fe);
|
|
test_group_decompress(&fe);
|
|
}
|
|
}
|
|
|
|
/***** ECMULT TESTS *****/
|
|
|
|
void run_ecmult_chain(void) {
|
|
/* random starting point A (on the curve) */
|
|
secp256k1_gej a = SECP256K1_GEJ_CONST(
|
|
0x8b30bbe9, 0xae2a9906, 0x96b22f67, 0x0709dff3,
|
|
0x727fd8bc, 0x04d3362c, 0x6c7bf458, 0xe2846004,
|
|
0xa357ae91, 0x5c4a6528, 0x1309edf2, 0x0504740f,
|
|
0x0eb33439, 0x90216b4f, 0x81063cb6, 0x5f2f7e0f
|
|
);
|
|
/* two random initial factors xn and gn */
|
|
secp256k1_scalar xn = SECP256K1_SCALAR_CONST(
|
|
0x84cc5452, 0xf7fde1ed, 0xb4d38a8c, 0xe9b1b84c,
|
|
0xcef31f14, 0x6e569be9, 0x705d357a, 0x42985407
|
|
);
|
|
secp256k1_scalar gn = SECP256K1_SCALAR_CONST(
|
|
0xa1e58d22, 0x553dcd42, 0xb2398062, 0x5d4c57a9,
|
|
0x6e9323d4, 0x2b3152e5, 0xca2c3990, 0xedc7c9de
|
|
);
|
|
/* two small multipliers to be applied to xn and gn in every iteration: */
|
|
static const secp256k1_scalar xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337);
|
|
static const secp256k1_scalar gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113);
|
|
/* accumulators with the resulting coefficients to A and G */
|
|
secp256k1_scalar ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
|
secp256k1_scalar ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
|
/* actual points */
|
|
secp256k1_gej x;
|
|
secp256k1_gej x2;
|
|
int i;
|
|
|
|
/* the point being computed */
|
|
x = a;
|
|
for (i = 0; i < 200*count; i++) {
|
|
/* in each iteration, compute X = xn*X + gn*G; */
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &x, &x, &xn, &gn);
|
|
/* also compute ae and ge: the actual accumulated factors for A and G */
|
|
/* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */
|
|
secp256k1_scalar_mul(&ae, &ae, &xn);
|
|
secp256k1_scalar_mul(&ge, &ge, &xn);
|
|
secp256k1_scalar_add(&ge, &ge, &gn);
|
|
/* modify xn and gn */
|
|
secp256k1_scalar_mul(&xn, &xn, &xf);
|
|
secp256k1_scalar_mul(&gn, &gn, &gf);
|
|
|
|
/* verify */
|
|
if (i == 19999) {
|
|
/* expected result after 19999 iterations */
|
|
secp256k1_gej rp = SECP256K1_GEJ_CONST(
|
|
0xD6E96687, 0xF9B10D09, 0x2A6F3543, 0x9D86CEBE,
|
|
0xA4535D0D, 0x409F5358, 0x6440BD74, 0xB933E830,
|
|
0xB95CBCA2, 0xC77DA786, 0x539BE8FD, 0x53354D2D,
|
|
0x3B4F566A, 0xE6580454, 0x07ED6015, 0xEE1B2A88
|
|
);
|
|
|
|
secp256k1_gej_neg(&rp, &rp);
|
|
secp256k1_gej_add_var(&rp, &rp, &x, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&rp));
|
|
}
|
|
}
|
|
/* redo the computation, but directly with the resulting ae and ge coefficients: */
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &x2, &a, &ae, &ge);
|
|
secp256k1_gej_neg(&x2, &x2);
|
|
secp256k1_gej_add_var(&x2, &x2, &x, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&x2));
|
|
}
|
|
|
|
void test_point_times_order(const secp256k1_gej *point) {
|
|
/* X * (point + G) + (order-X) * (pointer + G) = 0 */
|
|
secp256k1_scalar x;
|
|
secp256k1_scalar nx;
|
|
secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
|
secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
|
secp256k1_gej res1, res2;
|
|
secp256k1_ge res3;
|
|
unsigned char pub[65];
|
|
size_t psize = 65;
|
|
random_scalar_order_test(&x);
|
|
secp256k1_scalar_negate(&nx, &x);
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &x, &x); /* calc res1 = x * point + x * G; */
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */
|
|
secp256k1_gej_add_var(&res1, &res1, &res2, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&res1));
|
|
secp256k1_ge_set_gej(&res3, &res1);
|
|
CHECK(secp256k1_ge_is_infinity(&res3));
|
|
CHECK(secp256k1_ge_is_valid_var(&res3) == 0);
|
|
CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0);
|
|
psize = 65;
|
|
CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0);
|
|
/* check zero/one edge cases */
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &zero, &zero);
|
|
secp256k1_ge_set_gej(&res3, &res1);
|
|
CHECK(secp256k1_ge_is_infinity(&res3));
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &one, &zero);
|
|
secp256k1_ge_set_gej(&res3, &res1);
|
|
ge_equals_gej(&res3, point);
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &zero, &one);
|
|
secp256k1_ge_set_gej(&res3, &res1);
|
|
ge_equals_ge(&res3, &secp256k1_ge_const_g);
|
|
}
|
|
|
|
/* These scalars reach large (in absolute value) outputs when fed to secp256k1_scalar_split_lambda.
|
|
*
|
|
* They are computed as:
|
|
* - For a in [-2, -1, 0, 1, 2]:
|
|
* - For b in [-3, -1, 1, 3]:
|
|
* - Output (a*LAMBDA + (ORDER+b)/2) % ORDER
|
|
*/
|
|
static const secp256k1_scalar scalars_near_split_bounds[20] = {
|
|
SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fc),
|
|
SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fd),
|
|
SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fe),
|
|
SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6ff),
|
|
SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632d),
|
|
SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632e),
|
|
SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632f),
|
|
SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf76330),
|
|
SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b209f),
|
|
SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a0),
|
|
SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a1),
|
|
SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a2),
|
|
SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede11),
|
|
SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede12),
|
|
SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede13),
|
|
SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede14),
|
|
SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a42),
|
|
SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a43),
|
|
SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a44),
|
|
SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a45)
|
|
};
|
|
|
|
void test_ecmult_target(const secp256k1_scalar* target, int mode) {
|
|
/* Mode: 0=ecmult_gen, 1=ecmult, 2=ecmult_const */
|
|
secp256k1_scalar n1, n2;
|
|
secp256k1_ge p;
|
|
secp256k1_gej pj, p1j, p2j, ptj;
|
|
static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
|
|
|
/* Generate random n1,n2 such that n1+n2 = -target. */
|
|
random_scalar_order_test(&n1);
|
|
secp256k1_scalar_add(&n2, &n1, target);
|
|
secp256k1_scalar_negate(&n2, &n2);
|
|
|
|
/* Generate a random input point. */
|
|
if (mode != 0) {
|
|
random_group_element_test(&p);
|
|
secp256k1_gej_set_ge(&pj, &p);
|
|
}
|
|
|
|
/* EC multiplications */
|
|
if (mode == 0) {
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &p1j, &n1);
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &p2j, &n2);
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &ptj, target);
|
|
} else if (mode == 1) {
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &p1j, &pj, &n1, &zero);
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &p2j, &pj, &n2, &zero);
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &ptj, &pj, target, &zero);
|
|
} else {
|
|
secp256k1_ecmult_const(&p1j, &p, &n1, 256);
|
|
secp256k1_ecmult_const(&p2j, &p, &n2, 256);
|
|
secp256k1_ecmult_const(&ptj, &p, target, 256);
|
|
}
|
|
|
|
/* Add them all up: n1*P + n2*P + target*P = (n1+n2+target)*P = (n1+n1-n1-n2)*P = 0. */
|
|
secp256k1_gej_add_var(&ptj, &ptj, &p1j, NULL);
|
|
secp256k1_gej_add_var(&ptj, &ptj, &p2j, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&ptj));
|
|
}
|
|
|
|
void run_ecmult_near_split_bound(void) {
|
|
int i;
|
|
unsigned j;
|
|
for (i = 0; i < 4*count; ++i) {
|
|
for (j = 0; j < sizeof(scalars_near_split_bounds) / sizeof(scalars_near_split_bounds[0]); ++j) {
|
|
test_ecmult_target(&scalars_near_split_bounds[j], 0);
|
|
test_ecmult_target(&scalars_near_split_bounds[j], 1);
|
|
test_ecmult_target(&scalars_near_split_bounds[j], 2);
|
|
}
|
|
}
|
|
}
|
|
|
|
void run_point_times_order(void) {
|
|
int i;
|
|
secp256k1_fe x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2);
|
|
static const secp256k1_fe xr = SECP256K1_FE_CONST(
|
|
0x7603CB59, 0xB0EF6C63, 0xFE608479, 0x2A0C378C,
|
|
0xDB3233A8, 0x0F8A9A09, 0xA877DEAD, 0x31B38C45
|
|
);
|
|
for (i = 0; i < 500; i++) {
|
|
secp256k1_ge p;
|
|
if (secp256k1_ge_set_xo_var(&p, &x, 1)) {
|
|
secp256k1_gej j;
|
|
CHECK(secp256k1_ge_is_valid_var(&p));
|
|
secp256k1_gej_set_ge(&j, &p);
|
|
test_point_times_order(&j);
|
|
}
|
|
secp256k1_fe_sqr(&x, &x);
|
|
}
|
|
secp256k1_fe_normalize_var(&x);
|
|
CHECK(secp256k1_fe_equal_var(&x, &xr));
|
|
}
|
|
|
|
void ecmult_const_random_mult(void) {
|
|
/* random starting point A (on the curve) */
|
|
secp256k1_ge a = SECP256K1_GE_CONST(
|
|
0x6d986544, 0x57ff52b8, 0xcf1b8126, 0x5b802a5b,
|
|
0xa97f9263, 0xb1e88044, 0x93351325, 0x91bc450a,
|
|
0x535c59f7, 0x325e5d2b, 0xc391fbe8, 0x3c12787c,
|
|
0x337e4a98, 0xe82a9011, 0x0123ba37, 0xdd769c7d
|
|
);
|
|
/* random initial factor xn */
|
|
secp256k1_scalar xn = SECP256K1_SCALAR_CONST(
|
|
0x649d4f77, 0xc4242df7, 0x7f2079c9, 0x14530327,
|
|
0xa31b876a, 0xd2d8ce2a, 0x2236d5c6, 0xd7b2029b
|
|
);
|
|
/* expected xn * A (from sage) */
|
|
secp256k1_ge expected_b = SECP256K1_GE_CONST(
|
|
0x23773684, 0x4d209dc7, 0x098a786f, 0x20d06fcd,
|
|
0x070a38bf, 0xc11ac651, 0x03004319, 0x1e2a8786,
|
|
0xed8c3b8e, 0xc06dd57b, 0xd06ea66e, 0x45492b0f,
|
|
0xb84e4e1b, 0xfb77e21f, 0x96baae2a, 0x63dec956
|
|
);
|
|
secp256k1_gej b;
|
|
secp256k1_ecmult_const(&b, &a, &xn, 256);
|
|
|
|
CHECK(secp256k1_ge_is_valid_var(&a));
|
|
ge_equals_gej(&expected_b, &b);
|
|
}
|
|
|
|
void ecmult_const_commutativity(void) {
|
|
secp256k1_scalar a;
|
|
secp256k1_scalar b;
|
|
secp256k1_gej res1;
|
|
secp256k1_gej res2;
|
|
secp256k1_ge mid1;
|
|
secp256k1_ge mid2;
|
|
random_scalar_order_test(&a);
|
|
random_scalar_order_test(&b);
|
|
|
|
secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a, 256);
|
|
secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b, 256);
|
|
secp256k1_ge_set_gej(&mid1, &res1);
|
|
secp256k1_ge_set_gej(&mid2, &res2);
|
|
secp256k1_ecmult_const(&res1, &mid1, &b, 256);
|
|
secp256k1_ecmult_const(&res2, &mid2, &a, 256);
|
|
secp256k1_ge_set_gej(&mid1, &res1);
|
|
secp256k1_ge_set_gej(&mid2, &res2);
|
|
ge_equals_ge(&mid1, &mid2);
|
|
}
|
|
|
|
void ecmult_const_mult_zero_one(void) {
|
|
secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
|
secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
|
secp256k1_scalar negone;
|
|
secp256k1_gej res1;
|
|
secp256k1_ge res2;
|
|
secp256k1_ge point;
|
|
secp256k1_scalar_negate(&negone, &one);
|
|
|
|
random_group_element_test(&point);
|
|
secp256k1_ecmult_const(&res1, &point, &zero, 3);
|
|
secp256k1_ge_set_gej(&res2, &res1);
|
|
CHECK(secp256k1_ge_is_infinity(&res2));
|
|
secp256k1_ecmult_const(&res1, &point, &one, 2);
|
|
secp256k1_ge_set_gej(&res2, &res1);
|
|
ge_equals_ge(&res2, &point);
|
|
secp256k1_ecmult_const(&res1, &point, &negone, 256);
|
|
secp256k1_gej_neg(&res1, &res1);
|
|
secp256k1_ge_set_gej(&res2, &res1);
|
|
ge_equals_ge(&res2, &point);
|
|
}
|
|
|
|
void ecmult_const_chain_multiply(void) {
|
|
/* Check known result (randomly generated test problem from sage) */
|
|
const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST(
|
|
0x4968d524, 0x2abf9b7a, 0x466abbcf, 0x34b11b6d,
|
|
0xcd83d307, 0x827bed62, 0x05fad0ce, 0x18fae63b
|
|
);
|
|
const secp256k1_gej expected_point = SECP256K1_GEJ_CONST(
|
|
0x5494c15d, 0x32099706, 0xc2395f94, 0x348745fd,
|
|
0x757ce30e, 0x4e8c90fb, 0xa2bad184, 0xf883c69f,
|
|
0x5d195d20, 0xe191bf7f, 0x1be3e55f, 0x56a80196,
|
|
0x6071ad01, 0xf1462f66, 0xc997fa94, 0xdb858435
|
|
);
|
|
secp256k1_gej point;
|
|
secp256k1_ge res;
|
|
int i;
|
|
|
|
secp256k1_gej_set_ge(&point, &secp256k1_ge_const_g);
|
|
for (i = 0; i < 100; ++i) {
|
|
secp256k1_ge tmp;
|
|
secp256k1_ge_set_gej(&tmp, &point);
|
|
secp256k1_ecmult_const(&point, &tmp, &scalar, 256);
|
|
}
|
|
secp256k1_ge_set_gej(&res, &point);
|
|
ge_equals_gej(&res, &expected_point);
|
|
}
|
|
|
|
void run_ecmult_const_tests(void) {
|
|
ecmult_const_mult_zero_one();
|
|
ecmult_const_random_mult();
|
|
ecmult_const_commutativity();
|
|
ecmult_const_chain_multiply();
|
|
}
|
|
|
|
typedef struct {
|
|
secp256k1_scalar *sc;
|
|
secp256k1_ge *pt;
