By providing an uppercase variant of these verification functions, it is better visible that it is test code and surrounding `#ifdef VERIFY` blocks can be removed (if there is no other code around that could remain in production mode), as they don't serve their purpose any more. At some places intentional blank lines are inserted for grouping and better readadbility.
916 lines
31 KiB
C
916 lines
31 KiB
C
/***********************************************************************
|
|
* Copyright (c) 2013, 2014 Pieter Wuille *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
|
***********************************************************************/
|
|
|
|
#ifndef SECP256K1_GROUP_IMPL_H
|
|
#define SECP256K1_GROUP_IMPL_H
|
|
|
|
#include "field.h"
|
|
#include "group.h"
|
|
#include "util.h"
|
|
|
|
/* Begin of section generated by sage/gen_exhaustive_groups.sage. */
|
|
#define SECP256K1_G_ORDER_7 SECP256K1_GE_CONST(\
|
|
0x66625d13, 0x317ffe44, 0x63d32cff, 0x1ca02b9b,\
|
|
0xe5c6d070, 0x50b4b05e, 0x81cc30db, 0xf5166f0a,\
|
|
0x1e60e897, 0xa7c00c7c, 0x2df53eb6, 0x98274ff4,\
|
|
0x64252f42, 0x8ca44e17, 0x3b25418c, 0xff4ab0cf\
|
|
)
|
|
#define SECP256K1_G_ORDER_13 SECP256K1_GE_CONST(\
|
|
0xa2482ff8, 0x4bf34edf, 0xa51262fd, 0xe57921db,\
|
|
0xe0dd2cb7, 0xa5914790, 0xbc71631f, 0xc09704fb,\
|
|
0x942536cb, 0xa3e49492, 0x3a701cc3, 0xee3e443f,\
|
|
0xdf182aa9, 0x15b8aa6a, 0x166d3b19, 0xba84b045\
|
|
)
|
|
#define SECP256K1_G_ORDER_199 SECP256K1_GE_CONST(\
|
|
0x7fb07b5c, 0xd07c3bda, 0x553902e2, 0x7a87ea2c,\
|
|
0x35108a7f, 0x051f41e5, 0xb76abad5, 0x1f2703ad,\
|
|
0x0a251539, 0x5b4c4438, 0x952a634f, 0xac10dd4d,\
|
|
0x6d6f4745, 0x98990c27, 0x3a4f3116, 0xd32ff969\
|
|
)
|
|
/** Generator for secp256k1, value 'g' defined in
|
|
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
|
|
*/
|
|
#define SECP256K1_G SECP256K1_GE_CONST(\
|
|
0x79be667e, 0xf9dcbbac, 0x55a06295, 0xce870b07,\
|
|
0x029bfcdb, 0x2dce28d9, 0x59f2815b, 0x16f81798,\
|
|
0x483ada77, 0x26a3c465, 0x5da4fbfc, 0x0e1108a8,\
|
|
0xfd17b448, 0xa6855419, 0x9c47d08f, 0xfb10d4b8\
|
|
)
|
|
/* These exhaustive group test orders and generators are chosen such that:
|
|
* - The field size is equal to that of secp256k1, so field code is the same.
|
|
* - The curve equation is of the form y^2=x^3+B for some small constant B.
|
|
* - The subgroup has a generator 2*P, where P.x is as small as possible.
|
|
* - The subgroup has size less than 1000 to permit exhaustive testing.
|
|
* - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).
|
|
*/
|
|
#if defined(EXHAUSTIVE_TEST_ORDER)
|
|
# if EXHAUSTIVE_TEST_ORDER == 7
|
|
|
|
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_7;
|
|
#define SECP256K1_B 6
|
|
|
|
# elif EXHAUSTIVE_TEST_ORDER == 13
|
|
|
|
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_13;
|
|
#define SECP256K1_B 2
|
|
|
|
# elif EXHAUSTIVE_TEST_ORDER == 199
|
|
|
|
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_199;
