215 lines
8.9 KiB
C

/*************************************************************************
* Written in 2018 by Jonas Nick *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
/** This file demonstrates how to use the MuSig module to create a
* 3-of-3 multisignature. Additionally, see the documentation in
* include/secp256k1_musig.h and src/modules/musig/musig.md.
*/
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include <secp256k1_schnorrsig.h>
#include <secp256k1_musig.h>
#include "examples_util.h"
struct signer_secrets {
secp256k1_keypair keypair;
secp256k1_musig_secnonce secnonce;
};
struct signer {
secp256k1_pubkey pubkey;
secp256k1_musig_pubnonce pubnonce;
secp256k1_musig_partial_sig partial_sig;
};
/* Number of public keys involved in creating the aggregate signature */
#define N_SIGNERS 3
/* Create a key pair, store it in signer_secrets->keypair and signer->pubkey */
static int create_keypair(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signer) {
unsigned char seckey[32];
while (1) {
if (!fill_random(seckey, sizeof(seckey))) {
printf("Failed to generate randomness\n");
return 1;
}
if (secp256k1_keypair_create(ctx, &signer_secrets->keypair, seckey)) {
break;
}
}
if (!secp256k1_keypair_pub(ctx, &signer->pubkey, &signer_secrets->keypair)) {
return 0;
}
return 1;
}
/* Tweak the pubkey corresponding to the provided keyagg cache, update the cache
* and return the tweaked aggregate pk. */
static int tweak(const secp256k1_context* ctx, secp256k1_xonly_pubkey *agg_pk, secp256k1_musig_keyagg_cache *cache) {
secp256k1_pubkey output_pk;
unsigned char plain_tweak[32] = "this could be a BIP32 tweak....";
unsigned char xonly_tweak[32] = "this could be a taproot tweak..";
/* Plain tweaking which, for example, allows deriving multiple child
* public keys from a single aggregate key using BIP32 */
if (!secp256k1_musig_pubkey_ec_tweak_add(ctx, NULL, cache, plain_tweak)) {
return 0;
}
/* Note that we did not provided an output_pk argument, because the
* resulting pk is also saved in the cache and so if one is just interested
* in signing the output_pk argument is unnecessary. On the other hand, if
* one is not interested in signing, the same output_pk can be obtained by
* calling `secp256k1_musig_pubkey_get` right after key aggregation to get
* the full pubkey and then call `secp256k1_ec_pubkey_tweak_add`. */
/* Xonly tweaking which, for example, allows creating taproot commitments */
if (!secp256k1_musig_pubkey_xonly_tweak_add(ctx, &output_pk, cache, xonly_tweak)) {
return 0;
}
/* Note that if we wouldn't care about signing, we can arrive at the same
* output_pk by providing the untweaked public key to
* `secp256k1_xonly_pubkey_tweak_add` (after converting it to an xonly pubkey
* if necessary with `secp256k1_xonly_pubkey_from_pubkey`). */
/* Now we convert the output_pk to an xonly pubkey to allow to later verify
* the Schnorr signature against it. For this purpose we can ignore the
* `pk_parity` output argument; we would need it if we would have to open
* the taproot commitment. */
if (!secp256k1_xonly_pubkey_from_pubkey(ctx, agg_pk, NULL, &output_pk)) {
return 0;
}
return 1;
}
/* Sign a message hash with the given key pairs and store the result in sig */
static int sign(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signer, const secp256k1_musig_keyagg_cache *cache, const unsigned char *msg32, unsigned char *sig64) {
int i;
const secp256k1_musig_pubnonce *pubnonces[N_SIGNERS];
const secp256k1_musig_partial_sig *partial_sigs[N_SIGNERS];
/* The same for all signers */
secp256k1_musig_session session;
for (i = 0; i < N_SIGNERS; i++) {
unsigned char seckey[32];
unsigned char session_id[32];
/* Create random session ID. It is absolutely necessary that the session ID
* is unique for every call of secp256k1_musig_nonce_gen. Otherwise