|
|
} ecmult_multi_data;
|
|
|
|
static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) {
|
|
ecmult_multi_data *data = (ecmult_multi_data*) cbdata;
|
|
*sc = data->sc[idx];
|
|
*pt = data->pt[idx];
|
|
return 1;
|
|
}
|
|
|
|
static int ecmult_multi_false_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) {
|
|
(void)sc;
|
|
(void)pt;
|
|
(void)idx;
|
|
(void)cbdata;
|
|
return 0;
|
|
}
|
|
|
|
void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func ecmult_multi) {
|
|
int ncount;
|
|
secp256k1_scalar szero;
|
|
secp256k1_scalar sc[32];
|
|
secp256k1_ge pt[32];
|
|
secp256k1_gej r;
|
|
secp256k1_gej r2;
|
|
ecmult_multi_data data;
|
|
|
|
data.sc = sc;
|
|
data.pt = pt;
|
|
secp256k1_scalar_set_int(&szero, 0);
|
|
|
|
/* No points to multiply */
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, NULL, ecmult_multi_callback, &data, 0));
|
|
|
|
/* Check 1- and 2-point multiplies against ecmult */
|
|
for (ncount = 0; ncount < count; ncount++) {
|
|
secp256k1_ge ptg;
|
|
secp256k1_gej ptgj;
|
|
random_scalar_order(&sc[0]);
|
|
random_scalar_order(&sc[1]);
|
|
|
|
random_group_element_test(&ptg);
|
|
secp256k1_gej_set_ge(&ptgj, &ptg);
|
|
pt[0] = ptg;
|
|
pt[1] = secp256k1_ge_const_g;
|
|
|
|
/* only G scalar */
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &szero, &sc[0]);
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &sc[0], ecmult_multi_callback, &data, 0));
|
|
secp256k1_gej_neg(&r2, &r2);
|
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
|
|
/* 1-point */
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &szero);
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 1));
|
|
secp256k1_gej_neg(&r2, &r2);
|
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
|
|
/* Try to multiply 1 point, but callback returns false */
|
|
CHECK(!ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_false_callback, &data, 1));
|
|
|
|
/* 2-point */
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]);
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 2));
|
|
secp256k1_gej_neg(&r2, &r2);
|
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
|
|
/* 2-point with G scalar */
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]);
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &sc[1], ecmult_multi_callback, &data, 1));
|
|
secp256k1_gej_neg(&r2, &r2);
|
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
}
|
|
|
|
/* Check infinite outputs of various forms */
|
|
for (ncount = 0; ncount < count; ncount++) {
|
|
secp256k1_ge ptg;
|
|
size_t i, j;
|
|
size_t sizes[] = { 2, 10, 32 };
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
for (i = 0; i < 32; i++) {
|
|
random_scalar_order(&sc[i]);
|
|
secp256k1_ge_set_infinity(&pt[i]);
|
|
}
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
}
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
for (i = 0; i < 32; i++) {
|
|
random_group_element_test(&ptg);
|
|
pt[i] = ptg;
|
|
secp256k1_scalar_set_int(&sc[i], 0);
|
|
}
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
}
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
random_group_element_test(&ptg);
|
|
for (i = 0; i < 16; i++) {
|
|
random_scalar_order(&sc[2*i]);
|
|
secp256k1_scalar_negate(&sc[2*i + 1], &sc[2*i]);
|
|
pt[2 * i] = ptg;
|
|
pt[2 * i + 1] = ptg;
|
|
}
|
|
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
|
|
random_scalar_order(&sc[0]);
|
|
for (i = 0; i < 16; i++) {
|
|
random_group_element_test(&ptg);
|
|
|
|
sc[2*i] = sc[0];
|
|
sc[2*i+1] = sc[0];
|
|
pt[2 * i] = ptg;
|
|
secp256k1_ge_neg(&pt[2*i+1], &pt[2*i]);
|
|
}
|
|
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
}
|
|
|
|
random_group_element_test(&ptg);
|
|
secp256k1_scalar_set_int(&sc[0], 0);
|
|
pt[0] = ptg;
|
|
for (i = 1; i < 32; i++) {
|
|
pt[i] = ptg;
|
|
|
|
random_scalar_order(&sc[i]);
|
|
secp256k1_scalar_add(&sc[0], &sc[0], &sc[i]);
|
|
secp256k1_scalar_negate(&sc[i], &sc[i]);
|
|
}
|
|
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 32));
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
}
|
|
|
|
/* Check random points, constant scalar */
|
|
for (ncount = 0; ncount < count; ncount++) {
|
|
size_t i;
|
|
secp256k1_gej_set_infinity(&r);
|
|
|
|
random_scalar_order(&sc[0]);
|
|
for (i = 0; i < 20; i++) {
|
|
secp256k1_ge ptg;
|
|
sc[i] = sc[0];
|
|
random_group_element_test(&ptg);
|
|
pt[i] = ptg;
|
|
secp256k1_gej_add_ge_var(&r, &r, &pt[i], NULL);
|
|
}
|
|
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &r, &sc[0], &szero);
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
|
|
secp256k1_gej_neg(&r2, &r2);
|
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
}
|
|
|
|
/* Check random scalars, constant point */
|
|
for (ncount = 0; ncount < count; ncount++) {
|
|
size_t i;
|
|
secp256k1_ge ptg;
|
|
secp256k1_gej p0j;
|
|
secp256k1_scalar rs;
|
|
secp256k1_scalar_set_int(&rs, 0);
|
|
|
|
random_group_element_test(&ptg);
|
|
for (i = 0; i < 20; i++) {
|
|
random_scalar_order(&sc[i]);
|
|
pt[i] = ptg;
|
|
secp256k1_scalar_add(&rs, &rs, &sc[i]);
|
|
}
|
|
|
|
secp256k1_gej_set_ge(&p0j, &pt[0]);
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &p0j, &rs, &szero);
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
|
|
secp256k1_gej_neg(&r2, &r2);
|
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
}
|
|
|
|
/* Sanity check that zero scalars don't cause problems */
|
|
for (ncount = 0; ncount < 20; ncount++) {
|
|
random_scalar_order(&sc[ncount]);
|
|
random_group_element_test(&pt[ncount]);
|
|
}
|
|
|
|
secp256k1_scalar_clear(&sc[0]);
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
|
|
secp256k1_scalar_clear(&sc[1]);
|
|
secp256k1_scalar_clear(&sc[2]);
|
|
secp256k1_scalar_clear(&sc[3]);
|
|
secp256k1_scalar_clear(&sc[4]);
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 6));
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 5));
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
|
|
/* Run through s0*(t0*P) + s1*(t1*P) exhaustively for many small values of s0, s1, t0, t1 */
|
|
{
|
|
const size_t TOP = 8;
|
|
size_t s0i, s1i;
|
|
size_t t0i, t1i;
|
|
secp256k1_ge ptg;
|
|
secp256k1_gej ptgj;
|
|
|
|
random_group_element_test(&ptg);
|
|
secp256k1_gej_set_ge(&ptgj, &ptg);
|
|
|
|
for(t0i = 0; t0i < TOP; t0i++) {
|
|
for(t1i = 0; t1i < TOP; t1i++) {
|
|
secp256k1_gej t0p, t1p;
|
|
secp256k1_scalar t0, t1;
|
|
|
|
secp256k1_scalar_set_int(&t0, (t0i + 1) / 2);
|
|
secp256k1_scalar_cond_negate(&t0, t0i & 1);
|
|
secp256k1_scalar_set_int(&t1, (t1i + 1) / 2);
|
|
secp256k1_scalar_cond_negate(&t1, t1i & 1);
|
|
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &t0p, &ptgj, &t0, &szero);
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &t1p, &ptgj, &t1, &szero);
|
|
|
|
for(s0i = 0; s0i < TOP; s0i++) {
|
|
for(s1i = 0; s1i < TOP; s1i++) {
|
|
secp256k1_scalar tmp1, tmp2;
|
|
secp256k1_gej expected, actual;
|
|
|
|
secp256k1_ge_set_gej(&pt[0], &t0p);
|
|
secp256k1_ge_set_gej(&pt[1], &t1p);
|
|
|
|
secp256k1_scalar_set_int(&sc[0], (s0i + 1) / 2);
|
|
secp256k1_scalar_cond_negate(&sc[0], s0i & 1);
|
|
secp256k1_scalar_set_int(&sc[1], (s1i + 1) / 2);
|
|
secp256k1_scalar_cond_negate(&sc[1], s1i & 1);
|
|
|
|
secp256k1_scalar_mul(&tmp1, &t0, &sc[0]);
|
|
secp256k1_scalar_mul(&tmp2, &t1, &sc[1]);
|
|
secp256k1_scalar_add(&tmp1, &tmp1, &tmp2);
|
|
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &expected, &ptgj, &tmp1, &szero);
|
|
CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &actual, &szero, ecmult_multi_callback, &data, 2));
|
|
secp256k1_gej_neg(&expected, &expected);
|
|
secp256k1_gej_add_var(&actual, &actual, &expected, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&actual));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void test_ecmult_multi_batch_single(secp256k1_ecmult_multi_func ecmult_multi) {
|
|
secp256k1_scalar szero;
|
|
secp256k1_scalar sc;
|
|
secp256k1_ge pt;
|
|
secp256k1_gej r;
|
|
ecmult_multi_data data;
|
|
secp256k1_scratch *scratch_empty;
|
|
|
|
random_group_element_test(&pt);
|
|
random_scalar_order(&sc);
|
|
data.sc = ≻
|
|
data.pt = &pt;
|
|
secp256k1_scalar_set_int(&szero, 0);
|
|
|
|
/* Try to multiply 1 point, but scratch space is empty.*/
|
|
scratch_empty = secp256k1_scratch_create(&ctx->error_callback, 0);
|
|
CHECK(!ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch_empty, &r, &szero, ecmult_multi_callback, &data, 1));
|
|
secp256k1_scratch_destroy(&ctx->error_callback, scratch_empty);
|
|
}
|
|
|
|
void test_secp256k1_pippenger_bucket_window_inv(void) {
|
|
int i;
|
|
|
|
CHECK(secp256k1_pippenger_bucket_window_inv(0) == 0);
|
|
for(i = 1; i <= PIPPENGER_MAX_BUCKET_WINDOW; i++) {
|
|
/* Bucket_window of 8 is not used with endo */
|
|
if (i == 8) {
|
|
continue;
|
|
}
|
|
CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)) == i);
|
|
if (i != PIPPENGER_MAX_BUCKET_WINDOW) {
|
|
CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)+1) > i);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Probabilistically test the function returning the maximum number of possible points
|
|
* for a given scratch space.
|
|
*/
|
|
void test_ecmult_multi_pippenger_max_points(void) {
|
|
size_t scratch_size = secp256k1_testrand_int(256);
|
|
size_t max_size = secp256k1_pippenger_scratch_size(secp256k1_pippenger_bucket_window_inv(PIPPENGER_MAX_BUCKET_WINDOW-1)+512, 12);
|
|
secp256k1_scratch *scratch;
|
|
size_t n_points_supported;
|
|
int bucket_window = 0;
|
|
|
|
for(; scratch_size < max_size; scratch_size+=256) {
|
|
size_t i;
|
|
size_t total_alloc;
|
|
size_t checkpoint;
|
|
scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size);
|
|
CHECK(scratch != NULL);
|
|
checkpoint = secp256k1_scratch_checkpoint(&ctx->error_callback, scratch);
|
|
n_points_supported = secp256k1_pippenger_max_points(&ctx->error_callback, scratch);
|
|
if (n_points_supported == 0) {
|
|
secp256k1_scratch_destroy(&ctx->error_callback, scratch);
|
|
continue;
|
|
}
|
|
bucket_window = secp256k1_pippenger_bucket_window(n_points_supported);
|
|
/* allocate `total_alloc` bytes over `PIPPENGER_SCRATCH_OBJECTS` many allocations */
|
|
total_alloc = secp256k1_pippenger_scratch_size(n_points_supported, bucket_window);
|
|
for (i = 0; i < PIPPENGER_SCRATCH_OBJECTS - 1; i++) {
|
|
CHECK(secp256k1_scratch_alloc(&ctx->error_callback, scratch, 1));
|
|
total_alloc--;
|
|
}
|
|
CHECK(secp256k1_scratch_alloc(&ctx->error_callback, scratch, total_alloc));
|
|
secp256k1_scratch_apply_checkpoint(&ctx->error_callback, scratch, checkpoint);
|
|
secp256k1_scratch_destroy(&ctx->error_callback, scratch);
|
|
}
|
|
CHECK(bucket_window == PIPPENGER_MAX_BUCKET_WINDOW);
|
|
}
|
|
|
|
void test_ecmult_multi_batch_size_helper(void) {
|
|
size_t n_batches, n_batch_points, max_n_batch_points, n;
|
|
|
|
max_n_batch_points = 0;
|
|
n = 1;
|
|
CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 0);
|
|
|
|
max_n_batch_points = 1;
|
|
n = 0;
|
|
CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1);
|
|
CHECK(n_batches == 0);
|
|
CHECK(n_batch_points == 0);
|
|
|
|
max_n_batch_points = 2;
|
|
n = 5;
|
|
CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1);
|
|
CHECK(n_batches == 3);
|
|
CHECK(n_batch_points == 2);
|
|
|
|
max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH;
|
|
n = ECMULT_MAX_POINTS_PER_BATCH;
|
|
CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1);
|
|
CHECK(n_batches == 1);
|
|
CHECK(n_batch_points == ECMULT_MAX_POINTS_PER_BATCH);
|
|
|
|
max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH + 1;
|
|
n = ECMULT_MAX_POINTS_PER_BATCH + 1;
|
|
CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1);
|
|
CHECK(n_batches == 2);
|
|
CHECK(n_batch_points == ECMULT_MAX_POINTS_PER_BATCH/2 + 1);
|
|
|
|
max_n_batch_points = 1;
|
|
n = SIZE_MAX;
|
|
CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1);
|
|
CHECK(n_batches == SIZE_MAX);
|
|
CHECK(n_batch_points == 1);
|
|
|
|
max_n_batch_points = 2;
|
|
n = SIZE_MAX;
|
|
CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1);
|
|
CHECK(n_batches == SIZE_MAX/2 + 1);
|
|
CHECK(n_batch_points == 2);
|
|
}
|
|
|
|
/**
|
|
* Run secp256k1_ecmult_multi_var with num points and a scratch space restricted to
|
|
* 1 <= i <= num points.