|
|
#define SECP256K1_B 4
|
|
|
|
# else
|
|
# error No known generator for the specified exhaustive test group order.
|
|
# endif
|
|
#else
|
|
|
|
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G;
|
|
#define SECP256K1_B 7
|
|
|
|
#endif
|
|
/* End of section generated by sage/gen_exhaustive_groups.sage. */
|
|
|
|
static void secp256k1_ge_verify(const secp256k1_ge *a) {
|
|
SECP256K1_FE_VERIFY(&a->x);
|
|
SECP256K1_FE_VERIFY(&a->y);
|
|
SECP256K1_FE_VERIFY_MAGNITUDE(&a->x, SECP256K1_GE_X_MAGNITUDE_MAX);
|
|
SECP256K1_FE_VERIFY_MAGNITUDE(&a->y, SECP256K1_GE_Y_MAGNITUDE_MAX);
|
|
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
|
|
(void)a;
|
|
}
|
|
|
|
static void secp256k1_gej_verify(const secp256k1_gej *a) {
|
|
SECP256K1_FE_VERIFY(&a->x);
|
|
SECP256K1_FE_VERIFY(&a->y);
|
|
SECP256K1_FE_VERIFY(&a->z);
|
|
SECP256K1_FE_VERIFY_MAGNITUDE(&a->x, SECP256K1_GEJ_X_MAGNITUDE_MAX);
|
|
SECP256K1_FE_VERIFY_MAGNITUDE(&a->y, SECP256K1_GEJ_Y_MAGNITUDE_MAX);
|
|
SECP256K1_FE_VERIFY_MAGNITUDE(&a->z, SECP256K1_GEJ_Z_MAGNITUDE_MAX);
|
|
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
|
|
(void)a;
|
|
}
|
|
|
|
/* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */
|
|
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
|
|
secp256k1_fe zi2;
|
|
secp256k1_fe zi3;
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
SECP256K1_FE_VERIFY(zi);
|
|
VERIFY_CHECK(!a->infinity);
|
|
|
|
secp256k1_fe_sqr(&zi2, zi);
|
|
secp256k1_fe_mul(&zi3, &zi2, zi);
|
|
secp256k1_fe_mul(&r->x, &a->x, &zi2);
|
|
secp256k1_fe_mul(&r->y, &a->y, &zi3);
|
|
r->infinity = a->infinity;
|
|
|
|
SECP256K1_GE_VERIFY(r);
|
|
}
|
|
|
|
/* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */
|
|
static void secp256k1_ge_set_ge_zinv(secp256k1_ge *r, const secp256k1_ge *a, const secp256k1_fe *zi) {
|
|
secp256k1_fe zi2;
|
|
secp256k1_fe zi3;
|
|
SECP256K1_GE_VERIFY(a);
|
|
SECP256K1_FE_VERIFY(zi);
|
|
VERIFY_CHECK(!a->infinity);
|
|
|
|
secp256k1_fe_sqr(&zi2, zi);
|
|
secp256k1_fe_mul(&zi3, &zi2, zi);
|
|
secp256k1_fe_mul(&r->x, &a->x, &zi2);
|
|
secp256k1_fe_mul(&r->y, &a->y, &zi3);
|
|
r->infinity = a->infinity;
|
|
|
|
SECP256K1_GE_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
|
|
SECP256K1_FE_VERIFY(x);
|
|
SECP256K1_FE_VERIFY(y);
|
|
|
|
r->infinity = 0;
|
|
r->x = *x;
|
|
r->y = *y;
|
|
|
|
SECP256K1_GE_VERIFY(r);
|
|
}
|
|
|
|
static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
|
|
SECP256K1_GE_VERIFY(a);
|
|
|
|
return a->infinity;
|
|
}
|
|
|
|
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
|
|
SECP256K1_GE_VERIFY(a);
|
|
|
|
*r = *a;
|
|
secp256k1_fe_normalize_weak(&r->y);
|
|
secp256k1_fe_negate(&r->y, &r->y, 1);
|
|
|
|
SECP256K1_GE_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
|
|
secp256k1_fe z2, z3;
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
|
|
r->infinity = a->infinity;
|
|
secp256k1_fe_inv(&a->z, &a->z);
|
|
secp256k1_fe_sqr(&z2, &a->z);
|
|
secp256k1_fe_mul(&z3, &a->z, &z2);
|
|
secp256k1_fe_mul(&a->x, &a->x, &z2);
|
|
secp256k1_fe_mul(&a->y, &a->y, &z3);
|
|
secp256k1_fe_set_int(&a->z, 1);
|
|
r->x = a->x;
|
|
r->y = a->y;
|
|
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
SECP256K1_GE_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
|
|
secp256k1_fe z2, z3;
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
|
|
if (secp256k1_gej_is_infinity(a)) {
|
|
secp256k1_ge_set_infinity(r);
|
|
return;
|
|
}
|
