33cb3c2b1fc3f3fe46c6d0eab118248ea86c1f06 Add secret key extraction from keypair to constant time tests (Elichai Turkel) 36d9dc1e8e6e3b15d805f04c973a8784a78880f6 Add seckey extraction from keypair to the extrakeys tests (Elichai Turkel) fc96aa73f5c7f62452847a31821890ff1f72a5a4 Add a function to extract the secretkey from a keypair (Elichai Turkel) Pull request description: With schnorrsig if you need to tweak the secret key (for BIP32) you must use the keypair API to get compatible secret/public keys which you do by calling `secp256k1_keypair_xonly_tweak_add()`, but after that there's no currently a way to extract the secret key back for storage. so I added a `secp256k1_keypair_seckey` function to extract the key ACKs for top commit: jonasnick: ACK 33cb3c2b1fc3f3fe46c6d0eab118248ea86c1f06 real-or-random: ACK 33cb3c2b1fc3f3fe46c6d0eab118248ea86c1f06 code inspection, tests pass Tree-SHA512: 11212db38c8b87a87e2dc35c4d6993716867b45215b94b20522b1b3164ca63d4c6bf5192a6bff0e9267b333779cc8164844c56669a94e9be72df9ef025ffcfd4
libsecp256k1
Optimized C library for ECDSA signatures and secret/public key operations on curve secp256k1.
This library is intended to be the highest quality publicly available library for cryptography on the secp256k1 curve. However, the primary focus of its development has been for usage in the Bitcoin system and usage unlike Bitcoin's may be less well tested, verified, or suffer from a less well thought out interface. Correct usage requires some care and consideration that the library is fit for your application's purpose.
Features:
- secp256k1 ECDSA signing/verification and key generation.
- Additive and multiplicative tweaking of secret/public keys.
- Serialization/parsing of secret keys, public keys, signatures.
- Constant time, constant memory access signing and public key generation.
- Derandomized ECDSA (via RFC6979 or with a caller provided function.)
- Very efficient implementation.
- Suitable for embedded systems.
- Optional module for public key recovery.
- Optional module for ECDH key exchange.
Experimental features have not received enough scrutiny to satisfy the standard of quality of this library but are made available for testing and review by the community. The APIs of these features should not be considered stable.
Implementation details
- General
- No runtime heap allocation.
- Extensive testing infrastructure.
- Structured to facilitate review and analysis.
- Intended to be portable to any system with a C89 compiler and uint64_t support.
- No use of floating types.
- Expose only higher level interfaces to minimize the API surface and improve application security. ("Be difficult to use insecurely.")
- Field operations
- Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
- Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).
- Using 10 26-bit limbs (including hand-optimized assembly for 32-bit ARM, by Wladimir J. van der Laan).
- Field inverses and square roots using a sliding window over blocks of 1s (by Peter Dettman).
- Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
- Scalar operations
- Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.
- Using 4 64-bit limbs (relying on __int128 support in the compiler).
- Using 8 32-bit limbs.
- Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.
- Group operations
- Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).
- Use addition between points in Jacobian and affine coordinates where possible.
- Use a unified addition/doubling formula where necessary to avoid data-dependent branches.
- Point/x comparison without a field inversion by comparison in the Jacobian coordinate space.
- Point multiplication for verification (aP + bG).
- Use wNAF notation for point multiplicands.
- Use a much larger window for multiples of G, using precomputed multiples.
- Use Shamir's trick to do the multiplication with the public key and the generator simultaneously.
- Use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.
- Point multiplication for signing
- Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.
- Intended to be completely free of timing sidechannels for secret-key operations (on reasonable hardware/toolchains)
- Access the table with branch-free conditional moves so memory access is uniform.
- No data-dependent branches
- Optional runtime blinding which attempts to frustrate differential power analysis.
- The precomputed tables add and eventually subtract points for which no known scalar (secret key) is known, preventing even an attacker with control over the secret key used to control the data internally.
Build steps
libsecp256k1 is built using autotools:
$ ./autogen.sh
$ ./configure
$ make
$ make check
$ sudo make install # optional
Exhaustive tests
$ ./exhaustive_tests
With valgrind, you might need to increase the max stack size:
$ valgrind --max-stackframe=2500000 ./exhaustive_tests
Test coverage
This library aims to have full coverage of the reachable lines and branches.
To create a test coverage report, configure with --enable-coverage
(use of GCC is necessary):
$ ./configure --enable-coverage
Run the tests:
$ make check
To create a report, gcovr
is recommended, as it includes branch coverage reporting:
$ gcovr --exclude 'src/bench*' --print-summary
To create a HTML report with coloured and annotated source code:
$ gcovr --exclude 'src/bench*' --html --html-details -o coverage.html
Reporting a vulnerability
See SECURITY.md