|
|
*/
|
|
void test_ecmult_multi_batching(void) {
|
|
static const int n_points = 2*ECMULT_PIPPENGER_THRESHOLD;
|
|
secp256k1_scalar scG;
|
|
secp256k1_scalar szero;
|
|
secp256k1_scalar *sc = (secp256k1_scalar *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_scalar) * n_points);
|
|
secp256k1_ge *pt = (secp256k1_ge *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_ge) * n_points);
|
|
secp256k1_gej r;
|
|
secp256k1_gej r2;
|
|
ecmult_multi_data data;
|
|
int i;
|
|
secp256k1_scratch *scratch;
|
|
|
|
secp256k1_gej_set_infinity(&r2);
|
|
secp256k1_scalar_set_int(&szero, 0);
|
|
|
|
/* Get random scalars and group elements and compute result */
|
|
random_scalar_order(&scG);
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &r2, &szero, &scG);
|
|
for(i = 0; i < n_points; i++) {
|
|
secp256k1_ge ptg;
|
|
secp256k1_gej ptgj;
|
|
random_group_element_test(&ptg);
|
|
secp256k1_gej_set_ge(&ptgj, &ptg);
|
|
pt[i] = ptg;
|
|
random_scalar_order(&sc[i]);
|
|
secp256k1_ecmult(&ctx->ecmult_ctx, &ptgj, &ptgj, &sc[i], NULL);
|
|
secp256k1_gej_add_var(&r2, &r2, &ptgj, NULL);
|
|
}
|
|
data.sc = sc;
|
|
data.pt = pt;
|
|
secp256k1_gej_neg(&r2, &r2);
|
|
|
|
/* Test with empty scratch space. It should compute the correct result using
|
|
* ecmult_mult_simple algorithm which doesn't require a scratch space. */
|
|
scratch = secp256k1_scratch_create(&ctx->error_callback, 0);
|
|
CHECK(secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
|
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
secp256k1_scratch_destroy(&ctx->error_callback, scratch);
|
|
|
|
/* Test with space for 1 point in pippenger. That's not enough because
|
|
* ecmult_multi selects strauss which requires more memory. It should
|
|
* therefore select the simple algorithm. */
|
|
scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_pippenger_scratch_size(1, 1) + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT);
|
|
CHECK(secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
|
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
secp256k1_scratch_destroy(&ctx->error_callback, scratch);
|
|
|
|
for(i = 1; i <= n_points; i++) {
|
|
if (i > ECMULT_PIPPENGER_THRESHOLD) {
|
|
int bucket_window = secp256k1_pippenger_bucket_window(i);
|
|
size_t scratch_size = secp256k1_pippenger_scratch_size(i, bucket_window);
|
|
scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT);
|
|
} else {
|
|
size_t scratch_size = secp256k1_strauss_scratch_size(i);
|
|
scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT);
|
|
}
|
|
CHECK(secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
|
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
secp256k1_scratch_destroy(&ctx->error_callback, scratch);
|
|
}
|
|
free(sc);
|
|
free(pt);
|
|
}
|
|
|
|
void run_ecmult_multi_tests(void) {
|
|
secp256k1_scratch *scratch;
|
|
|
|
test_secp256k1_pippenger_bucket_window_inv();
|
|
test_ecmult_multi_pippenger_max_points();
|
|
scratch = secp256k1_scratch_create(&ctx->error_callback, 819200);
|
|
test_ecmult_multi(scratch, secp256k1_ecmult_multi_var);
|
|
test_ecmult_multi(NULL, secp256k1_ecmult_multi_var);
|
|
test_ecmult_multi(scratch, secp256k1_ecmult_pippenger_batch_single);
|
|
test_ecmult_multi_batch_single(secp256k1_ecmult_pippenger_batch_single);
|
|
test_ecmult_multi(scratch, secp256k1_ecmult_strauss_batch_single);
|
|
test_ecmult_multi_batch_single(secp256k1_ecmult_strauss_batch_single);
|
|
secp256k1_scratch_destroy(&ctx->error_callback, scratch);
|
|
|
|
/* Run test_ecmult_multi with space for exactly one point */
|
|
scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_strauss_scratch_size(1) + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT);
|
|
test_ecmult_multi(scratch, secp256k1_ecmult_multi_var);
|
|
secp256k1_scratch_destroy(&ctx->error_callback, scratch);
|
|
|
|
test_ecmult_multi_batch_size_helper();
|
|
test_ecmult_multi_batching();
|
|
}
|
|
|
|
void test_wnaf(const secp256k1_scalar *number, int w) {
|
|
secp256k1_scalar x, two, t;
|
|
int wnaf[256];
|
|
int zeroes = -1;
|
|
int i;
|
|
int bits;
|
|
secp256k1_scalar_set_int(&x, 0);
|
|
secp256k1_scalar_set_int(&two, 2);
|
|
bits = secp256k1_ecmult_wnaf(wnaf, 256, number, w);
|
|
CHECK(bits <= 256);
|
|
for (i = bits-1; i >= 0; i--) {
|
|
int v = wnaf[i];
|
|
secp256k1_scalar_mul(&x, &x, &two);
|
|
if (v) {
|
|
CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */
|
|
zeroes=0;
|
|
CHECK((v & 1) == 1); /* check non-zero elements are odd */
|
|
CHECK(v <= (1 << (w-1)) - 1); /* check range below */
|
|
CHECK(v >= -(1 << (w-1)) - 1); /* check range above */
|
|
} else {
|
|
CHECK(zeroes != -1); /* check that no unnecessary zero padding exists */
|
|
zeroes++;
|
|
}
|
|
if (v >= 0) {
|
|
secp256k1_scalar_set_int(&t, v);
|
|
} else {
|
|
secp256k1_scalar_set_int(&t, -v);
|
|
secp256k1_scalar_negate(&t, &t);
|
|
}
|
|
secp256k1_scalar_add(&x, &x, &t);
|
|
}
|
|
CHECK(secp256k1_scalar_eq(&x, number)); /* check that wnaf represents number */
|
|
}
|
|
|
|
void test_constant_wnaf_negate(const secp256k1_scalar *number) {
|
|
secp256k1_scalar neg1 = *number;
|
|
secp256k1_scalar neg2 = *number;
|
|
int sign1 = 1;
|
|
int sign2 = 1;
|
|
|
|
if (!secp256k1_scalar_get_bits(&neg1, 0, 1)) {
|
|
secp256k1_scalar_negate(&neg1, &neg1);
|
|
sign1 = -1;
|
|
}
|
|
sign2 = secp256k1_scalar_cond_negate(&neg2, secp256k1_scalar_is_even(&neg2));
|
|
CHECK(sign1 == sign2);
|
|
CHECK(secp256k1_scalar_eq(&neg1, &neg2));
|
|
}
|
|
|
|
void test_constant_wnaf(const secp256k1_scalar *number, int w) {
|
|
secp256k1_scalar x, shift;
|
|
int wnaf[256] = {0};
|
|
int i;
|
|
int skew;
|
|
int bits = 256;
|
|
secp256k1_scalar num = *number;
|
|
secp256k1_scalar scalar_skew;
|
|
|
|
secp256k1_scalar_set_int(&x, 0);
|
|
secp256k1_scalar_set_int(&shift, 1 << w);
|
|
for (i = 0; i < 16; ++i) {
|
|
secp256k1_scalar_shr_int(&num, 8);
|
|
}
|
|
bits = 128;
|
|
skew = secp256k1_wnaf_const(wnaf, &num, w, bits);
|
|
|
|
for (i = WNAF_SIZE_BITS(bits, w); i >= 0; --i) {
|
|
secp256k1_scalar t;
|
|
int v = wnaf[i];
|
|
CHECK(v != 0); /* check nonzero */
|
|
CHECK(v & 1); /* check parity */
|
|
CHECK(v > -(1 << w)); /* check range above */
|
|
CHECK(v < (1 << w)); /* check range below */
|
|
|
|
secp256k1_scalar_mul(&x, &x, &shift);
|
|
if (v >= 0) {
|
|
secp256k1_scalar_set_int(&t, v);
|
|
} else {
|
|
secp256k1_scalar_set_int(&t, -v);
|
|
secp256k1_scalar_negate(&t, &t);
|
|
}
|
|
secp256k1_scalar_add(&x, &x, &t);
|
|
}
|
|
/* Skew num because when encoding numbers as odd we use an offset */
|
|
secp256k1_scalar_set_int(&scalar_skew, 1 << (skew == 2));
|
|
secp256k1_scalar_add(&num, &num, &scalar_skew);
|
|
CHECK(secp256k1_scalar_eq(&x, &num));
|
|
}
|
|
|
|
void test_fixed_wnaf(const secp256k1_scalar *number, int w) {
|
|
secp256k1_scalar x, shift;
|
|
int wnaf[256] = {0};
|
|
int i;
|
|
int skew;
|
|
secp256k1_scalar num = *number;
|
|
|
|
secp256k1_scalar_set_int(&x, 0);
|
|
secp256k1_scalar_set_int(&shift, 1 << w);
|
|
for (i = 0; i < 16; ++i) {
|
|
secp256k1_scalar_shr_int(&num, 8);
|
|
}
|
|
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
|
|
|
|
for (i = WNAF_SIZE(w)-1; i >= 0; --i) {
|
|
secp256k1_scalar t;
|
|
int v = wnaf[i];
|
|
CHECK(v == 0 || v & 1); /* check parity */
|
|
CHECK(v > -(1 << w)); /* check range above */
|
|
CHECK(v < (1 << w)); /* check range below */
|
|
|
|
secp256k1_scalar_mul(&x, &x, &shift);
|
|
if (v >= 0) {
|
|
secp256k1_scalar_set_int(&t, v);
|
|
} else {
|
|
secp256k1_scalar_set_int(&t, -v);
|
|
secp256k1_scalar_negate(&t, &t);
|
|
}
|
|
secp256k1_scalar_add(&x, &x, &t);
|
|
}
|
|
/* If skew is 1 then add 1 to num */
|
|
secp256k1_scalar_cadd_bit(&num, 0, skew == 1);
|
|
CHECK(secp256k1_scalar_eq(&x, &num));
|
|
}
|
|
|
|
/* Checks that the first 8 elements of wnaf are equal to wnaf_expected and the
|
|
* rest is 0.*/
|
|
void test_fixed_wnaf_small_helper(int *wnaf, int *wnaf_expected, int w) {
|
|
int i;
|
|
for (i = WNAF_SIZE(w)-1; i >= 8; --i) {
|
|
CHECK(wnaf[i] == 0);
|
|
}
|
|
for (i = 7; i >= 0; --i) {
|
|
CHECK(wnaf[i] == wnaf_expected[i]);
|
|
}
|
|
}
|
|
|
|
void test_fixed_wnaf_small(void) {
|
|
int w = 4;
|
|
int wnaf[256] = {0};
|
|
int i;
|
|
int skew;
|
|
secp256k1_scalar num;
|
|
|
|
secp256k1_scalar_set_int(&num, 0);
|
|
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
|
|
for (i = WNAF_SIZE(w)-1; i >= 0; --i) {
|
|
int v = wnaf[i];
|
|
CHECK(v == 0);
|
|
}
|
|
CHECK(skew == 0);
|
|
|
|
secp256k1_scalar_set_int(&num, 1);
|
|
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
|
|
for (i = WNAF_SIZE(w)-1; i >= 1; --i) {
|
|
int v = wnaf[i];
|
|
CHECK(v == 0);
|
|
}
|
|
CHECK(wnaf[0] == 1);
|
|
CHECK(skew == 0);
|
|
|
|
{
|
|
int wnaf_expected[8] = { 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf };
|
|
secp256k1_scalar_set_int(&num, 0xffffffff);
|
|
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
|
|
test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w);
|
|
CHECK(skew == 0);
|
|
}
|
|
{
|
|
int wnaf_expected[8] = { -1, -1, -1, -1, -1, -1, -1, 0xf };
|
|
secp256k1_scalar_set_int(&num, 0xeeeeeeee);
|
|
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
|
|
test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w);
|
|
CHECK(skew == 1);
|
|
}
|
|
{
|
|
int wnaf_expected[8] = { 1, 0, 1, 0, 1, 0, 1, 0 };
|
|
secp256k1_scalar_set_int(&num, 0x01010101);
|
|
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
|
|
test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w);
|
|
CHECK(skew == 0);
|
|
}
|
|
{
|
|
int wnaf_expected[8] = { -0xf, 0, 0xf, -0xf, 0, 0xf, 1, 0 };
|
|
secp256k1_scalar_set_int(&num, 0x01ef1ef1);
|
|
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
|
|
test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w);
|
|
CHECK(skew == 0);
|
|
}
|
|
}
|
|
|
|
void run_wnaf(void) {
|
|
int i;
|
|
secp256k1_scalar n = {{0}};
|
|
|
|
test_constant_wnaf(&n, 4);
|
|
/* Sanity check: 1 and 2 are the smallest odd and even numbers and should
|
|
* have easier-to-diagnose failure modes */
|
|
n.d[0] = 1;
|
|
test_constant_wnaf(&n, 4);
|
|
n.d[0] = 2;
|
|
test_constant_wnaf(&n, 4);
|
|
/* Test -1, because it's a special case in wnaf_const */
|
|
n = secp256k1_scalar_one;
|
|
secp256k1_scalar_negate(&n, &n);
|
|
test_constant_wnaf(&n, 4);
|
|
|
|
/* Test -2, which may not lead to overflows in wnaf_const */
|
|
secp256k1_scalar_add(&n, &secp256k1_scalar_one, &secp256k1_scalar_one);
|
|
secp256k1_scalar_negate(&n, &n);
|
|
test_constant_wnaf(&n, 4);
|
|
|
|
/* Test (1/2) - 1 = 1/-2 and 1/2 = (1/-2) + 1
|
|
as corner cases of negation handling in wnaf_const */
|
|
secp256k1_scalar_inverse(&n, &n);
|
|
test_constant_wnaf(&n, 4);
|
|
|
|
secp256k1_scalar_add(&n, &n, &secp256k1_scalar_one);
|
|
test_constant_wnaf(&n, 4);
|
|
|
|
/* Test 0 for fixed wnaf */
|
|
test_fixed_wnaf_small();
|
|
/* Random tests */
|
|
for (i = 0; i < count; i++) {
|
|
random_scalar_order(&n);
|
|
test_wnaf(&n, 4+(i%10));
|
|
test_constant_wnaf_negate(&n);
|
|
test_constant_wnaf(&n, 4 + (i % 10));
|
|
test_fixed_wnaf(&n, 4 + (i % 10));
|
|
}
|
|
secp256k1_scalar_set_int(&n, 0);
|
|
CHECK(secp256k1_scalar_cond_negate(&n, 1) == -1);
|
|
CHECK(secp256k1_scalar_is_zero(&n));
|
|
CHECK(secp256k1_scalar_cond_negate(&n, 0) == 1);
|
|
CHECK(secp256k1_scalar_is_zero(&n));
|
|
}
|
|
|
|
void test_ecmult_constants(void) {
|
|
/* Test ecmult_gen() for [0..36) and [order-36..0). */
|
|
secp256k1_scalar x;
|
|
secp256k1_gej r;
|
|
secp256k1_ge ng;
|
|
int i;
|
|
int j;
|
|
secp256k1_ge_neg(&ng, &secp256k1_ge_const_g);
|
|
for (i = 0; i < 36; i++ ) {
|
|
secp256k1_scalar_set_int(&x, i);
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &r, &x);
|
|
for (j = 0; j < i; j++) {
|
|
if (j == i - 1) {
|
|
ge_equals_gej(&secp256k1_ge_const_g, &r);
|
|
}
|
|
secp256k1_gej_add_ge(&r, &r, &ng);
|
|
}
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
}
|
|
for (i = 1; i <= 36; i++ ) {
|
|
secp256k1_scalar_set_int(&x, i);
|
|
secp256k1_scalar_negate(&x, &x);
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &r, &x);
|
|
for (j = 0; j < i; j++) {
|
|
if (j == i - 1) {
|
|
ge_equals_gej(&ng, &r);
|
|
}
|
|
secp256k1_gej_add_ge(&r, &r, &secp256k1_ge_const_g);
|
|
}
|
|
CHECK(secp256k1_gej_is_infinity(&r));
|
|
}
|
|
}
|
|
|
|
void run_ecmult_constants(void) {
|
|
test_ecmult_constants();
|
|
}
|
|
|
|
void test_ecmult_gen_blind(void) {
|
|
/* Test ecmult_gen() blinding and confirm that the blinding changes, the affine points match, and the z's don't match. */
|
|
secp256k1_scalar key;
|
|
secp256k1_scalar b;
|
|
unsigned char seed32[32];
|
|
secp256k1_gej pgej;
|
|
secp256k1_gej pgej2;
|
|
secp256k1_gej i;
|
|
secp256k1_ge pge;
|
|
random_scalar_order_test(&key);
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej, &key);
|
|
secp256k1_testrand256(seed32);
|
|
b = ctx->ecmult_gen_ctx.blind;
|
|
i = ctx->ecmult_gen_ctx.initial;
|
|
secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
|
|
CHECK(!secp256k1_scalar_eq(&b, &ctx->ecmult_gen_ctx.blind));
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej2, &key);
|
|
CHECK(!gej_xyz_equals_gej(&pgej, &pgej2));
|
|
CHECK(!gej_xyz_equals_gej(&i, &ctx->ecmult_gen_ctx.initial));
|
|
secp256k1_ge_set_gej(&pge, &pgej);
|
|
ge_equals_gej(&pge, &pgej2);
|
|
}
|
|
|
|
void test_ecmult_gen_blind_reset(void) {
|
|
/* Test ecmult_gen() blinding reset and confirm that the blinding is consistent. */
|
|
secp256k1_scalar b;
|
|
secp256k1_gej initial;
|
|
secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, 0);
|
|
b = ctx->ecmult_gen_ctx.blind;
|
|
initial = ctx->ecmult_gen_ctx.initial;
|
|
secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, 0);
|
|
CHECK(secp256k1_scalar_eq(&b, &ctx->ecmult_gen_ctx.blind));
|
|
CHECK(gej_xyz_equals_gej(&initial, &ctx->ecmult_gen_ctx.initial));
|
|
}
|
|
|
|
void run_ecmult_gen_blind(void) {
|
|
int i;
|
|
test_ecmult_gen_blind_reset();
|
|
for (i = 0; i < 10; i++) {
|
|
test_ecmult_gen_blind();
|
|
}
|
|
}
|
|
|
|
/***** ENDOMORPHISH TESTS *****/
|
|
void test_scalar_split(const secp256k1_scalar* full) {
|
|
secp256k1_scalar s, s1, slam;
|
|
const unsigned char zero[32] = {0};
|
|
unsigned char tmp[32];
|
|
|
|
secp256k1_scalar_split_lambda(&s1, &slam, full);
|
|
|
|
/* check slam*lambda + s1 == full */
|
|
secp256k1_scalar_mul(&s, &secp256k1_const_lambda, &slam);
|
|
secp256k1_scalar_add(&s, &s, &s1);
|
|
CHECK(secp256k1_scalar_eq(&s, full));
|
|
|
|
/* check that both are <= 128 bits in size */
|
|
if (secp256k1_scalar_is_high(&s1)) {
|
|
secp256k1_scalar_negate(&s1, &s1);
|
|
}
|
|
if (secp256k1_scalar_is_high(&slam)) {
|
|
secp256k1_scalar_negate(&slam, &slam);
|
|
}
|
|
|
|
secp256k1_scalar_get_b32(tmp, &s1);
|
|
CHECK(secp256k1_memcmp_var(zero, tmp, 16) == 0);
|
|
secp256k1_scalar_get_b32(tmp, &slam);