|
r->infinity = 0;
|
|
secp256k1_fe_inv_var(&a->z, &a->z);
|
|
secp256k1_fe_sqr(&z2, &a->z);
|
|
secp256k1_fe_mul(&z3, &a->z, &z2);
|
|
secp256k1_fe_mul(&a->x, &a->x, &z2);
|
|
secp256k1_fe_mul(&a->y, &a->y, &z3);
|
|
secp256k1_fe_set_int(&a->z, 1);
|
|
secp256k1_ge_set_xy(r, &a->x, &a->y);
|
|
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
SECP256K1_GE_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) {
|
|
secp256k1_fe u;
|
|
size_t i;
|
|
size_t last_i = SIZE_MAX;
|
|
#ifdef VERIFY
|
|
for (i = 0; i < len; i++) {
|
|
SECP256K1_GEJ_VERIFY(&a[i]);
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (a[i].infinity) {
|
|
secp256k1_ge_set_infinity(&r[i]);
|
|
} else {
|
|
/* Use destination's x coordinates as scratch space */
|
|
if (last_i == SIZE_MAX) {
|
|
r[i].x = a[i].z;
|
|
} else {
|
|
secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z);
|
|
}
|
|
last_i = i;
|
|
}
|
|
}
|
|
if (last_i == SIZE_MAX) {
|
|
return;
|
|
}
|
|
secp256k1_fe_inv_var(&u, &r[last_i].x);
|
|
|
|
i = last_i;
|
|
while (i > 0) {
|
|
i--;
|
|
if (!a[i].infinity) {
|
|
secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u);
|
|
secp256k1_fe_mul(&u, &u, &a[last_i].z);
|
|
last_i = i;
|
|
}
|
|
}
|
|
VERIFY_CHECK(!a[last_i].infinity);
|
|
r[last_i].x = u;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (!a[i].infinity) {
|
|
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x);
|
|
}
|
|
}
|
|
|
|
#ifdef VERIFY
|
|
for (i = 0; i < len; i++) {
|
|
SECP256K1_GE_VERIFY(&r[i]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr) {
|
|
size_t i;
|
|
secp256k1_fe zs;
|
|
#ifdef VERIFY
|
|
for (i = 0; i < len; i++) {
|
|
SECP256K1_GE_VERIFY(&a[i]);
|
|
SECP256K1_FE_VERIFY(&zr[i]);
|
|
}
|
|
#endif
|
|
|
|
if (len > 0) {
|
|
i = len - 1;
|
|
/* Ensure all y values are in weak normal form for fast negation of points */
|
|
secp256k1_fe_normalize_weak(&a[i].y);
|
|
zs = zr[i];
|
|
|
|
/* Work our way backwards, using the z-ratios to scale the x/y values. */
|
|
while (i > 0) {
|
|
if (i != len - 1) {
|
|
secp256k1_fe_mul(&zs, &zs, &zr[i]);
|
|
}
|
|
i--;
|
|
secp256k1_ge_set_ge_zinv(&a[i], &a[i], &zs);
|
|
}
|
|
}
|
|
|
|
#ifdef VERIFY
|
|
for (i = 0; i < len; i++) {
|
|
SECP256K1_GE_VERIFY(&a[i]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
|
|
r->infinity = 1;
|
|
secp256k1_fe_clear(&r->x);
|
|
secp256k1_fe_clear(&r->y);
|
|
secp256k1_fe_clear(&r->z);
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
|
|
r->infinity = 1;
|
|
secp256k1_fe_clear(&r->x);
|
|
secp256k1_fe_clear(&r->y);
|
|
|
|
SECP256K1_GE_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_gej_clear(secp256k1_gej *r) {
|
|
r->infinity = 0;
|
|
secp256k1_fe_clear(&r->x);
|
|
secp256k1_fe_clear(&r->y);
|
|
secp256k1_fe_clear(&r->z);
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_ge_clear(secp256k1_ge *r) {
|
|
r->infinity = 0;
|
|
secp256k1_fe_clear(&r->x);
|
|
secp256k1_fe_clear(&r->y);
|
|
|
|
SECP256K1_GE_VERIFY(r);
|
|
}
|
|
|
|
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
|
|
secp256k1_fe x2, x3;
|
|
int ret;
|
|
SECP256K1_FE_VERIFY(x);
|
|
|
|
r->x = *x;
|
|
secp256k1_fe_sqr(&x2, x);
|
|
secp256k1_fe_mul(&x3, x, &x2);
|
|
r->infinity = 0;
|
|
secp256k1_fe_add_int(&x3, SECP256K1_B);
|
|
ret = secp256k1_fe_sqrt(&r->y, &x3);
|
|
secp256k1_fe_normalize_var(&r->y);
|
|
if (secp256k1_fe_is_odd(&r->y) != odd) {
|
|
secp256k1_fe_negate(&r->y, &r->y, 1);
|
|
}
|
|
|
|