* it's trivial for an attacker to extract the secret key! */
if (!fill_random(session_id, sizeof(session_id))) {
return 0;
}
if (!secp256k1_keypair_sec(ctx, seckey, &signer_secrets[i].keypair)) {
return 0;
}
/* Initialize session and create secret nonce for signing and public
* nonce to send to the other signers. */
if (!secp256k1_musig_nonce_gen(ctx, &signer_secrets[i].secnonce, &signer[i].pubnonce, session_id, seckey, &signer[i].pubkey, msg32, NULL, NULL)) {
return 0;
}
pubnonces[i] = &signer[i].pubnonce;
}
/* Communication round 1: A production system would exchange public nonces
* here before moving on. */
for (i = 0; i < N_SIGNERS; i++) {
secp256k1_musig_aggnonce agg_pubnonce;
/* Create aggregate nonce and initialize the session */
if (!secp256k1_musig_nonce_agg(ctx, &agg_pubnonce, pubnonces, N_SIGNERS)) {
return 0;
}
if (!secp256k1_musig_nonce_process(ctx, &session, &agg_pubnonce, msg32, cache, NULL)) {
return 0;
}
/* partial_sign will clear the secnonce by setting it to 0. That's because
* you must _never_ reuse the secnonce (or use the same session_id to
* create a secnonce). If you do, you effectively reuse the nonce and
* leak the secret key. */
if (!secp256k1_musig_partial_sign(ctx, &signer[i].partial_sig, &signer_secrets[i].secnonce, &signer_secrets[i].keypair, cache, &session)) {
return 0;
}
partial_sigs[i] = &signer[i].partial_sig;
}
/* Communication round 2: A production system would exchange
* partial signatures here before moving on. */
for (i = 0; i < N_SIGNERS; i++) {
/* To check whether signing was successful, it suffices to either verify
* the aggregate signature with the aggregate public key using
* secp256k1_schnorrsig_verify, or verify all partial signatures of all
* signers individually. Verifying the aggregate signature is cheaper but
* verifying the individual partial signatures has the advantage that it
* can be used to determine which of the partial signatures are invalid
* (if any), i.e., which of the partial signatures cause the aggregate
* signature to be invalid and thus the protocol run to fail. It's also
* fine to first verify the aggregate sig, and only verify the individual
* sigs if it does not work.
*/
if (!secp256k1_musig_partial_sig_verify(ctx, &signer[i].partial_sig, &signer[i].pubnonce, &signer[i].pubkey, cache, &session)) {
return 0;
}
}
return secp256k1_musig_partial_sig_agg(ctx, sig64, &session, partial_sigs, N_SIGNERS);
}
int main(void) {
secp256k1_context* ctx;
int i;
struct signer_secrets signer_secrets[N_SIGNERS];
struct signer signers[N_SIGNERS];
const secp256k1_pubkey *pubkeys_ptr[N_SIGNERS];
secp256k1_xonly_pubkey agg_pk;
secp256k1_musig_keyagg_cache cache;
unsigned char msg[32] = "this_could_be_the_hash_of_a_msg!";
unsigned char sig[64];
/* Create a secp256k1 context */
ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
printf("Creating key pairs......");
for (i = 0; i < N_SIGNERS; i++) {
if (!create_keypair(ctx, &signer_secrets[i], &signers[i])) {
printf("FAILED\n");
return 1;
}
pubkeys_ptr[i] = &signers[i].pubkey;
}
printf("ok\n");
printf("Combining public keys...");
/* If you just want to aggregate and not sign the cache can be NULL */
if (!secp256k1_musig_pubkey_agg(ctx, NULL, &agg_pk, &cache, pubkeys_ptr, N_SIGNERS)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
printf("Tweaking................");
/* Optionally tweak the aggregate key */
if (!tweak(ctx, &agg_pk, &cache)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
printf("Signing message.........");
if (!sign(ctx, signer_secrets, signers, &cache, msg, sig)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
printf("Verifying signature.....");
if (!secp256k1_schnorrsig_verify(ctx, sig, msg, 32, &agg_pk)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
secp256k1_context_destroy(ctx);
return 0;
}