|
|
CHECK(secp256k1_memcmp_var(zero, tmp, 16) == 0);
|
|
}
|
|
|
|
|
|
void run_endomorphism_tests(void) {
|
|
unsigned i;
|
|
static secp256k1_scalar s;
|
|
test_scalar_split(&secp256k1_scalar_zero);
|
|
test_scalar_split(&secp256k1_scalar_one);
|
|
secp256k1_scalar_negate(&s,&secp256k1_scalar_one);
|
|
test_scalar_split(&s);
|
|
test_scalar_split(&secp256k1_const_lambda);
|
|
secp256k1_scalar_add(&s, &secp256k1_const_lambda, &secp256k1_scalar_one);
|
|
test_scalar_split(&s);
|
|
|
|
for (i = 0; i < 100U * count; ++i) {
|
|
secp256k1_scalar full;
|
|
random_scalar_order_test(&full);
|
|
test_scalar_split(&full);
|
|
}
|
|
for (i = 0; i < sizeof(scalars_near_split_bounds) / sizeof(scalars_near_split_bounds[0]); ++i) {
|
|
test_scalar_split(&scalars_near_split_bounds[i]);
|
|
}
|
|
}
|
|
|
|
void ec_pubkey_parse_pointtest(const unsigned char *input, int xvalid, int yvalid) {
|
|
unsigned char pubkeyc[65];
|
|
secp256k1_pubkey pubkey;
|
|
secp256k1_ge ge;
|
|
size_t pubkeyclen;
|
|
int32_t ecount;
|
|
ecount = 0;
|
|
secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount);
|
|
for (pubkeyclen = 3; pubkeyclen <= 65; pubkeyclen++) {
|
|
/* Smaller sizes are tested exhaustively elsewhere. */
|
|
int32_t i;
|
|
memcpy(&pubkeyc[1], input, 64);
|
|
VG_UNDEF(&pubkeyc[pubkeyclen], 65 - pubkeyclen);
|
|
for (i = 0; i < 256; i++) {
|
|
/* Try all type bytes. */
|
|
int xpass;
|
|
int ypass;
|
|
int ysign;
|
|
pubkeyc[0] = i;
|
|
/* What sign does this point have? */
|
|
ysign = (input[63] & 1) + 2;
|
|
/* For the current type (i) do we expect parsing to work? Handled all of compressed/uncompressed/hybrid. */
|
|
xpass = xvalid && (pubkeyclen == 33) && ((i & 254) == 2);
|
|
/* Do we expect a parse and re-serialize as uncompressed to give a matching y? */
|
|
ypass = xvalid && yvalid && ((i & 4) == ((pubkeyclen == 65) << 2)) &&
|
|
((i == 4) || ((i & 251) == ysign)) && ((pubkeyclen == 33) || (pubkeyclen == 65));
|
|
if (xpass || ypass) {
|
|
/* These cases must parse. */
|
|
unsigned char pubkeyo[65];
|
|
size_t outl;
|
|
memset(&pubkey, 0, sizeof(pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
ecount = 0;
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
outl = 65;
|
|
VG_UNDEF(pubkeyo, 65);
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyo, &outl, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
|
|
VG_CHECK(pubkeyo, outl);
|
|
CHECK(outl == 33);
|
|
CHECK(secp256k1_memcmp_var(&pubkeyo[1], &pubkeyc[1], 32) == 0);
|
|
CHECK((pubkeyclen != 33) || (pubkeyo[0] == pubkeyc[0]));
|
|
if (ypass) {
|
|
/* This test isn't always done because we decode with alternative signs, so the y won't match. */
|
|
CHECK(pubkeyo[0] == ysign);
|
|
CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 1);
|
|
memset(&pubkey, 0, sizeof(pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
secp256k1_pubkey_save(&pubkey, &ge);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
outl = 65;
|
|
VG_UNDEF(pubkeyo, 65);
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyo, &outl, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 1);
|
|
VG_CHECK(pubkeyo, outl);
|
|
CHECK(outl == 65);
|
|
CHECK(pubkeyo[0] == 4);
|
|
CHECK(secp256k1_memcmp_var(&pubkeyo[1], input, 64) == 0);
|
|
}
|
|
CHECK(ecount == 0);
|
|
} else {
|
|
/* These cases must fail to parse. */
|
|
memset(&pubkey, 0xfe, sizeof(pubkey));
|
|
ecount = 0;
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
|
|
CHECK(ecount == 1);
|
|
}
|
|
}
|
|
}
|
|
secp256k1_context_set_illegal_callback(ctx, NULL, NULL);
|
|
}
|
|
|
|
void run_ec_pubkey_parse_test(void) {
|
|
#define SECP256K1_EC_PARSE_TEST_NVALID (12)
|
|
const unsigned char valid[SECP256K1_EC_PARSE_TEST_NVALID][64] = {
|
|
{
|
|
/* Point with leading and trailing zeros in x and y serialization. */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x52,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x64, 0xef, 0xa1, 0x7b, 0x77, 0x61, 0xe1, 0xe4, 0x27, 0x06, 0x98, 0x9f, 0xb4, 0x83,
|
|
0xb8, 0xd2, 0xd4, 0x9b, 0xf7, 0x8f, 0xae, 0x98, 0x03, 0xf0, 0x99, 0xb8, 0x34, 0xed, 0xeb, 0x00
|
|
},
|
|
{
|
|
/* Point with x equal to a 3rd root of unity.*/
|
|
0x7a, 0xe9, 0x6a, 0x2b, 0x65, 0x7c, 0x07, 0x10, 0x6e, 0x64, 0x47, 0x9e, 0xac, 0x34, 0x34, 0xe9,
|
|
0x9c, 0xf0, 0x49, 0x75, 0x12, 0xf5, 0x89, 0x95, 0xc1, 0x39, 0x6c, 0x28, 0x71, 0x95, 0x01, 0xee,
|
|
0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14,
|
|
0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee,
|
|
},
|
|
{
|
|
/* Point with largest x. (1/2) */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2c,
|
|
0x0e, 0x99, 0x4b, 0x14, 0xea, 0x72, 0xf8, 0xc3, 0xeb, 0x95, 0xc7, 0x1e, 0xf6, 0x92, 0x57, 0x5e,
|
|
0x77, 0x50, 0x58, 0x33, 0x2d, 0x7e, 0x52, 0xd0, 0x99, 0x5c, 0xf8, 0x03, 0x88, 0x71, 0xb6, 0x7d,
|
|
},
|
|
{
|
|
/* Point with largest x. (2/2) */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2c,
|
|
0xf1, 0x66, 0xb4, 0xeb, 0x15, 0x8d, 0x07, 0x3c, 0x14, 0x6a, 0x38, 0xe1, 0x09, 0x6d, 0xa8, 0xa1,
|
|
0x88, 0xaf, 0xa7, 0xcc, 0xd2, 0x81, 0xad, 0x2f, 0x66, 0xa3, 0x07, 0xfb, 0x77, 0x8e, 0x45, 0xb2,
|
|
},
|
|
{
|
|
/* Point with smallest x. (1/2) */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14,
|
|
0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee,
|
|
},
|
|
{
|
|
/* Point with smallest x. (2/2) */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb,
|
|
0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41,
|
|
},
|
|
{
|
|
/* Point with largest y. (1/3) */
|
|
0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6,
|
|
0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e,
|
|
},
|
|
{
|
|
/* Point with largest y. (2/3) */
|
|
0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c,
|
|
0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e,
|
|
},
|
|
{
|
|
/* Point with largest y. (3/3) */
|
|
0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc,
|
|
0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e,
|
|
},
|
|
{
|
|
/* Point with smallest y. (1/3) */
|
|
0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6,
|
|
0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
},
|
|
{
|
|
/* Point with smallest y. (2/3) */
|
|
0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c,
|
|
0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
},
|
|
{
|
|
/* Point with smallest y. (3/3) */
|
|
0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc,
|
|
0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
|
|
}
|
|
};
|
|
#define SECP256K1_EC_PARSE_TEST_NXVALID (4)
|
|
const unsigned char onlyxvalid[SECP256K1_EC_PARSE_TEST_NXVALID][64] = {
|
|
{
|
|
/* Valid if y overflow ignored (y = 1 mod p). (1/3) */
|
|
0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6,
|
|
0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30,
|
|
},
|
|
{
|
|
/* Valid if y overflow ignored (y = 1 mod p). (2/3) */
|
|
0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c,
|
|
0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30,
|
|
},
|
|
{
|
|
/* Valid if y overflow ignored (y = 1 mod p). (3/3)*/
|
|
0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc,
|
|
0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30,
|
|
},
|
|
{
|
|
/* x on curve, y is from y^2 = x^3 + 8. */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03
|
|
}
|
|
};
|
|
#define SECP256K1_EC_PARSE_TEST_NINVALID (7)
|
|
const unsigned char invalid[SECP256K1_EC_PARSE_TEST_NINVALID][64] = {
|
|
{
|
|
/* x is third root of -8, y is -1 * (x^3+7); also on the curve for y^2 = x^3 + 9. */
|
|
0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c,
|
|
0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
},
|
|
{
|
|
/* Valid if x overflow ignored (x = 1 mod p). */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30,
|
|
0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14,
|
|
0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee,
|
|
},
|
|
{
|
|
/* Valid if x overflow ignored (x = 1 mod p). */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30,
|
|
0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb,
|
|
0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41,
|
|
},
|
|
{
|
|
/* x is -1, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 5. */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e,
|
|
0xf4, 0x84, 0x14, 0x5c, 0xb0, 0x14, 0x9b, 0x82, 0x5d, 0xff, 0x41, 0x2f, 0xa0, 0x52, 0xa8, 0x3f,
|
|
0xcb, 0x72, 0xdb, 0x61, 0xd5, 0x6f, 0x37, 0x70, 0xce, 0x06, 0x6b, 0x73, 0x49, 0xa2, 0xaa, 0x28,
|
|
},
|
|
{
|
|
/* x is -1, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 5. */
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e,
|
|
0x0b, 0x7b, 0xeb, 0xa3, 0x4f, 0xeb, 0x64, 0x7d, 0xa2, 0x00, 0xbe, 0xd0, 0x5f, 0xad, 0x57, 0xc0,
|
|
0x34, 0x8d, 0x24, 0x9e, 0x2a, 0x90, 0xc8, 0x8f, 0x31, 0xf9, 0x94, 0x8b, 0xb6, 0x5d, 0x52, 0x07,
|
|
},
|
|
{
|
|
/* x is zero, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 7. */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x8f, 0x53, 0x7e, 0xef, 0xdf, 0xc1, 0x60, 0x6a, 0x07, 0x27, 0xcd, 0x69, 0xb4, 0xa7, 0x33, 0x3d,
|
|
0x38, 0xed, 0x44, 0xe3, 0x93, 0x2a, 0x71, 0x79, 0xee, 0xcb, 0x4b, 0x6f, 0xba, 0x93, 0x60, 0xdc,
|
|
},
|
|
{
|
|
/* x is zero, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 7. */
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x70, 0xac, 0x81, 0x10, 0x20, 0x3e, 0x9f, 0x95, 0xf8, 0xd8, 0x32, 0x96, 0x4b, 0x58, 0xcc, 0xc2,
|
|
0xc7, 0x12, 0xbb, 0x1c, 0x6c, 0xd5, 0x8e, 0x86, 0x11, 0x34, 0xb4, 0x8f, 0x45, 0x6c, 0x9b, 0x53
|
|
}
|
|
};
|
|
const unsigned char pubkeyc[66] = {
|
|
/* Serialization of G. */
|
|
0x04, 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, 0xAC, 0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B,
|
|
0x07, 0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28, 0xD9, 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17,
|
|
0x98, 0x48, 0x3A, 0xDA, 0x77, 0x26, 0xA3, 0xC4, 0x65, 0x5D, 0xA4, 0xFB, 0xFC, 0x0E, 0x11, 0x08,
|
|
0xA8, 0xFD, 0x17, 0xB4, 0x48, 0xA6, 0x85, 0x54, 0x19, 0x9C, 0x47, 0xD0, 0x8F, 0xFB, 0x10, 0xD4,
|
|
0xB8, 0x00
|
|
};
|
|
unsigned char sout[65];
|
|
unsigned char shortkey[2];
|
|
secp256k1_ge ge;
|
|
secp256k1_pubkey pubkey;
|
|
size_t len;
|
|
int32_t i;
|
|
int32_t ecount;
|
|
int32_t ecount2;
|
|
ecount = 0;
|
|
/* Nothing should be reading this far into pubkeyc. */
|
|
VG_UNDEF(&pubkeyc[65], 1);
|
|
secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount);
|
|
/* Zero length claimed, fail, zeroize, no illegal arg error. */
|
|
memset(&pubkey, 0xfe, sizeof(pubkey));
|
|
ecount = 0;
|
|
VG_UNDEF(shortkey, 2);
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, shortkey, 0) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
|
|
CHECK(ecount == 1);
|
|
/* Length one claimed, fail, zeroize, no illegal arg error. */
|
|
for (i = 0; i < 256 ; i++) {
|
|
memset(&pubkey, 0xfe, sizeof(pubkey));
|
|
ecount = 0;
|
|
shortkey[0] = i;
|
|
VG_UNDEF(&shortkey[1], 1);
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, shortkey, 1) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
|
|
CHECK(ecount == 1);
|
|
}
|
|
/* Length two claimed, fail, zeroize, no illegal arg error. */
|
|
for (i = 0; i < 65536 ; i++) {
|
|
memset(&pubkey, 0xfe, sizeof(pubkey));
|
|
ecount = 0;
|
|
shortkey[0] = i & 255;
|
|
shortkey[1] = i >> 8;
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, shortkey, 2) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
|
|
CHECK(ecount == 1);
|
|
}
|
|
memset(&pubkey, 0xfe, sizeof(pubkey));
|
|
ecount = 0;
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
/* 33 bytes claimed on otherwise valid input starting with 0x04, fail, zeroize output, no illegal arg error. */
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 33) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
|
|
CHECK(ecount == 1);
|
|
/* NULL pubkey, illegal arg error. Pubkey isn't rewritten before this step, since it's NULL into the parser. */
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, NULL, pubkeyc, 65) == 0);
|
|
CHECK(ecount == 2);
|
|
/* NULL input string. Illegal arg and zeroize output. */
|
|
memset(&pubkey, 0xfe, sizeof(pubkey));
|
|
ecount = 0;
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, NULL, 65) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
|
|
CHECK(ecount == 2);
|
|
/* 64 bytes claimed on input starting with 0x04, fail, zeroize output, no illegal arg error. */
|
|
memset(&pubkey, 0xfe, sizeof(pubkey));
|
|
ecount = 0;
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 64) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
|
|
CHECK(ecount == 1);
|
|
/* 66 bytes claimed, fail, zeroize output, no illegal arg error. */
|
|
memset(&pubkey, 0xfe, sizeof(pubkey));
|
|
ecount = 0;
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 66) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
|
|
CHECK(ecount == 1);
|
|
/* Valid parse. */
|
|
memset(&pubkey, 0, sizeof(pubkey));
|
|
ecount = 0;
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 65) == 1);
|
|
CHECK(secp256k1_ec_pubkey_parse(secp256k1_context_no_precomp, &pubkey, pubkeyc, 65) == 1);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(ecount == 0);
|
|
VG_UNDEF(&ge, sizeof(ge));
|
|
CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 1);
|
|
VG_CHECK(&ge.x, sizeof(ge.x));
|
|
VG_CHECK(&ge.y, sizeof(ge.y));
|
|
VG_CHECK(&ge.infinity, sizeof(ge.infinity));
|
|
ge_equals_ge(&secp256k1_ge_const_g, &ge);
|
|
CHECK(ecount == 0);
|
|
/* secp256k1_ec_pubkey_serialize illegal args. */
|
|
ecount = 0;
|
|
len = 65;
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, NULL, &len, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(len == 0);
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, NULL, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 0);
|
|
CHECK(ecount == 2);
|
|
len = 65;
|
|
VG_UNDEF(sout, 65);
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, &len, NULL, SECP256K1_EC_UNCOMPRESSED) == 0);
|
|
VG_CHECK(sout, 65);
|
|
CHECK(ecount == 3);
|
|
CHECK(len == 0);
|
|
len = 65;
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, &len, &pubkey, ~0) == 0);
|
|
CHECK(ecount == 4);
|
|
CHECK(len == 0);
|
|
len = 65;
|
|
VG_UNDEF(sout, 65);
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, &len, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 1);
|
|
VG_CHECK(sout, 65);
|
|
CHECK(ecount == 4);
|
|
CHECK(len == 65);
|
|
/* Multiple illegal args. Should still set arg error only once. */
|
|
ecount = 0;
|
|
ecount2 = 11;
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, NULL, NULL, 65) == 0);
|
|
CHECK(ecount == 1);
|
|
/* Does the illegal arg callback actually change the behavior? */
|
|
secp256k1_context_set_illegal_callback(ctx, uncounting_illegal_callback_fn, &ecount2);