SECP256K1_GE_VERIFY(r);
|
|
return ret;
|
|
}
|
|
|
|
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
|
|
SECP256K1_GE_VERIFY(a);
|
|
|
|
r->infinity = a->infinity;
|
|
r->x = a->x;
|
|
r->y = a->y;
|
|
secp256k1_fe_set_int(&r->z, 1);
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b) {
|
|
secp256k1_gej tmp;
|
|
SECP256K1_GEJ_VERIFY(b);
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
|
|
secp256k1_gej_neg(&tmp, a);
|
|
secp256k1_gej_add_var(&tmp, &tmp, b, NULL);
|
|
return secp256k1_gej_is_infinity(&tmp);
|
|
}
|
|
|
|
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
|
|
secp256k1_fe r;
|
|
SECP256K1_FE_VERIFY(x);
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
VERIFY_CHECK(!a->infinity);
|
|
|
|
secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
|
|
return secp256k1_fe_equal(&r, &a->x);
|
|
}
|
|
|
|
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
|
|
r->infinity = a->infinity;
|
|
r->x = a->x;
|
|
r->y = a->y;
|
|
r->z = a->z;
|
|
secp256k1_fe_normalize_weak(&r->y);
|
|
secp256k1_fe_negate(&r->y, &r->y, 1);
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
|
|
return a->infinity;
|
|
}
|
|
|
|
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
|
|
secp256k1_fe y2, x3;
|
|
SECP256K1_GE_VERIFY(a);
|
|
|
|
if (a->infinity) {
|
|
return 0;
|
|
}
|
|
/* y^2 = x^3 + 7 */
|
|
secp256k1_fe_sqr(&y2, &a->y);
|
|
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
|
|
secp256k1_fe_add_int(&x3, SECP256K1_B);
|
|
return secp256k1_fe_equal(&y2, &x3);
|
|
}
|
|
|
|
static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a) {
|
|
/* Operations: 3 mul, 4 sqr, 8 add/half/mul_int/negate */
|
|
secp256k1_fe l, s, t;
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
|
|
r->infinity = a->infinity;
|
|
|
|
/* Formula used:
|
|
* L = (3/2) * X1^2
|
|
* S = Y1^2
|
|
* T = -X1*S
|
|
* X3 = L^2 + 2*T
|
|
* Y3 = -(L*(X3 + T) + S^2)
|
|
* Z3 = Y1*Z1
|
|
*/
|
|
|
|
secp256k1_fe_mul(&r->z, &a->z, &a->y); /* Z3 = Y1*Z1 (1) */
|
|
secp256k1_fe_sqr(&s, &a->y); /* S = Y1^2 (1) */
|
|
secp256k1_fe_sqr(&l, &a->x); /* L = X1^2 (1) */
|
|
secp256k1_fe_mul_int(&l, 3); /* L = 3*X1^2 (3) */
|
|
secp256k1_fe_half(&l); /* L = 3/2*X1^2 (2) */
|
|
secp256k1_fe_negate(&t, &s, 1); /* T = -S (2) */
|
|
secp256k1_fe_mul(&t, &t, &a->x); /* T = -X1*S (1) */
|
|
secp256k1_fe_sqr(&r->x, &l); /* X3 = L^2 (1) */
|
|
secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + T (2) */
|
|
secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + 2*T (3) */
|
|
secp256k1_fe_sqr(&s, &s); /* S' = S^2 (1) */
|
|
secp256k1_fe_add(&t, &r->x); /* T' = X3 + T (4) */
|
|
secp256k1_fe_mul(&r->y, &t, &l); /* Y3 = L*(X3 + T) (1) */
|
|
secp256k1_fe_add(&r->y, &s); /* Y3 = L*(X3 + T) + S^2 (2) */
|
|
secp256k1_fe_negate(&r->y, &r->y, 2); /* Y3 = -(L*(X3 + T) + S^2) (3) */
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
|
|
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
|
|
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
|
|
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
|
|
*
|
|
* Having said this, if this function receives a point on a sextic twist, e.g. by
|
|
* a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
|
|
* since -6 does have a cube root mod p. For this point, this function will not set
|
|
* the infinity flag even though the point doubles to infinity, and the result
|
|
* point will be gibberish (z = 0 but infinity = 0).
|
|
*/
|
|
if (a->infinity) {
|
|
secp256k1_gej_set_infinity(r);
|
|
if (rzr != NULL) {
|
|
secp256k1_fe_set_int(rzr, 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (rzr != NULL) {
|
|
*rzr = a->y;
|
|
secp256k1_fe_normalize_weak(rzr);
|
|
}
|
|
|
|
secp256k1_gej_double(r, a);
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
|
|
/* 12 mul, 4 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
|
|
secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, h2, h3, t;
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
SECP256K1_GEJ_VERIFY(b);
|
|
|
|
if (a->infinity) {
|
|
VERIFY_CHECK(rzr == NULL);
|
|
*r = *b;
|
|
return;
|
|
}
|
|
if (b->infinity) {
|
|
if (rzr != NULL) {
|
|
secp256k1_fe_set_int(rzr, 1);
|
|
}
|
|
*r = *a;
|
|
return;
|
|
}
|
|
|
|
secp256k1_fe_sqr(&z22, &b->z);
|
|
secp256k1_fe_sqr(&z12, &a->z);
|
|
secp256k1_fe_mul(&u1, &a->x, &z22);
|
|
secp256k1_fe_mul(&u2, &b->x, &z12);
|
|
secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
|
|
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
|
|
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
|
|
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
|
|
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
|
|
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
|
|
secp256k1_gej_double_var(r, a, rzr);
|
|
} else {
|
|
if (rzr != NULL) {
|
|
secp256k1_fe_set_int(rzr, 0);
|
|
}
|
|
secp256k1_gej_set_infinity(r);
|
|
}
|
|
return;
|
|
}
|
|
|
|
r->infinity = 0;
|
|
secp256k1_fe_mul(&t, &h, &b->z);
|
|
if (rzr != NULL) {
|
|
*rzr = t;
|
|
}
|
|
secp256k1_fe_mul(&r->z, &a->z, &t);
|
|
|
|
secp256k1_fe_sqr(&h2, &h);
|
|
secp256k1_fe_negate(&h2, &h2, 1);
|
|
secp256k1_fe_mul(&h3, &h2, &h);
|
|
secp256k1_fe_mul(&t, &u1, &h2);
|
|
|
|
secp256k1_fe_sqr(&r->x, &i);
|
|
secp256k1_fe_add(&r->x, &h3);
|
|
secp256k1_fe_add(&r->x, &t);
|
|
secp256k1_fe_add(&r->x, &t);
|
|
|
|
secp256k1_fe_add(&t, &r->x);
|
|
secp256k1_fe_mul(&r->y, &t, &i);
|
|
secp256k1_fe_mul(&h3, &h3, &s1);
|
|
secp256k1_fe_add(&r->y, &h3);
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
|
|
/* Operations: 8 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
|
|
secp256k1_fe z12, u1, u2, s1, s2, h, i, h2, h3, t;
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
SECP256K1_GE_VERIFY(b);
|
|
|
|
if (a->infinity) {
|
|
VERIFY_CHECK(rzr == NULL);
|
|
secp256k1_gej_set_ge(r, b);
|
|
return;
|
|
}
|
|
if (b->infinity) {
|
|
if (rzr != NULL) {
|
|
secp256k1_fe_set_int(rzr, 1);
|
|
}
|
|
*r = *a;
|
|
return;
|
|
}
|
|
|
|
secp256k1_fe_sqr(&z12, &a->z);
|
|
u1 = a->x;
|
|
secp256k1_fe_mul(&u2, &b->x, &z12);
|
|
s1 = a->y;
|
|
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
|
|
secp256k1_fe_negate(&h, &u1, SECP256K1_GEJ_X_MAGNITUDE_MAX); secp256k1_fe_add(&h, &u2);
|
|
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
|
|
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
|
|
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
|
|
secp256k1_gej_double_var(r, a, rzr);
|
|
} else {
|
|
if (rzr != NULL) {
|
|
secp256k1_fe_set_int(rzr, 0);
|
|
}
|
|
secp256k1_gej_set_infinity(r);
|
|
}
|
|
return;
|
|
}
|
|
|
|
r->infinity = 0;
|
|
if (rzr != NULL) {
|
|
*rzr = h;
|
|
}
|
|
secp256k1_fe_mul(&r->z, &a->z, &h);
|
|
|
|
secp256k1_fe_sqr(&h2, &h);
|
|
secp256k1_fe_negate(&h2, &h2, 1);
|
|
secp256k1_fe_mul(&h3, &h2, &h);
|
|
secp256k1_fe_mul(&t, &u1, &h2);
|
|
|
|
secp256k1_fe_sqr(&r->x, &i);
|
|
secp256k1_fe_add(&r->x, &h3);
|
|
secp256k1_fe_add(&r->x, &t);
|
|
secp256k1_fe_add(&r->x, &t);
|
|
|
|
secp256k1_fe_add(&t, &r->x);
|
|
secp256k1_fe_mul(&r->y, &t, &i);
|
|
secp256k1_fe_mul(&h3, &h3, &s1);
|
|
secp256k1_fe_add(&r->y, &h3);
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
if (rzr != NULL) SECP256K1_FE_VERIFY(rzr);
|
|
}
|
|
|
|
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
|
|
/* Operations: 9 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
|
|
secp256k1_fe az, z12, u1, u2, s1, s2, h, i, h2, h3, t;
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
SECP256K1_GE_VERIFY(b);
|
|
SECP256K1_FE_VERIFY(bzinv);
|
|
|
|
if (a->infinity) {
|
|
secp256k1_fe bzinv2, bzinv3;
|
|
r->infinity = b->infinity;
|
|
secp256k1_fe_sqr(&bzinv2, bzinv);
|
|
secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
|
|
secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
|
|
secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
|
|
secp256k1_fe_set_int(&r->z, 1);
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
return;
|
|
}
|
|
if (b->infinity) {
|
|
*r = *a;
|
|
return;
|
|
}
|
|
|
|
/** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
|
|
* secp256k1's isomorphism we can multiply the Z coordinates on both sides
|
|
* by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
|
|
* This means that (rx,ry,rz) can be calculated as
|
|
* (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
|
|
* The variable az below holds the modified Z coordinate for a, which is used
|
|
* for the computation of rx and ry, but not for rz.