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, NULL, NULL, 65) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(ecount2 == 10);
|
|
secp256k1_context_set_illegal_callback(ctx, NULL, NULL);
|
|
/* Try a bunch of prefabbed points with all possible encodings. */
|
|
for (i = 0; i < SECP256K1_EC_PARSE_TEST_NVALID; i++) {
|
|
ec_pubkey_parse_pointtest(valid[i], 1, 1);
|
|
}
|
|
for (i = 0; i < SECP256K1_EC_PARSE_TEST_NXVALID; i++) {
|
|
ec_pubkey_parse_pointtest(onlyxvalid[i], 1, 0);
|
|
}
|
|
for (i = 0; i < SECP256K1_EC_PARSE_TEST_NINVALID; i++) {
|
|
ec_pubkey_parse_pointtest(invalid[i], 0, 0);
|
|
}
|
|
}
|
|
|
|
void run_eckey_edge_case_test(void) {
|
|
const unsigned char orderc[32] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
|
|
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
|
|
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41
|
|
};
|
|
const unsigned char zeros[sizeof(secp256k1_pubkey)] = {0x00};
|
|
unsigned char ctmp[33];
|
|
unsigned char ctmp2[33];
|
|
secp256k1_pubkey pubkey;
|
|
secp256k1_pubkey pubkey2;
|
|
secp256k1_pubkey pubkey_one;
|
|
secp256k1_pubkey pubkey_negone;
|
|
const secp256k1_pubkey *pubkeys[3];
|
|
size_t len;
|
|
int32_t ecount;
|
|
/* Group order is too large, reject. */
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, orderc) == 0);
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, orderc) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
|
|
/* Maximum value is too large, reject. */
|
|
memset(ctmp, 255, 32);
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
|
|
memset(&pubkey, 1, sizeof(pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
|
|
/* Zero is too small, reject. */
|
|
memset(ctmp, 0, 32);
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
|
|
memset(&pubkey, 1, sizeof(pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
|
|
/* One must be accepted. */
|
|
ctmp[31] = 0x01;
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1);
|
|
memset(&pubkey, 0, sizeof(pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 1);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
|
|
pubkey_one = pubkey;
|
|
/* Group order + 1 is too large, reject. */
|
|
memcpy(ctmp, orderc, 32);
|
|
ctmp[31] = 0x42;
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
|
|
memset(&pubkey, 1, sizeof(pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
|
|
/* -1 must be accepted. */
|
|
ctmp[31] = 0x40;
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1);
|
|
memset(&pubkey, 0, sizeof(pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 1);
|
|
VG_CHECK(&pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
|
|
pubkey_negone = pubkey;
|
|
/* Tweak of zero leaves the value unchanged. */
|
|
memset(ctmp2, 0, 32);
|
|
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, ctmp2) == 1);
|
|
CHECK(secp256k1_memcmp_var(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40);
|
|
memcpy(&pubkey2, &pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
|
|
/* Multiply tweak of zero zeroizes the output. */
|
|
CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, ctmp2) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0);
|
|
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, ctmp2) == 0);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0);
|
|
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
|
|
/* If seckey_tweak_add or seckey_tweak_mul are called with an overflowing
|
|
seckey, the seckey is zeroized. */
|
|
memcpy(ctmp, orderc, 32);
|
|
memset(ctmp2, 0, 32);
|
|
ctmp2[31] = 0x01;
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp2) == 1);
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
|
|
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, ctmp2) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0);
|
|
memcpy(ctmp, orderc, 32);
|
|
CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, ctmp2) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0);
|
|
/* If seckey_tweak_add or seckey_tweak_mul are called with an overflowing
|
|
tweak, the seckey is zeroized. */
|
|
memcpy(ctmp, orderc, 32);
|
|
ctmp[31] = 0x40;
|
|
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, orderc) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0);
|
|
memcpy(ctmp, orderc, 32);
|
|
ctmp[31] = 0x40;
|
|
CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, orderc) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0);
|
|
memcpy(ctmp, orderc, 32);
|
|
ctmp[31] = 0x40;
|
|
/* If pubkey_tweak_add or pubkey_tweak_mul are called with an overflowing
|
|
tweak, the pubkey is zeroized. */
|
|
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, orderc) == 0);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0);
|
|
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, orderc) == 0);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0);
|
|
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
|
|
/* If the resulting key in secp256k1_ec_seckey_tweak_add and
|
|
* secp256k1_ec_pubkey_tweak_add is 0 the functions fail and in the latter
|
|
* case the pubkey is zeroized. */
|
|
memcpy(ctmp, orderc, 32);
|
|
ctmp[31] = 0x40;
|
|
memset(ctmp2, 0, 32);
|
|
ctmp2[31] = 1;
|
|
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp2, ctmp) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros, ctmp2, 32) == 0);
|
|
ctmp2[31] = 1;
|
|
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0);
|
|
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
|
|
/* Tweak computation wraps and results in a key of 1. */
|
|
ctmp2[31] = 2;
|
|
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp2, ctmp) == 1);
|
|
CHECK(secp256k1_memcmp_var(ctmp2, zeros, 31) == 0 && ctmp2[31] == 1);
|
|
ctmp2[31] = 2;
|
|
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
|
|
ctmp2[31] = 1;
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, ctmp2) == 1);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
|
|
/* Tweak mul * 2 = 1+1. */
|
|
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
|
|
ctmp2[31] = 2;
|
|
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey2, ctmp2) == 1);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
|
|
/* Test argument errors. */
|
|
ecount = 0;
|
|
secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount);
|
|
CHECK(ecount == 0);
|
|
/* Zeroize pubkey on parse error. */
|
|
memset(&pubkey, 0, 32);
|
|
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0);
|
|
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
|
|
memset(&pubkey2, 0, 32);
|
|
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey2, ctmp2) == 0);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_memcmp_var(&pubkey2, zeros, sizeof(pubkey2)) == 0);
|
|
/* Plain argument errors. */
|
|
ecount = 0;
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1);
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, NULL) == 0);
|
|
CHECK(ecount == 1);
|
|
ecount = 0;
|
|
memset(ctmp2, 0, 32);
|
|
ctmp2[31] = 4;
|
|
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, NULL, ctmp2) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
ecount = 0;
|
|
memset(ctmp2, 0, 32);
|
|
ctmp2[31] = 4;
|
|
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, NULL, ctmp2) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
ecount = 0;
|
|
memset(ctmp2, 0, 32);
|
|
CHECK(secp256k1_ec_seckey_tweak_add(ctx, NULL, ctmp2) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
ecount = 0;
|
|
memset(ctmp2, 0, 32);
|
|
ctmp2[31] = 1;
|
|
CHECK(secp256k1_ec_seckey_tweak_mul(ctx, NULL, ctmp2) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
ecount = 0;
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, NULL, ctmp) == 0);
|
|
CHECK(ecount == 1);
|
|
memset(&pubkey, 1, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
|
|
/* secp256k1_ec_pubkey_combine tests. */
|
|
ecount = 0;
|
|
pubkeys[0] = &pubkey_one;
|
|
VG_UNDEF(&pubkeys[0], sizeof(secp256k1_pubkey *));
|
|
VG_UNDEF(&pubkeys[1], sizeof(secp256k1_pubkey *));
|
|
VG_UNDEF(&pubkeys[2], sizeof(secp256k1_pubkey *));
|
|
memset(&pubkey, 255, sizeof(secp256k1_pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 0) == 0);
|
|
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_ec_pubkey_combine(ctx, NULL, pubkeys, 1) == 0);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
|
|
CHECK(ecount == 2);
|
|
memset(&pubkey, 255, sizeof(secp256k1_pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, NULL, 1) == 0);
|
|
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
|
|
CHECK(ecount == 3);
|
|
pubkeys[0] = &pubkey_negone;
|
|
memset(&pubkey, 255, sizeof(secp256k1_pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 1) == 1);
|
|
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
|
|
CHECK(ecount == 3);
|
|
len = 33;
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp2, &len, &pubkey_negone, SECP256K1_EC_COMPRESSED) == 1);
|
|
CHECK(secp256k1_memcmp_var(ctmp, ctmp2, 33) == 0);
|
|
/* Result is infinity. */
|
|
pubkeys[0] = &pubkey_one;
|
|
pubkeys[1] = &pubkey_negone;
|
|
memset(&pubkey, 255, sizeof(secp256k1_pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 2) == 0);
|
|
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
|
|
CHECK(ecount == 3);
|
|
/* Passes through infinity but comes out one. */
|
|
pubkeys[2] = &pubkey_one;
|
|
memset(&pubkey, 255, sizeof(secp256k1_pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 3) == 1);
|
|
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
|
|
CHECK(ecount == 3);
|
|
len = 33;
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp2, &len, &pubkey_one, SECP256K1_EC_COMPRESSED) == 1);
|
|
CHECK(secp256k1_memcmp_var(ctmp, ctmp2, 33) == 0);
|
|
/* Adds to two. */
|
|
pubkeys[1] = &pubkey_one;
|
|
memset(&pubkey, 255, sizeof(secp256k1_pubkey));
|
|
VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 2) == 1);
|
|
VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
|
|
CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
|
|
CHECK(ecount == 3);
|
|
secp256k1_context_set_illegal_callback(ctx, NULL, NULL);
|
|
}
|
|
|
|
void run_eckey_negate_test(void) {
|
|
unsigned char seckey[32];
|
|
unsigned char seckey_tmp[32];
|
|
|
|
random_scalar_order_b32(seckey);
|
|
memcpy(seckey_tmp, seckey, 32);
|
|
|
|
/* Verify negation changes the key and changes it back */
|
|
CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1);
|
|
CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) != 0);
|
|
CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1);
|
|
CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0);
|
|
|
|
/* Check that privkey alias gives same result */
|
|
CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1);
|
|
CHECK(secp256k1_ec_privkey_negate(ctx, seckey_tmp) == 1);
|
|
CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0);
|
|
|
|
/* Negating all 0s fails */
|
|
memset(seckey, 0, 32);
|
|
memset(seckey_tmp, 0, 32);
|
|
CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 0);
|
|
/* Check that seckey is not modified */
|
|
CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0);
|
|
|
|
/* Negating an overflowing seckey fails and the seckey is zeroed. In this
|
|
* test, the seckey has 16 random bytes to ensure that ec_seckey_negate
|
|
* doesn't just set seckey to a constant value in case of failure. */
|
|
random_scalar_order_b32(seckey);
|
|
memset(seckey, 0xFF, 16);
|
|
memset(seckey_tmp, 0, 32);
|
|
CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 0);
|
|
CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0);
|
|
}
|
|
|
|
void random_sign(secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *key, const secp256k1_scalar *msg, int *recid) {
|
|
secp256k1_scalar nonce;
|
|
do {
|
|
random_scalar_order_test(&nonce);
|
|
} while(!secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, sigr, sigs, key, msg, &nonce, recid));
|
|
}
|
|
|
|
void test_ecdsa_sign_verify(void) {
|
|
secp256k1_gej pubj;
|
|
secp256k1_ge pub;
|
|
secp256k1_scalar one;
|
|
secp256k1_scalar msg, key;
|
|
secp256k1_scalar sigr, sigs;
|
|
int recid;
|
|
int getrec;
|
|
random_scalar_order_test(&msg);
|
|
random_scalar_order_test(&key);
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubj, &key);
|
|
secp256k1_ge_set_gej(&pub, &pubj);
|
|
getrec = secp256k1_testrand_bits(1);
|
|
random_sign(&sigr, &sigs, &key, &msg, getrec?&recid:NULL);
|
|
if (getrec) {
|
|
CHECK(recid >= 0 && recid < 4);
|
|
}
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &pub, &msg));
|
|
secp256k1_scalar_set_int(&one, 1);
|
|
secp256k1_scalar_add(&msg, &msg, &one);
|
|
CHECK(!secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &pub, &msg));
|
|
}
|
|
|
|
void run_ecdsa_sign_verify(void) {
|
|
int i;
|
|
for (i = 0; i < 10*count; i++) {
|
|
test_ecdsa_sign_verify();
|
|
}
|
|
}
|
|
|
|
/** Dummy nonce generation function that just uses a precomputed nonce, and fails if it is not accepted. Use only for testing. */
|
|
static int precomputed_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
|
|
(void)msg32;
|
|
(void)key32;
|
|
(void)algo16;
|
|
memcpy(nonce32, data, 32);
|
|
return (counter == 0);
|
|
}
|
|
|
|
static int nonce_function_test_fail(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
|
|
/* Dummy nonce generator that has a fatal error on the first counter value. */
|
|
if (counter == 0) {
|
|
return 0;
|
|
}
|
|
return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 1);
|
|
}
|
|
|
|
static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
|
|
/* Dummy nonce generator that produces unacceptable nonces for the first several counter values. */
|
|
if (counter < 3) {
|
|
memset(nonce32, counter==0 ? 0 : 255, 32);
|
|
if (counter == 2) {
|
|
nonce32[31]--;
|
|
}
|
|
return 1;
|
|
}
|
|
if (counter < 5) {
|
|
static const unsigned char order[] = {
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
|
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
|
|
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
|
|
};
|
|
memcpy(nonce32, order, 32);
|
|
if (counter == 4) {
|
|
nonce32[31]++;
|
|
}
|
|
return 1;
|
|
}
|
|
/* Retry rate of 6979 is negligible esp. as we only call this in deterministic tests. */
|
|
/* If someone does fine a case where it retries for secp256k1, we'd like to know. */
|
|
if (counter > 5) {
|
|
return 0;
|
|
}
|
|
return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 5);
|
|
}
|
|
|
|
int is_empty_signature(const secp256k1_ecdsa_signature *sig) {
|
|
static const unsigned char res[sizeof(secp256k1_ecdsa_signature)] = {0};
|
|
return secp256k1_memcmp_var(sig, res, sizeof(secp256k1_ecdsa_signature)) == 0;
|
|
}
|
|
|
|
void test_ecdsa_end_to_end(void) {
|
|
unsigned char extra[32] = {0x00};
|
|
unsigned char privkey[32];
|
|
unsigned char message[32];
|
|
unsigned char privkey2[32];