|
|
*/
|
|
secp256k1_fe_mul(&az, &a->z, bzinv);
|
|
|
|
secp256k1_fe_sqr(&z12, &az);
|
|
u1 = a->x;
|
|
secp256k1_fe_mul(&u2, &b->x, &z12);
|
|
s1 = a->y;
|
|
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
|
|
secp256k1_fe_negate(&h, &u1, SECP256K1_GEJ_X_MAGNITUDE_MAX); secp256k1_fe_add(&h, &u2);
|
|
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
|
|
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
|
|
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
|
|
secp256k1_gej_double_var(r, a, NULL);
|
|
} else {
|
|
secp256k1_gej_set_infinity(r);
|
|
}
|
|
return;
|
|
}
|
|
|
|
r->infinity = 0;
|
|
secp256k1_fe_mul(&r->z, &a->z, &h);
|
|
|
|
secp256k1_fe_sqr(&h2, &h);
|
|
secp256k1_fe_negate(&h2, &h2, 1);
|
|
secp256k1_fe_mul(&h3, &h2, &h);
|
|
secp256k1_fe_mul(&t, &u1, &h2);
|
|
|
|
secp256k1_fe_sqr(&r->x, &i);
|
|
secp256k1_fe_add(&r->x, &h3);
|
|
secp256k1_fe_add(&r->x, &t);
|
|
secp256k1_fe_add(&r->x, &t);
|
|
|
|
secp256k1_fe_add(&t, &r->x);
|
|
secp256k1_fe_mul(&r->y, &t, &i);
|
|
secp256k1_fe_mul(&h3, &h3, &s1);
|
|
secp256k1_fe_add(&r->y, &h3);
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
|
|
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
|
|
/* Operations: 7 mul, 5 sqr, 21 add/cmov/half/mul_int/negate/normalizes_to_zero */
|
|
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
|
|
secp256k1_fe m_alt, rr_alt;
|
|
int degenerate;
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
SECP256K1_GE_VERIFY(b);
|
|
VERIFY_CHECK(!b->infinity);
|
|
|
|
/* In:
|
|
* Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
|
|
* In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
|
|
* we find as solution for a unified addition/doubling formula:
|
|
* lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
|
|
* x3 = lambda^2 - (x1 + x2)
|
|
* 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
|
|
*
|
|
* Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
|
|
* U1 = X1*Z2^2, U2 = X2*Z1^2
|
|
* S1 = Y1*Z2^3, S2 = Y2*Z1^3
|
|
* Z = Z1*Z2
|
|
* T = U1+U2
|
|
* M = S1+S2
|
|
* Q = -T*M^2
|
|
* R = T^2-U1*U2
|
|
* X3 = R^2+Q
|
|
* Y3 = -(R*(2*X3+Q)+M^4)/2
|
|
* Z3 = M*Z
|
|
* (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
|
|
*
|
|
* This formula has the benefit of being the same for both addition
|
|
* of distinct points and doubling. However, it breaks down in the
|
|
* case that either point is infinity, or that y1 = -y2. We handle
|
|
* these cases in the following ways:
|
|
*
|
|
* - If b is infinity we simply bail by means of a VERIFY_CHECK.
|
|
*
|
|
* - If a is infinity, we detect this, and at the end of the
|
|
* computation replace the result (which will be meaningless,
|
|
* but we compute to be constant-time) with b.x : b.y : 1.
|
|
*
|
|
* - If a = -b, we have y1 = -y2, which is a degenerate case.
|
|
* But here the answer is infinity, so we simply set the
|
|
* infinity flag of the result, overriding the computed values
|
|
* without even needing to cmov.
|
|
*
|
|
* - If y1 = -y2 but x1 != x2, which does occur thanks to certain
|
|
* properties of our curve (specifically, 1 has nontrivial cube
|
|
* roots in our field, and the curve equation has no x coefficient)
|
|
* then the answer is not infinity but also not given by the above
|
|
* equation. In this case, we cmov in place an alternate expression
|
|
* for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
|
|
* expressions for lambda are defined, they are equal, and can be
|
|
* obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
|
|
* then substitution of x^3 + 7 for y^2 (using the curve equation).
|
|
* For all pairs of nonzero points (a, b) at least one is defined,
|
|
* so this covers everything.
|
|
*/
|
|
|
|
secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
|
|
u1 = a->x; /* u1 = U1 = X1*Z2^2 (GEJ_X_M) */
|
|
secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
|
|
s1 = a->y; /* s1 = S1 = Y1*Z2^3 (GEJ_Y_M) */
|
|
secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
|
|
secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
|
|
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (GEJ_X_M+1) */
|
|
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (GEJ_Y_M+1) */
|
|
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
|
|
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 (2) */
|
|
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (1) */
|
|
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (2) */
|
|
/* If lambda = R/M = R/0 we have a problem (except in the "trivial"
|
|
* case that Z = z1z2 = 0, and this is special-cased later on). */
|
|
degenerate = secp256k1_fe_normalizes_to_zero(&m);
|
|
/* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
|
|
* This means either x1 == beta*x2 or beta*x1 == x2, where beta is
|
|
* a nontrivial cube root of one. In either case, an alternate
|
|
* non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
|
|
* so we set R/M equal to this. */
|
|
rr_alt = s1;
|
|
secp256k1_fe_mul_int(&rr_alt, 2); /* rr_alt = Y1*Z2^3 - Y2*Z1^3 (GEJ_Y_M*2) */
|
|
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 (GEJ_X_M+2) */
|
|
|
|
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); /* rr_alt (GEJ_Y_M*2) */
|
|
secp256k1_fe_cmov(&m_alt, &m, !degenerate); /* m_alt (GEJ_X_M+2) */
|
|
/* Now Ralt / Malt = lambda and is guaranteed not to be Ralt / 0.
|
|
* From here on out Ralt and Malt represent the numerator
|
|
* and denominator of lambda; R and M represent the explicit
|
|
* expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
|
|
secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
|
|
secp256k1_fe_negate(&q, &t,
|
|
SECP256K1_GEJ_X_MAGNITUDE_MAX + 1); /* q = -T (GEJ_X_M+2) */
|
|
secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */
|
|
/* These two lines use the observation that either M == Malt or M == 0,
|
|
* so M^3 * Malt is either Malt^4 (which is computed by squaring), or
|
|
* zero (which is "computed" by cmov). So the cost is one squaring
|
|
* versus two multiplications. */
|
|
secp256k1_fe_sqr(&n, &n); /* n = Malt^4 (1) */
|
|
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (GEJ_Y_M+1) */
|
|
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
|
|
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */
|
|
secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */
|
|
r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */
|
|
secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */
|
|
secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */
|
|
secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */
|
|
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (GEJ_Y_M+2) */
|
|
secp256k1_fe_negate(&r->y, &t,
|
|
SECP256K1_GEJ_Y_MAGNITUDE_MAX + 2); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (GEJ_Y_M+3) */
|
|
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 ((GEJ_Y_M+3)/2 + 1) */
|
|
|
|
/* In case a->infinity == 1, replace r with (b->x, b->y, 1). */
|
|
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
|
|
secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
|
|
secp256k1_fe_cmov(&r->z, &secp256k1_fe_one, a->infinity);
|
|
|
|
/* Set r->infinity if r->z is 0.
|
|
*
|
|
* If a->infinity is set, then r->infinity = (r->z == 0) = (1 == 0) = false,
|
|
* which is correct because the function assumes that b is not infinity.
|
|
*
|
|
* Now assume !a->infinity. This implies Z = Z1 != 0.
|
|
*
|
|
* Case y1 = -y2:
|
|
* In this case we could have a = -b, namely if x1 = x2.
|
|
* We have degenerate = true, r->z = (x1 - x2) * Z.
|
|
* Then r->infinity = ((x1 - x2)Z == 0) = (x1 == x2) = (a == -b).
|
|
*
|
|
* Case y1 != -y2:
|
|
* In this case, we can't have a = -b.
|
|
* We have degenerate = false, r->z = (y1 + y2) * Z.