|
|
secp256k1_ecdsa_signature signature[6];
|
|
secp256k1_scalar r, s;
|
|
unsigned char sig[74];
|
|
size_t siglen = 74;
|
|
unsigned char pubkeyc[65];
|
|
size_t pubkeyclen = 65;
|
|
secp256k1_pubkey pubkey;
|
|
secp256k1_pubkey pubkey_tmp;
|
|
unsigned char seckey[300];
|
|
size_t seckeylen = 300;
|
|
|
|
/* Generate a random key and message. */
|
|
{
|
|
secp256k1_scalar msg, key;
|
|
random_scalar_order_test(&msg);
|
|
random_scalar_order_test(&key);
|
|
secp256k1_scalar_get_b32(privkey, &key);
|
|
secp256k1_scalar_get_b32(message, &msg);
|
|
}
|
|
|
|
/* Construct and verify corresponding public key. */
|
|
CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1);
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
|
|
|
|
/* Verify exporting and importing public key. */
|
|
CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_testrand_bits(1) == 1 ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED));
|
|
memset(&pubkey, 0, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1);
|
|
|
|
/* Verify negation changes the key and changes it back */
|
|
memcpy(&pubkey_tmp, &pubkey, sizeof(pubkey));
|
|
CHECK(secp256k1_ec_pubkey_negate(ctx, &pubkey_tmp) == 1);
|
|
CHECK(secp256k1_memcmp_var(&pubkey_tmp, &pubkey, sizeof(pubkey)) != 0);
|
|
CHECK(secp256k1_ec_pubkey_negate(ctx, &pubkey_tmp) == 1);
|
|
CHECK(secp256k1_memcmp_var(&pubkey_tmp, &pubkey, sizeof(pubkey)) == 0);
|
|
|
|
/* Verify private key import and export. */
|
|
CHECK(ec_privkey_export_der(ctx, seckey, &seckeylen, privkey, secp256k1_testrand_bits(1) == 1));
|
|
CHECK(ec_privkey_import_der(ctx, privkey2, seckey, seckeylen) == 1);
|
|
CHECK(secp256k1_memcmp_var(privkey, privkey2, 32) == 0);
|
|
|
|
/* Optionally tweak the keys using addition. */
|
|
if (secp256k1_testrand_int(3) == 0) {
|
|
int ret1;
|
|
int ret2;
|
|
int ret3;
|
|
unsigned char rnd[32];
|
|
unsigned char privkey_tmp[32];
|
|
secp256k1_pubkey pubkey2;
|
|
secp256k1_testrand256_test(rnd);
|
|
memcpy(privkey_tmp, privkey, 32);
|
|
ret1 = secp256k1_ec_seckey_tweak_add(ctx, privkey, rnd);
|
|
ret2 = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, rnd);
|
|
/* Check that privkey alias gives same result */
|
|
ret3 = secp256k1_ec_privkey_tweak_add(ctx, privkey_tmp, rnd);
|
|
CHECK(ret1 == ret2);
|
|
CHECK(ret2 == ret3);
|
|
if (ret1 == 0) {
|
|
return;
|
|
}
|
|
CHECK(secp256k1_memcmp_var(privkey, privkey_tmp, 32) == 0);
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
|
|
}
|
|
|
|
/* Optionally tweak the keys using multiplication. */
|
|
if (secp256k1_testrand_int(3) == 0) {
|
|
int ret1;
|
|
int ret2;
|
|
int ret3;
|
|
unsigned char rnd[32];
|
|
unsigned char privkey_tmp[32];
|
|
secp256k1_pubkey pubkey2;
|
|
secp256k1_testrand256_test(rnd);
|
|
memcpy(privkey_tmp, privkey, 32);
|
|
ret1 = secp256k1_ec_seckey_tweak_mul(ctx, privkey, rnd);
|
|
ret2 = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, rnd);
|
|
/* Check that privkey alias gives same result */
|
|
ret3 = secp256k1_ec_privkey_tweak_mul(ctx, privkey_tmp, rnd);
|
|
CHECK(ret1 == ret2);
|
|
CHECK(ret2 == ret3);
|
|
if (ret1 == 0) {
|
|
return;
|
|
}
|
|
CHECK(secp256k1_memcmp_var(privkey, privkey_tmp, 32) == 0);
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1);
|
|
CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
|
|
}
|
|
|
|
/* Sign. */
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &signature[0], message, privkey, NULL, NULL) == 1);
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &signature[4], message, privkey, NULL, NULL) == 1);
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &signature[1], message, privkey, NULL, extra) == 1);
|
|
extra[31] = 1;
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &signature[2], message, privkey, NULL, extra) == 1);
|
|
extra[31] = 0;
|
|
extra[0] = 1;
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &signature[3], message, privkey, NULL, extra) == 1);
|
|
CHECK(secp256k1_memcmp_var(&signature[0], &signature[4], sizeof(signature[0])) == 0);
|
|
CHECK(secp256k1_memcmp_var(&signature[0], &signature[1], sizeof(signature[0])) != 0);
|
|
CHECK(secp256k1_memcmp_var(&signature[0], &signature[2], sizeof(signature[0])) != 0);
|
|
CHECK(secp256k1_memcmp_var(&signature[0], &signature[3], sizeof(signature[0])) != 0);
|
|
CHECK(secp256k1_memcmp_var(&signature[1], &signature[2], sizeof(signature[0])) != 0);
|
|
CHECK(secp256k1_memcmp_var(&signature[1], &signature[3], sizeof(signature[0])) != 0);
|
|
CHECK(secp256k1_memcmp_var(&signature[2], &signature[3], sizeof(signature[0])) != 0);
|
|
/* Verify. */
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1);
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &signature[1], message, &pubkey) == 1);
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &signature[2], message, &pubkey) == 1);
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &signature[3], message, &pubkey) == 1);
|
|
/* Test lower-S form, malleate, verify and fail, test again, malleate again */
|
|
CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[0]));
|
|
secp256k1_ecdsa_signature_load(ctx, &r, &s, &signature[0]);
|
|
secp256k1_scalar_negate(&s, &s);
|
|
secp256k1_ecdsa_signature_save(&signature[5], &r, &s);
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 0);
|
|
CHECK(secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5]));
|
|
CHECK(secp256k1_ecdsa_signature_normalize(ctx, &signature[5], &signature[5]));
|
|
CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5]));
|
|
CHECK(!secp256k1_ecdsa_signature_normalize(ctx, &signature[5], &signature[5]));
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 1);
|
|
secp256k1_scalar_negate(&s, &s);
|
|
secp256k1_ecdsa_signature_save(&signature[5], &r, &s);
|
|
CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5]));
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 1);
|
|
CHECK(secp256k1_memcmp_var(&signature[5], &signature[0], 64) == 0);
|
|
|
|
/* Serialize/parse DER and verify again */
|
|
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
|
|
memset(&signature[0], 0, sizeof(signature[0]));
|
|
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 1);
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1);
|
|
/* Serialize/destroy/parse DER and verify again. */
|
|
siglen = 74;
|
|
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
|
|
sig[secp256k1_testrand_int(siglen)] += 1 + secp256k1_testrand_int(255);
|
|
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 0 ||
|
|
secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 0);
|
|
}
|
|
|
|
void test_random_pubkeys(void) {
|
|
secp256k1_ge elem;
|
|
secp256k1_ge elem2;
|
|
unsigned char in[65];
|
|
/* Generate some randomly sized pubkeys. */
|
|
size_t len = secp256k1_testrand_bits(2) == 0 ? 65 : 33;
|
|
if (secp256k1_testrand_bits(2) == 0) {
|
|
len = secp256k1_testrand_bits(6);
|
|
}
|
|
if (len == 65) {
|
|
in[0] = secp256k1_testrand_bits(1) ? 4 : (secp256k1_testrand_bits(1) ? 6 : 7);
|
|
} else {
|
|
in[0] = secp256k1_testrand_bits(1) ? 2 : 3;
|
|
}
|
|
if (secp256k1_testrand_bits(3) == 0) {
|
|
in[0] = secp256k1_testrand_bits(8);
|
|
}
|
|
if (len > 1) {
|
|
secp256k1_testrand256(&in[1]);
|
|
}
|
|
if (len > 33) {
|
|
secp256k1_testrand256(&in[33]);
|
|
}
|
|
if (secp256k1_eckey_pubkey_parse(&elem, in, len)) {
|
|
unsigned char out[65];
|
|
unsigned char firstb;
|
|
int res;
|
|
size_t size = len;
|
|
firstb = in[0];
|
|
/* If the pubkey can be parsed, it should round-trip... */
|
|
CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, len == 33));
|
|
CHECK(size == len);
|
|
CHECK(secp256k1_memcmp_var(&in[1], &out[1], len-1) == 0);
|
|
/* ... except for the type of hybrid inputs. */
|
|
if ((in[0] != 6) && (in[0] != 7)) {
|
|
CHECK(in[0] == out[0]);
|
|
}
|
|
size = 65;
|
|
CHECK(secp256k1_eckey_pubkey_serialize(&elem, in, &size, 0));
|
|
CHECK(size == 65);
|
|
CHECK(secp256k1_eckey_pubkey_parse(&elem2, in, size));
|
|
ge_equals_ge(&elem,&elem2);
|
|
/* Check that the X9.62 hybrid type is checked. */
|
|
in[0] = secp256k1_testrand_bits(1) ? 6 : 7;
|
|
res = secp256k1_eckey_pubkey_parse(&elem2, in, size);
|
|
if (firstb == 2 || firstb == 3) {
|
|
if (in[0] == firstb + 4) {
|
|
CHECK(res);
|
|
} else {
|
|
CHECK(!res);
|
|
}
|
|
}
|
|
if (res) {
|
|
ge_equals_ge(&elem,&elem2);
|
|
CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, 0));
|
|
CHECK(secp256k1_memcmp_var(&in[1], &out[1], 64) == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void run_random_pubkeys(void) {
|
|
int i;
|
|
for (i = 0; i < 10*count; i++) {
|
|
test_random_pubkeys();
|
|
}
|
|
}
|
|
|
|
void run_ecdsa_end_to_end(void) {
|
|
int i;
|
|
for (i = 0; i < 64*count; i++) {
|
|
test_ecdsa_end_to_end();
|
|
}
|
|
}
|
|
|
|
int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_der, int certainly_not_der) {
|
|
static const unsigned char zeroes[32] = {0};
|
|
#ifdef ENABLE_OPENSSL_TESTS
|
|
static const unsigned char max_scalar[32] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
|
|
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
|
|
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40
|
|
};
|
|
#endif
|
|
|
|
int ret = 0;
|
|
|
|
secp256k1_ecdsa_signature sig_der;
|
|
unsigned char roundtrip_der[2048];
|
|
unsigned char compact_der[64];
|
|
size_t len_der = 2048;
|
|
int parsed_der = 0, valid_der = 0, roundtrips_der = 0;
|
|
|
|
secp256k1_ecdsa_signature sig_der_lax;
|
|
unsigned char roundtrip_der_lax[2048];
|
|
unsigned char compact_der_lax[64];
|
|
size_t len_der_lax = 2048;
|
|
int parsed_der_lax = 0, valid_der_lax = 0, roundtrips_der_lax = 0;
|
|
|
|
#ifdef ENABLE_OPENSSL_TESTS
|
|
ECDSA_SIG *sig_openssl;
|
|
const BIGNUM *r = NULL, *s = NULL;
|
|
const unsigned char *sigptr;
|
|
unsigned char roundtrip_openssl[2048];
|
|
int len_openssl = 2048;
|
|
int parsed_openssl, valid_openssl = 0, roundtrips_openssl = 0;
|
|
#endif
|
|
|
|
parsed_der = secp256k1_ecdsa_signature_parse_der(ctx, &sig_der, sig, siglen);
|
|
if (parsed_der) {
|
|
ret |= (!secp256k1_ecdsa_signature_serialize_compact(ctx, compact_der, &sig_der)) << 0;
|
|
valid_der = (secp256k1_memcmp_var(compact_der, zeroes, 32) != 0) && (secp256k1_memcmp_var(compact_der + 32, zeroes, 32) != 0);
|
|
}
|
|
if (valid_der) {
|
|
ret |= (!secp256k1_ecdsa_signature_serialize_der(ctx, roundtrip_der, &len_der, &sig_der)) << 1;
|
|
roundtrips_der = (len_der == siglen) && secp256k1_memcmp_var(roundtrip_der, sig, siglen) == 0;
|
|
}
|
|
|
|
parsed_der_lax = ecdsa_signature_parse_der_lax(ctx, &sig_der_lax, sig, siglen);
|
|
if (parsed_der_lax) {
|
|
ret |= (!secp256k1_ecdsa_signature_serialize_compact(ctx, compact_der_lax, &sig_der_lax)) << 10;
|
|
valid_der_lax = (secp256k1_memcmp_var(compact_der_lax, zeroes, 32) != 0) && (secp256k1_memcmp_var(compact_der_lax + 32, zeroes, 32) != 0);
|
|
}
|
|
if (valid_der_lax) {
|
|
ret |= (!secp256k1_ecdsa_signature_serialize_der(ctx, roundtrip_der_lax, &len_der_lax, &sig_der_lax)) << 11;
|
|
roundtrips_der_lax = (len_der_lax == siglen) && secp256k1_memcmp_var(roundtrip_der_lax, sig, siglen) == 0;
|
|
}
|
|
|
|
if (certainly_der) {
|
|
ret |= (!parsed_der) << 2;
|
|
}
|
|
if (certainly_not_der) {
|
|
ret |= (parsed_der) << 17;
|
|
}
|
|
if (valid_der) {
|
|
ret |= (!roundtrips_der) << 3;
|
|
}
|
|
|
|
if (valid_der) {
|
|
ret |= (!roundtrips_der_lax) << 12;
|
|
ret |= (len_der != len_der_lax) << 13;
|
|
ret |= ((len_der != len_der_lax) || (secp256k1_memcmp_var(roundtrip_der_lax, roundtrip_der, len_der) != 0)) << 14;
|
|
}
|
|
ret |= (roundtrips_der != roundtrips_der_lax) << 15;
|
|
if (parsed_der) {
|
|
ret |= (!parsed_der_lax) << 16;
|
|
}
|
|
|
|
#ifdef ENABLE_OPENSSL_TESTS
|
|
sig_openssl = ECDSA_SIG_new();
|
|
sigptr = sig;
|
|
parsed_openssl = (d2i_ECDSA_SIG(&sig_openssl, &sigptr, siglen) != NULL);
|
|
if (parsed_openssl) {
|
|
ECDSA_SIG_get0(sig_openssl, &r, &s);
|
|
valid_openssl = !BN_is_negative(r) && !BN_is_negative(s) && BN_num_bits(r) > 0 && BN_num_bits(r) <= 256 && BN_num_bits(s) > 0 && BN_num_bits(s) <= 256;
|
|
if (valid_openssl) {
|
|
unsigned char tmp[32] = {0};
|
|
BN_bn2bin(r, tmp + 32 - BN_num_bytes(r));
|
|
valid_openssl = secp256k1_memcmp_var(tmp, max_scalar, 32) < 0;
|
|
}
|
|
if (valid_openssl) {
|
|
unsigned char tmp[32] = {0};
|
|
BN_bn2bin(s, tmp + 32 - BN_num_bytes(s));
|
|
valid_openssl = secp256k1_memcmp_var(tmp, max_scalar, 32) < 0;
|
|
}
|
|
}
|
|
len_openssl = i2d_ECDSA_SIG(sig_openssl, NULL);
|
|
if (len_openssl <= 2048) {
|
|
unsigned char *ptr = roundtrip_openssl;
|
|
CHECK(i2d_ECDSA_SIG(sig_openssl, &ptr) == len_openssl);
|
|
roundtrips_openssl = valid_openssl && ((size_t)len_openssl == siglen) && (secp256k1_memcmp_var(roundtrip_openssl, sig, siglen) == 0);
|
|
} else {
|
|
len_openssl = 0;
|
|
}
|
|
ECDSA_SIG_free(sig_openssl);
|
|
|
|
ret |= (parsed_der && !parsed_openssl) << 4;
|
|
ret |= (valid_der && !valid_openssl) << 5;
|
|
ret |= (roundtrips_openssl && !parsed_der) << 6;
|
|
ret |= (roundtrips_der != roundtrips_openssl) << 7;
|
|
if (roundtrips_openssl) {
|
|
ret |= (len_der != (size_t)len_openssl) << 8;
|
|
ret |= ((len_der != (size_t)len_openssl) || (secp256k1_memcmp_var(roundtrip_der, roundtrip_openssl, len_der) != 0)) << 9;
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static void assign_big_endian(unsigned char *ptr, size_t ptrlen, uint32_t val) {
|
|
size_t i;
|
|
for (i = 0; i < ptrlen; i++) {
|
|
int shift = ptrlen - 1 - i;
|
|
if (shift >= 4) {
|
|
ptr[i] = 0;
|
|
} else {
|
|
ptr[i] = (val >> shift) & 0xFF;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void damage_array(unsigned char *sig, size_t *len) {
|
|
int pos;
|
|
int action = secp256k1_testrand_bits(3);
|
|
if (action < 1 && *len > 3) {
|
|
/* Delete a byte. */
|
|
pos = secp256k1_testrand_int(*len);
|
|
memmove(sig + pos, sig + pos + 1, *len - pos - 1);
|
|
(*len)--;
|
|
return;
|
|
} else if (action < 2 && *len < 2048) {
|
|
/* Insert a byte. */
|
|
pos = secp256k1_testrand_int(1 + *len);
|
|
memmove(sig + pos + 1, sig + pos, *len - pos);
|
|
sig[pos] = secp256k1_testrand_bits(8);
|
|
(*len)++;
|
|
return;
|
|
} else if (action < 4) {
|
|
/* Modify a byte. */
|
|
sig[secp256k1_testrand_int(*len)] += 1 + secp256k1_testrand_int(255);
|
|
return;
|
|
} else { /* action < 8 */
|
|
/* Modify a bit. */
|
|
sig[secp256k1_testrand_int(*len)] ^= 1 << secp256k1_testrand_bits(3);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly_der, int* certainly_not_der) {
|
|
int der;
|
|
int nlow[2], nlen[2], nlenlen[2], nhbit[2], nhbyte[2], nzlen[2];
|
|
size_t tlen, elen, glen;
|
|
int indet;
|
|
int n;
|
|
|
|
*len = 0;
|
|
der = secp256k1_testrand_bits(2) == 0;
|
|
*certainly_der = der;
|
|
*certainly_not_der = 0;
|
|
indet = der ? 0 : secp256k1_testrand_int(10) == 0;
|
|
|
|
for (n = 0; n < 2; n++) {
|
|
/* We generate two classes of numbers: nlow==1 "low" ones (up to 32 bytes), nlow==0 "high" ones (32 bytes with 129 top bits set, or larger than 32 bytes) */
|
|
nlow[n] = der ? 1 : (secp256k1_testrand_bits(3) != 0);
|
|
/* The length of the number in bytes (the first byte of which will always be nonzero) */
|
|
nlen[n] = nlow[n] ? secp256k1_testrand_int(33) : 32 + secp256k1_testrand_int(200) * secp256k1_testrand_int(8) / 8;
|
|
CHECK(nlen[n] <= 232);
|
|
/* The top bit of the number. */
|
|
nhbit[n] = (nlow[n] == 0 && nlen[n] == 32) ? 1 : (nlen[n] == 0 ? 0 : secp256k1_testrand_bits(1));
|
|
/* The top byte of the number (after the potential hardcoded 16 0xFF characters for "high" 32 bytes numbers) */
|
|
nhbyte[n] = nlen[n] == 0 ? 0 : (nhbit[n] ? 128 + secp256k1_testrand_bits(7) : 1 + secp256k1_testrand_int(127));
|
|
/* The number of zero bytes in front of the number (which is 0 or 1 in case of DER, otherwise we extend up to 300 bytes) */
|
|
nzlen[n] = der ? ((nlen[n] == 0 || nhbit[n]) ? 1 : 0) : (nlow[n] ? secp256k1_testrand_int(3) : secp256k1_testrand_int(300 - nlen[n]) * secp256k1_testrand_int(8) / 8);
|
|
if (nzlen[n] > ((nlen[n] == 0 || nhbit[n]) ? 1 : 0)) {
|
|
*certainly_not_der = 1;
|
|
}
|
|
CHECK(nlen[n] + nzlen[n] <= 300);
|
|
/* The length of the length descriptor for the number. 0 means short encoding, anything else is long encoding. */
|
|
nlenlen[n] = nlen[n] + nzlen[n] < 128 ? 0 : (nlen[n] + nzlen[n] < 256 ? 1 : 2);
|
|
if (!der) {
|
|
/* nlenlen[n] max 127 bytes */
|
|
int add = secp256k1_testrand_int(127 - nlenlen[n]) * secp256k1_testrand_int(16) * secp256k1_testrand_int(16) / 256;
|
|
nlenlen[n] += add;
|
|
if (add != 0) {
|
|
*certainly_not_der = 1;
|
|
}
|
|
}
|
|
CHECK(nlen[n] + nzlen[n] + nlenlen[n] <= 427);
|
|
}
|
|
|
|
/* The total length of the data to go, so far */
|
|
tlen = 2 + nlenlen[0] + nlen[0] + nzlen[0] + 2 + nlenlen[1] + nlen[1] + nzlen[1];
|
|
CHECK(tlen <= 856);
|
|
|
|
/* The length of the garbage inside the tuple. */
|
|
elen = (der || indet) ? 0 : secp256k1_testrand_int(980 - tlen) * secp256k1_testrand_int(8) / 8;
|
|
if (elen != 0) {
|
|
*certainly_not_der = 1;
|
|
}
|
|
tlen += elen;
|
|
CHECK(tlen <= 980);
|
|
|
|
/* The length of the garbage after the end of the tuple. */
|
|
glen = der ? 0 : secp256k1_testrand_int(990 - tlen) * secp256k1_testrand_int(8) / 8;
|
|
if (glen != 0) {
|
|
*certainly_not_der = 1;
|
|
}
|
|
CHECK(tlen + glen <= 990);
|
|
|
|
/* Write the tuple header. */
|
|
sig[(*len)++] = 0x30;
|
|
if (indet) {
|
|
/* Indeterminate length */
|
|
sig[(*len)++] = 0x80;
|
|
*certainly_not_der = 1;
|
|
} else {
|
|
int tlenlen = tlen < 128 ? 0 : (tlen < 256 ? 1 : 2);
|
|
if (!der) {
|
|
int add = secp256k1_testrand_int(127 - tlenlen) * secp256k1_testrand_int(16) * secp256k1_testrand_int(16) / 256;
|
|
tlenlen += add;
|
|
if (add != 0) {
|
|
*certainly_not_der = 1;
|
|
}
|
|
}
|
|
if (tlenlen == 0) {
|
|
/* Short length notation */
|
|
sig[(*len)++] = tlen;
|
|
} else {
|
|
/* Long length notation */
|
|
sig[(*len)++] = 128 + tlenlen;
|
|
assign_big_endian(sig + *len, tlenlen, tlen);
|
|
*len += tlenlen;
|
|
}
|
|
tlen += tlenlen;
|
|
}
|
|
tlen += 2;
|
|
CHECK(tlen + glen <= 1119);
|
|
|
|
for (n = 0; n < 2; n++) {
|
|
/* Write the integer header. */
|
|
sig[(*len)++] = 0x02;
|
|
if (nlenlen[n] == 0) {
|
|
/* Short length notation */
|
|
sig[(*len)++] = nlen[n] + nzlen[n];
|
|
} else {
|
|
/* Long length notation. */
|
|
sig[(*len)++] = 128 + nlenlen[n];
|
|
assign_big_endian(sig + *len, nlenlen[n], nlen[n] + nzlen[n]);
|
|
*len += nlenlen[n];
|
|
}
|
|
/* Write zero padding */
|
|
while (nzlen[n] > 0) {
|
|
sig[(*len)++] = 0x00;
|
|
nzlen[n]--;
|
|
}
|
|
if (nlen[n] == 32 && !nlow[n]) {
|
|
/* Special extra 16 0xFF bytes in "high" 32-byte numbers */
|
|
int i;
|
|
for (i = 0; i < 16; i++) {
|
|
sig[(*len)++] = 0xFF;
|
|
}
|
|
nlen[n] -= 16;
|
|
}
|
|
/* Write first byte of number */
|
|
if (nlen[n] > 0) {
|
|
sig[(*len)++] = nhbyte[n];
|
|
nlen[n]--;
|
|
}
|
|
/* Generate remaining random bytes of number */
|
|
secp256k1_testrand_bytes_test(sig + *len, nlen[n]);
|
|
*len += nlen[n];
|
|
nlen[n] = 0;
|
|
}
|
|
|
|
/* Generate random garbage inside tuple. */
|
|
secp256k1_testrand_bytes_test(sig + *len, elen);
|
|
*len += elen;
|
|
|
|
/* Generate end-of-contents bytes. */
|
|
if (indet) {
|
|
sig[(*len)++] = 0;
|
|
sig[(*len)++] = 0;
|
|
tlen += 2;
|
|
}
|
|
CHECK(tlen + glen <= 1121);
|
|
|
|
/* Generate random garbage outside tuple. */
|
|
secp256k1_testrand_bytes_test(sig + *len, glen);
|
|
*len += glen;
|
|
tlen += glen;
|
|
CHECK(tlen <= 1121);
|
|
CHECK(tlen == *len);
|
|
}
|
|
|
|
void run_ecdsa_der_parse(void) {
|
|
int i,j;
|
|
for (i = 0; i < 200 * count; i++) {
|
|
unsigned char buffer[2048];
|
|
size_t buflen = 0;
|
|
int certainly_der = 0;
|
|
int certainly_not_der = 0;
|
|
random_ber_signature(buffer, &buflen, &certainly_der, &certainly_not_der);
|
|
CHECK(buflen <= 2048);
|
|
for (j = 0; j < 16; j++) {
|
|
int ret = 0;
|
|
if (j > 0) {
|
|
damage_array(buffer, &buflen);
|
|
/* We don't know anything anymore about the DERness of the result */
|
|
certainly_der = 0;
|
|
certainly_not_der = 0;
|
|
}
|
|
ret = test_ecdsa_der_parse(buffer, buflen, certainly_der, certainly_not_der);
|
|
if (ret != 0) {
|
|
size_t k;
|
|
fprintf(stderr, "Failure %x on ", ret);
|
|
for (k = 0; k < buflen; k++) {
|
|
fprintf(stderr, "%02x ", buffer[k]);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
CHECK(ret == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Tests several edge cases. */
|
|
void test_ecdsa_edge_cases(void) {
|
|
int t;
|
|
secp256k1_ecdsa_signature sig;
|
|
|
|
/* Test the case where ECDSA recomputes a point that is infinity. */
|
|
{
|
|
secp256k1_gej keyj;
|
|
secp256k1_ge key;
|
|
secp256k1_scalar msg;
|
|
secp256k1_scalar sr, ss;
|
|
secp256k1_scalar_set_int(&ss, 1);
|
|
secp256k1_scalar_negate(&ss, &ss);
|
|
secp256k1_scalar_inverse(&ss, &ss);
|
|
secp256k1_scalar_set_int(&sr, 1);
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &keyj, &sr);
|
|
secp256k1_ge_set_gej(&key, &keyj);
|
|
msg = ss;
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
|
|
}
|
|
|
|
/* Verify signature with r of zero fails. */
|
|
{
|
|
const unsigned char pubkey_mods_zero[33] = {
|
|
0x02, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xfe, 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0,
|
|
0x3b, 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41,
|
|
0x41
|
|
};
|
|
secp256k1_ge key;
|
|
secp256k1_scalar msg;
|
|
secp256k1_scalar sr, ss;
|
|
secp256k1_scalar_set_int(&ss, 1);
|
|
secp256k1_scalar_set_int(&msg, 0);
|
|
secp256k1_scalar_set_int(&sr, 0);
|
|
CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey_mods_zero, 33));
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
|
|
}
|
|
|
|
/* Verify signature with s of zero fails. */
|
|
{
|
|
const unsigned char pubkey[33] = {
|
|
0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x01
|
|
};
|
|
secp256k1_ge key;
|
|
secp256k1_scalar msg;
|
|
secp256k1_scalar sr, ss;
|
|
secp256k1_scalar_set_int(&ss, 0);
|
|
secp256k1_scalar_set_int(&msg, 0);
|
|
secp256k1_scalar_set_int(&sr, 1);
|
|
CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33));
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
|
|
}
|
|
|
|
/* Verify signature with message 0 passes. */
|
|
{
|
|
const unsigned char pubkey[33] = {
|
|
0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x02
|
|
};
|
|
const unsigned char pubkey2[33] = {
|
|
0x02, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xfe, 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0,
|
|
0x3b, 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41,
|
|
0x43
|
|
};
|
|
secp256k1_ge key;
|
|
secp256k1_ge key2;
|
|
secp256k1_scalar msg;
|
|
secp256k1_scalar sr, ss;
|
|
secp256k1_scalar_set_int(&ss, 2);
|
|
secp256k1_scalar_set_int(&msg, 0);
|
|
secp256k1_scalar_set_int(&sr, 2);
|
|
CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33));
|
|
CHECK(secp256k1_eckey_pubkey_parse(&key2, pubkey2, 33));
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1);
|
|
secp256k1_scalar_negate(&ss, &ss);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1);
|
|
secp256k1_scalar_set_int(&ss, 1);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 0);
|
|
}
|
|
|
|
/* Verify signature with message 1 passes. */
|
|
{
|
|
const unsigned char pubkey[33] = {
|
|
0x02, 0x14, 0x4e, 0x5a, 0x58, 0xef, 0x5b, 0x22,
|
|
0x6f, 0xd2, 0xe2, 0x07, 0x6a, 0x77, 0xcf, 0x05,
|
|
0xb4, 0x1d, 0xe7, 0x4a, 0x30, 0x98, 0x27, 0x8c,
|
|
0x93, 0xe6, 0xe6, 0x3c, 0x0b, 0xc4, 0x73, 0x76,
|
|
0x25
|
|
};
|
|
const unsigned char pubkey2[33] = {
|
|
0x02, 0x8a, 0xd5, 0x37, 0xed, 0x73, 0xd9, 0x40,
|
|
0x1d, 0xa0, 0x33, 0xd2, 0xdc, 0xf0, 0xaf, 0xae,
|
|
0x34, 0xcf, 0x5f, 0x96, 0x4c, 0x73, 0x28, 0x0f,
|
|
0x92, 0xc0, 0xf6, 0x9d, 0xd9, 0xb2, 0x09, 0x10,
|
|
0x62
|
|
};
|
|
const unsigned char csr[32] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4,
|
|
0x40, 0x2d, 0xa1, 0x72, 0x2f, 0xc9, 0xba, 0xeb
|
|
};
|
|
secp256k1_ge key;
|
|
secp256k1_ge key2;
|
|
secp256k1_scalar msg;
|
|
secp256k1_scalar sr, ss;
|
|
secp256k1_scalar_set_int(&ss, 1);
|
|
secp256k1_scalar_set_int(&msg, 1);
|
|
secp256k1_scalar_set_b32(&sr, csr, NULL);
|
|
CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33));
|
|
CHECK(secp256k1_eckey_pubkey_parse(&key2, pubkey2, 33));
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1);
|
|
secp256k1_scalar_negate(&ss, &ss);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1);
|
|
secp256k1_scalar_set_int(&ss, 2);
|
|
secp256k1_scalar_inverse_var(&ss, &ss);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 0);
|
|
}
|
|
|
|
/* Verify signature with message -1 passes. */
|
|
{
|
|
const unsigned char pubkey[33] = {
|
|
0x03, 0xaf, 0x97, 0xff, 0x7d, 0x3a, 0xf6, 0xa0,
|
|
0x02, 0x94, 0xbd, 0x9f, 0x4b, 0x2e, 0xd7, 0x52,
|
|
0x28, 0xdb, 0x49, 0x2a, 0x65, 0xcb, 0x1e, 0x27,
|
|
0x57, 0x9c, 0xba, 0x74, 0x20, 0xd5, 0x1d, 0x20,
|
|
0xf1
|
|
};
|
|
const unsigned char csr[32] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4,
|
|
0x40, 0x2d, 0xa1, 0x72, 0x2f, 0xc9, 0xba, 0xee
|
|
};
|
|
secp256k1_ge key;
|
|
secp256k1_scalar msg;
|
|
secp256k1_scalar sr, ss;
|
|
secp256k1_scalar_set_int(&ss, 1);
|
|
secp256k1_scalar_set_int(&msg, 1);
|
|
secp256k1_scalar_negate(&msg, &msg);
|
|
secp256k1_scalar_set_b32(&sr, csr, NULL);
|
|
CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33));
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
|
|
secp256k1_scalar_negate(&ss, &ss);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
|
|
secp256k1_scalar_set_int(&ss, 3);
|
|
secp256k1_scalar_inverse_var(&ss, &ss);
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
|
|
}
|
|
|
|
/* Signature where s would be zero. */
|
|
{
|
|
secp256k1_pubkey pubkey;
|
|
size_t siglen;
|
|
int32_t ecount;
|
|
unsigned char signature[72];
|
|
static const unsigned char nonce[32] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
};
|
|
static const unsigned char nonce2[32] = {
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
|
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
|
|
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
|
|
};
|
|
const unsigned char key[32] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
|
};
|
|
unsigned char msg[32] = {
|
|
0x86, 0x41, 0x99, 0x81, 0x06, 0x23, 0x44, 0x53,
|
|
0xaa, 0x5f, 0x9d, 0x6a, 0x31, 0x78, 0xf4, 0xf7,
|
|
0xb8, 0x12, 0xe0, 0x0b, 0x81, 0x7a, 0x77, 0x62,
|
|
0x65, 0xdf, 0xdd, 0x31, 0xb9, 0x3e, 0x29, 0xa9,
|
|
};
|
|
ecount = 0;
|
|
secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount);
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 0);
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 0);
|
|
msg[31] = 0xaa;
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 1);
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_ecdsa_sign(ctx, NULL, msg, key, precomputed_nonce_function, nonce2) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig, NULL, key, precomputed_nonce_function, nonce2) == 0);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, NULL, precomputed_nonce_function, nonce2) == 0);
|
|
CHECK(ecount == 3);
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 1);
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, key) == 1);
|
|
CHECK(secp256k1_ecdsa_verify(ctx, NULL, msg, &pubkey) == 0);
|
|
CHECK(ecount == 4);
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &sig, NULL, &pubkey) == 0);
|
|
CHECK(ecount == 5);
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg, NULL) == 0);
|
|
CHECK(ecount == 6);
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg, &pubkey) == 1);
|
|
CHECK(ecount == 6);
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, NULL) == 0);
|
|
CHECK(ecount == 7);
|
|
/* That pubkeyload fails via an ARGCHECK is a little odd but makes sense because pubkeys are an opaque data type. */
|
|
CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg, &pubkey) == 0);
|
|
CHECK(ecount == 8);
|
|
siglen = 72;
|
|
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, NULL, &siglen, &sig) == 0);
|
|
CHECK(ecount == 9);
|
|
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, NULL, &sig) == 0);
|
|
CHECK(ecount == 10);
|
|
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, NULL) == 0);
|
|
CHECK(ecount == 11);
|
|
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 1);
|
|
CHECK(ecount == 11);
|
|
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, NULL, signature, siglen) == 0);
|
|
CHECK(ecount == 12);
|
|
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, NULL, siglen) == 0);
|
|
CHECK(ecount == 13);
|
|
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, signature, siglen) == 1);
|
|
CHECK(ecount == 13);
|
|
siglen = 10;
|
|
/* Too little room for a signature does not fail via ARGCHECK. */
|
|
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 0);
|
|
CHECK(ecount == 13);
|
|
ecount = 0;
|
|
CHECK(secp256k1_ecdsa_signature_normalize(ctx, NULL, NULL) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, NULL, &sig) == 0);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, signature, NULL) == 0);
|
|
CHECK(ecount == 3);
|
|
CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, signature, &sig) == 1);
|
|
CHECK(ecount == 3);
|
|
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, NULL, signature) == 0);
|
|
CHECK(ecount == 4);
|
|
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, NULL) == 0);
|
|
CHECK(ecount == 5);
|
|
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, signature) == 1);
|
|
CHECK(ecount == 5);
|
|
memset(signature, 255, 64);
|
|
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, signature) == 0);
|