|
|
* Then r->infinity = ((y1 + y2)Z == 0) = (y1 == -y2) = false. */
|
|
r->infinity = secp256k1_fe_normalizes_to_zero(&r->z);
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
|
|
/* Operations: 4 mul, 1 sqr */
|
|
secp256k1_fe zz;
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
SECP256K1_FE_VERIFY(s);
|
|
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(s));
|
|
|
|
secp256k1_fe_sqr(&zz, s);
|
|
secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
|
|
secp256k1_fe_mul(&r->y, &r->y, &zz);
|
|
secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
|
|
secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
|
|
secp256k1_fe x, y;
|
|
SECP256K1_GE_VERIFY(a);
|
|
VERIFY_CHECK(!a->infinity);
|
|
|
|
x = a->x;
|
|
secp256k1_fe_normalize(&x);
|
|
y = a->y;
|
|
secp256k1_fe_normalize(&y);
|
|
secp256k1_fe_to_storage(&r->x, &x);
|
|
secp256k1_fe_to_storage(&r->y, &y);
|
|
}
|
|
|
|
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
|
|
secp256k1_fe_from_storage(&r->x, &a->x);
|
|
secp256k1_fe_from_storage(&r->y, &a->y);
|
|
r->infinity = 0;
|
|
|
|
SECP256K1_GE_VERIFY(r);
|
|
}
|
|
|
|
static SECP256K1_INLINE void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag) {
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
SECP256K1_GEJ_VERIFY(a);
|
|
|
|
secp256k1_fe_cmov(&r->x, &a->x, flag);
|
|
secp256k1_fe_cmov(&r->y, &a->y, flag);
|
|
secp256k1_fe_cmov(&r->z, &a->z, flag);
|
|
r->infinity ^= (r->infinity ^ a->infinity) & flag;
|
|
|
|
SECP256K1_GEJ_VERIFY(r);
|
|
}
|
|
|
|
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
|
|
secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
|
|
secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
|
|
}
|
|
|
|
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
|
|
SECP256K1_GE_VERIFY(a);
|
|
|
|
*r = *a;
|
|
secp256k1_fe_mul(&r->x, &r->x, &secp256k1_const_beta);
|
|
|
|
SECP256K1_GE_VERIFY(r);
|
|
}
|
|
|
|
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
|
|
#ifdef EXHAUSTIVE_TEST_ORDER
|
|
secp256k1_gej out;
|
|
int i;
|
|
SECP256K1_GE_VERIFY(ge);
|
|
|
|
/* A very simple EC multiplication ladder that avoids a dependency on ecmult. */
|
|
secp256k1_gej_set_infinity(&out);
|
|
for (i = 0; i < 32; ++i) {
|
|
secp256k1_gej_double_var(&out, &out, NULL);
|
|
if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) {
|
|
secp256k1_gej_add_ge_var(&out, &out, ge, NULL);
|
|
}
|
|
}
|
|
return secp256k1_gej_is_infinity(&out);
|
|
#else
|
|
SECP256K1_GE_VERIFY(ge);
|
|
|
|
(void)ge;
|
|
/* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x) {
|
|
secp256k1_fe c;
|
|
secp256k1_fe_sqr(&c, x);
|
|
secp256k1_fe_mul(&c, &c, x);
|
|
secp256k1_fe_add_int(&c, SECP256K1_B);
|
|
return secp256k1_fe_is_square_var(&c);
|
|
}
|
|
|
|
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd) {
|
|
/* We want to determine whether (xn/xd) is on the curve.
|
|
*
|
|
* (xn/xd)^3 + 7 is square <=> xd*xn^3 + 7*xd^4 is square (multiplying by xd^4, a square).
|
|
*/
|
|
secp256k1_fe r, t;
|
|
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(xd));
|
|
|
|
secp256k1_fe_mul(&r, xd, xn); /* r = xd*xn */
|
|
secp256k1_fe_sqr(&t, xn); /* t = xn^2 */
|
|
secp256k1_fe_mul(&r, &r, &t); /* r = xd*xn^3 */
|
|
secp256k1_fe_sqr(&t, xd); /* t = xd^2 */
|
|
secp256k1_fe_sqr(&t, &t); /* t = xd^4 */
|
|
VERIFY_CHECK(SECP256K1_B <= 31);
|
|
secp256k1_fe_mul_int(&t, SECP256K1_B); /* t = 7*xd^4 */
|
|
secp256k1_fe_add(&r, &t); /* r = xd*xn^3 + 7*xd^4 */
|
|
return secp256k1_fe_is_square_var(&r);
|
|
}
|
|
|
|
#endif /* SECP256K1_GROUP_IMPL_H */
|