|
CHECK(ecount == 5);
|
|
secp256k1_context_set_illegal_callback(ctx, NULL, NULL);
|
|
}
|
|
|
|
/* Nonce function corner cases. */
|
|
for (t = 0; t < 2; t++) {
|
|
static const unsigned char zero[32] = {0x00};
|
|
int i;
|
|
unsigned char key[32];
|
|
unsigned char msg[32];
|
|
secp256k1_ecdsa_signature sig2;
|
|
secp256k1_scalar sr[512], ss;
|
|
const unsigned char *extra;
|
|
extra = t == 0 ? NULL : zero;
|
|
memset(msg, 0, 32);
|
|
msg[31] = 1;
|
|
/* High key results in signature failure. */
|
|
memset(key, 0xFF, 32);
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, NULL, extra) == 0);
|
|
CHECK(is_empty_signature(&sig));
|
|
/* Zero key results in signature failure. */
|
|
memset(key, 0, 32);
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, NULL, extra) == 0);
|
|
CHECK(is_empty_signature(&sig));
|
|
/* Nonce function failure results in signature failure. */
|
|
key[31] = 1;
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, nonce_function_test_fail, extra) == 0);
|
|
CHECK(is_empty_signature(&sig));
|
|
/* The retry loop successfully makes its way to the first good value. */
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, nonce_function_test_retry, extra) == 1);
|
|
CHECK(!is_empty_signature(&sig));
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, nonce_function_rfc6979, extra) == 1);
|
|
CHECK(!is_empty_signature(&sig2));
|
|
CHECK(secp256k1_memcmp_var(&sig, &sig2, sizeof(sig)) == 0);
|
|
/* The default nonce function is deterministic. */
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
|
|
CHECK(!is_empty_signature(&sig2));
|
|
CHECK(secp256k1_memcmp_var(&sig, &sig2, sizeof(sig)) == 0);
|
|
/* The default nonce function changes output with different messages. */
|
|
for(i = 0; i < 256; i++) {
|
|
int j;
|
|
msg[0] = i;
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
|
|
CHECK(!is_empty_signature(&sig2));
|
|
secp256k1_ecdsa_signature_load(ctx, &sr[i], &ss, &sig2);
|
|
for (j = 0; j < i; j++) {
|
|
CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j]));
|
|
}
|
|
}
|
|
msg[0] = 0;
|
|
msg[31] = 2;
|
|
/* The default nonce function changes output with different keys. */
|
|
for(i = 256; i < 512; i++) {
|
|
int j;
|
|
key[0] = i - 256;
|
|
CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
|
|
CHECK(!is_empty_signature(&sig2));
|
|
secp256k1_ecdsa_signature_load(ctx, &sr[i], &ss, &sig2);
|
|
for (j = 0; j < i; j++) {
|
|
CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j]));
|
|
}
|
|
}
|
|
key[0] = 0;
|
|
}
|
|
|
|
{
|
|
/* Check that optional nonce arguments do not have equivalent effect. */
|
|
const unsigned char zeros[32] = {0};
|
|
unsigned char nonce[32];
|
|
unsigned char nonce2[32];
|
|
unsigned char nonce3[32];
|
|
unsigned char nonce4[32];
|
|
VG_UNDEF(nonce,32);
|
|
VG_UNDEF(nonce2,32);
|
|
VG_UNDEF(nonce3,32);
|
|
VG_UNDEF(nonce4,32);
|
|
CHECK(nonce_function_rfc6979(nonce, zeros, zeros, NULL, NULL, 0) == 1);
|
|
VG_CHECK(nonce,32);
|
|
CHECK(nonce_function_rfc6979(nonce2, zeros, zeros, zeros, NULL, 0) == 1);
|
|
VG_CHECK(nonce2,32);
|
|
CHECK(nonce_function_rfc6979(nonce3, zeros, zeros, NULL, (void *)zeros, 0) == 1);
|
|
VG_CHECK(nonce3,32);
|
|
CHECK(nonce_function_rfc6979(nonce4, zeros, zeros, zeros, (void *)zeros, 0) == 1);
|
|
VG_CHECK(nonce4,32);
|
|
CHECK(secp256k1_memcmp_var(nonce, nonce2, 32) != 0);
|
|
CHECK(secp256k1_memcmp_var(nonce, nonce3, 32) != 0);
|
|
CHECK(secp256k1_memcmp_var(nonce, nonce4, 32) != 0);
|
|
CHECK(secp256k1_memcmp_var(nonce2, nonce3, 32) != 0);
|
|
CHECK(secp256k1_memcmp_var(nonce2, nonce4, 32) != 0);
|
|
CHECK(secp256k1_memcmp_var(nonce3, nonce4, 32) != 0);
|
|
}
|
|
|
|
|
|
/* Privkey export where pubkey is the point at infinity. */
|
|
{
|
|
unsigned char privkey[300];
|
|
unsigned char seckey[32] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
|
|
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
|
|
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41,
|
|
};
|
|
size_t outlen = 300;
|
|
CHECK(!ec_privkey_export_der(ctx, privkey, &outlen, seckey, 0));
|
|
outlen = 300;
|
|
CHECK(!ec_privkey_export_der(ctx, privkey, &outlen, seckey, 1));
|
|
}
|
|
}
|
|
|
|
void run_ecdsa_edge_cases(void) {
|
|
test_ecdsa_edge_cases();
|
|
}
|
|
|
|
#ifdef ENABLE_OPENSSL_TESTS
|
|
EC_KEY *get_openssl_key(const unsigned char *key32) {
|
|
unsigned char privkey[300];
|
|
size_t privkeylen;
|
|
const unsigned char* pbegin = privkey;
|
|
int compr = secp256k1_testrand_bits(1);
|
|
EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
|
|
CHECK(ec_privkey_export_der(ctx, privkey, &privkeylen, key32, compr));
|
|
CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
|
|
CHECK(EC_KEY_check_key(ec_key));
|
|
return ec_key;
|
|
}
|
|
|
|
void test_ecdsa_openssl(void) {
|
|
secp256k1_gej qj;
|
|
secp256k1_ge q;
|
|
secp256k1_scalar sigr, sigs;
|
|
secp256k1_scalar one;
|
|
secp256k1_scalar msg2;
|
|
secp256k1_scalar key, msg;
|
|
EC_KEY *ec_key;
|
|
unsigned int sigsize = 80;
|
|
size_t secp_sigsize = 80;
|
|
unsigned char message[32];
|
|
unsigned char signature[80];
|
|
unsigned char key32[32];
|
|
secp256k1_testrand256_test(message);
|
|
secp256k1_scalar_set_b32(&msg, message, NULL);
|
|
random_scalar_order_test(&key);
|
|
secp256k1_scalar_get_b32(key32, &key);
|
|
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &qj, &key);
|
|
secp256k1_ge_set_gej(&q, &qj);
|
|
ec_key = get_openssl_key(key32);
|
|
CHECK(ec_key != NULL);
|
|
CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key));
|
|
CHECK(secp256k1_ecdsa_sig_parse(&sigr, &sigs, signature, sigsize));
|
|
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &q, &msg));
|
|
secp256k1_scalar_set_int(&one, 1);
|
|
secp256k1_scalar_add(&msg2, &msg, &one);
|
|
CHECK(!secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &q, &msg2));
|
|
|
|
random_sign(&sigr, &sigs, &key, &msg, NULL);
|
|
CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sigr, &sigs));
|
|
CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1);
|
|
|
|
EC_KEY_free(ec_key);
|
|
}
|
|
|
|
void run_ecdsa_openssl(void) {
|
|
int i;
|
|
for (i = 0; i < 10*count; i++) {
|
|
test_ecdsa_openssl();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENABLE_MODULE_ECDH
|
|
# include "modules/ecdh/tests_impl.h"
|
|
#endif
|
|
|
|
#ifdef ENABLE_MODULE_RECOVERY
|
|
# include "modules/recovery/tests_impl.h"
|
|
#endif
|
|
|
|
#ifdef ENABLE_MODULE_EXTRAKEYS
|
|
# include "modules/extrakeys/tests_impl.h"
|
|
#endif
|
|
|
|
#ifdef ENABLE_MODULE_SCHNORRSIG
|
|
# include "modules/schnorrsig/tests_impl.h"
|
|
#endif
|
|
|
|
void run_secp256k1_memczero_test(void) {
|
|
unsigned char buf1[6] = {1, 2, 3, 4, 5, 6};
|
|
unsigned char buf2[sizeof(buf1)];
|
|
|
|
/* secp256k1_memczero(..., ..., 0) is a noop. */
|
|
memcpy(buf2, buf1, sizeof(buf1));
|
|
secp256k1_memczero(buf1, sizeof(buf1), 0);
|
|
CHECK(secp256k1_memcmp_var(buf1, buf2, sizeof(buf1)) == 0);
|
|
|
|
/* secp256k1_memczero(..., ..., 1) zeros the buffer. */
|
|
memset(buf2, 0, sizeof(buf2));
|
|
secp256k1_memczero(buf1, sizeof(buf1) , 1);
|
|
CHECK(secp256k1_memcmp_var(buf1, buf2, sizeof(buf1)) == 0);
|
|
}
|
|
|
|
void int_cmov_test(void) {
|
|
int r = INT_MAX;
|
|
int a = 0;
|
|
|
|
secp256k1_int_cmov(&r, &a, 0);
|
|
CHECK(r == INT_MAX);
|
|
|
|
r = 0; a = INT_MAX;
|
|
secp256k1_int_cmov(&r, &a, 1);
|
|
CHECK(r == INT_MAX);
|
|
|
|
a = 0;
|
|
secp256k1_int_cmov(&r, &a, 1);
|
|
CHECK(r == 0);
|
|
|
|
a = 1;
|
|
secp256k1_int_cmov(&r, &a, 1);
|
|
CHECK(r == 1);
|
|
|
|
r = 1; a = 0;
|
|
secp256k1_int_cmov(&r, &a, 0);
|
|
CHECK(r == 1);
|
|
|
|
}
|
|
|
|
void fe_cmov_test(void) {
|
|
static const secp256k1_fe zero = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
|
static const secp256k1_fe one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
|
static const secp256k1_fe max = SECP256K1_FE_CONST(
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL
|
|
);
|
|
secp256k1_fe r = max;
|
|
secp256k1_fe a = zero;
|
|
|
|
secp256k1_fe_cmov(&r, &a, 0);
|
|
CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
|
|
|
|
r = zero; a = max;
|
|
secp256k1_fe_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
|
|
|
|
a = zero;
|
|
secp256k1_fe_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0);
|
|
|
|
a = one;
|
|
secp256k1_fe_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
|
|
|
|
r = one; a = zero;
|
|
secp256k1_fe_cmov(&r, &a, 0);
|
|
CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
|
|
}
|
|
|
|
void fe_storage_cmov_test(void) {
|
|
static const secp256k1_fe_storage zero = SECP256K1_FE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
|
static const secp256k1_fe_storage one = SECP256K1_FE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
|
static const secp256k1_fe_storage max = SECP256K1_FE_STORAGE_CONST(
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL
|
|
);
|
|
secp256k1_fe_storage r = max;
|
|
secp256k1_fe_storage a = zero;
|
|
|
|
secp256k1_fe_storage_cmov(&r, &a, 0);
|
|
CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
|
|
|
|
r = zero; a = max;
|
|
secp256k1_fe_storage_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
|
|
|
|
a = zero;
|
|
secp256k1_fe_storage_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0);
|
|
|
|
a = one;
|
|
secp256k1_fe_storage_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
|
|
|
|
r = one; a = zero;
|
|
secp256k1_fe_storage_cmov(&r, &a, 0);
|
|
CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
|
|
}
|
|
|
|
void scalar_cmov_test(void) {
|
|
static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
|
static const secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
|
static const secp256k1_scalar max = SECP256K1_SCALAR_CONST(
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL
|
|
);
|
|
secp256k1_scalar r = max;
|
|
secp256k1_scalar a = zero;
|
|
|
|
secp256k1_scalar_cmov(&r, &a, 0);
|
|
CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
|
|
|
|
r = zero; a = max;
|
|
secp256k1_scalar_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
|
|
|
|
a = zero;
|
|
secp256k1_scalar_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0);
|
|
|
|
a = one;
|
|
secp256k1_scalar_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
|
|
|
|
r = one; a = zero;
|
|
secp256k1_scalar_cmov(&r, &a, 0);
|
|
CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
|
|
}
|
|
|
|
void ge_storage_cmov_test(void) {
|
|
static const secp256k1_ge_storage zero = SECP256K1_GE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
static const secp256k1_ge_storage one = SECP256K1_GE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1);
|
|
static const secp256k1_ge_storage max = SECP256K1_GE_STORAGE_CONST(
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
|
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL
|
|
);
|
|
secp256k1_ge_storage r = max;
|
|
secp256k1_ge_storage a = zero;
|
|
|
|
secp256k1_ge_storage_cmov(&r, &a, 0);
|
|
CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
|
|
|
|
r = zero; a = max;
|
|
secp256k1_ge_storage_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
|
|
|
|
a = zero;
|
|
secp256k1_ge_storage_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0);
|
|
|
|
a = one;
|
|
secp256k1_ge_storage_cmov(&r, &a, 1);
|
|
CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
|
|
|
|
r = one; a = zero;
|
|
secp256k1_ge_storage_cmov(&r, &a, 0);
|
|
CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
|
|
}
|
|
|
|
void run_cmov_tests(void) {
|
|
int_cmov_test();
|
|
fe_cmov_test();
|
|
fe_storage_cmov_test();
|
|
scalar_cmov_test();
|
|
ge_storage_cmov_test();
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
/* Disable buffering for stdout to improve reliability of getting
|
|
* diagnostic information. Happens right at the start of main because
|
|
* setbuf must be used before any other operation on the stream. */
|
|
setbuf(stdout, NULL);
|
|
/* Also disable buffering for stderr because it's not guaranteed that it's
|
|
* unbuffered on all systems. */
|
|
setbuf(stderr, NULL);
|
|
|
|
/* find iteration count */
|
|
if (argc > 1) {
|
|
count = strtol(argv[1], NULL, 0);
|
|
} else {
|
|
const char* env = getenv("SECP256K1_TEST_ITERS");
|
|
if (env) {
|
|
count = strtol(env, NULL, 0);
|
|
}
|
|
}
|
|
if (count <= 0) {
|
|
fputs("An iteration count of 0 or less is not allowed.\n", stderr);
|
|
return EXIT_FAILURE;
|
|
}
|
|
printf("test count = %i\n", count);
|
|
|
|
/* find random seed */
|
|
secp256k1_testrand_init(argc > 2 ? argv[2] : NULL);
|
|
|
|
/* initialize */
|
|
run_context_tests(0);
|
|
run_context_tests(1);
|
|
run_scratch_tests();
|
|
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
|
if (secp256k1_testrand_bits(1)) {
|
|
unsigned char rand32[32];
|
|
secp256k1_testrand256(rand32);
|
|
CHECK(secp256k1_context_randomize(ctx, secp256k1_testrand_bits(1) ? rand32 : NULL));
|
|
}
|
|
|
|
run_rand_bits();
|
|
run_rand_int();
|
|
|
|
run_ctz_tests();
|
|
run_modinv_tests();
|
|
run_inverse_tests();
|
|
|
|
run_sha256_tests();
|
|
run_hmac_sha256_tests();
|
|
run_rfc6979_hmac_sha256_tests();
|
|
|
|
#ifndef USE_NUM_NONE
|
|
/* num tests */
|
|
run_num_smalltests();
|
|
#endif
|
|
|
|
/* scalar tests */
|
|
run_scalar_tests();
|
|
|
|
/* field tests */
|
|
run_field_misc();
|
|
run_field_convert();
|
|
run_sqr();
|
|
run_sqrt();
|
|
|
|
/* group tests */
|
|
run_ge();
|
|
run_group_decompress();
|
|
|
|
/* ecmult tests */
|
|
run_wnaf();
|
|
run_point_times_order();
|
|
run_ecmult_near_split_bound();
|
|
run_ecmult_chain();
|
|
run_ecmult_constants();
|
|
run_ecmult_gen_blind();
|
|
run_ecmult_const_tests();
|
|
run_ecmult_multi_tests();
|
|
run_ec_combine();
|
|
|
|
/* endomorphism tests */
|
|
run_endomorphism_tests();
|
|
|
|
/* EC point parser test */
|
|
run_ec_pubkey_parse_test();
|
|
|
|
/* EC key edge cases */
|
|
run_eckey_edge_case_test();
|
|
|
|
/* EC key arithmetic test */
|
|
run_eckey_negate_test();
|
|
|
|
#ifdef ENABLE_MODULE_ECDH
|
|
/* ecdh tests */
|
|
run_ecdh_tests();
|
|
#endif
|
|
|
|
/* ecdsa tests */
|
|
run_random_pubkeys();
|
|
run_ecdsa_der_parse();
|
|
run_ecdsa_sign_verify();
|
|
run_ecdsa_end_to_end();
|
|
run_ecdsa_edge_cases();
|
|
#ifdef ENABLE_OPENSSL_TESTS
|
|
run_ecdsa_openssl();
|
|
#endif
|
|
|
|
#ifdef ENABLE_MODULE_RECOVERY
|
|
/* ECDSA pubkey recovery tests */
|
|
run_recovery_tests();
|
|
#endif
|
|
|
|
#ifdef ENABLE_MODULE_EXTRAKEYS
|
|
run_extrakeys_tests();
|
|
#endif
|
|
|
|
#ifdef ENABLE_MODULE_SCHNORRSIG
|
|
run_schnorrsig_tests();
|
|
#endif
|
|
|
|
/* util tests */
|
|
run_secp256k1_memczero_test();
|
|
|
|
run_cmov_tests();
|
|
|
|
secp256k1_testrand_finish();
|
|
|
|
/* shutdown */
|
|
secp256k1_context_destroy(ctx);
|
|
|
|
printf("no problems found\n");
|
|
return 0;
|
|
}
|