This is a backwards-compatible API change: Before this commit, a context initialized for signing was required to call functions that rely on ecmult_gen. After this commit, this is no longer necessary because the static ecmult_gen table is always present. In practice this means that the corresponding functions will just work instead of calling the illegal callback when given a context which is not (officially) initialized for signing. This is in line with 6815761, which made the analogous change with respect to ecmult and contexts initialized for signing. But as opposed to 681571, which removed the ecmult context entirely, we cannot remove the ecmult_gen context entirely because it is still used for random blinding. Moreover, since the secp256k1_context_no_precomp context is const and cannot meaningfully support random blinding, we refrain (for now) from changing its API, i.e., the illegal callback will still be called when trying to use ecmult_gen operations with the static secp256k1_context_no_precomp context.
596 lines
26 KiB
C
596 lines
26 KiB
C
/***********************************************************************
|
|
* Copyright (c) 2020 Jonas Nick *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
|
***********************************************************************/
|
|
|
|
#ifndef SECP256K1_MODULE_EXTRAKEYS_TESTS_H
|
|
#define SECP256K1_MODULE_EXTRAKEYS_TESTS_H
|
|
|
|
#include "../../../include/secp256k1_extrakeys.h"
|
|
|
|
static secp256k1_context* api_test_context(int flags, int *ecount) {
|
|
secp256k1_context *ctx0 = secp256k1_context_create(flags);
|
|
secp256k1_context_set_error_callback(ctx0, counting_illegal_callback_fn, ecount);
|
|
secp256k1_context_set_illegal_callback(ctx0, counting_illegal_callback_fn, ecount);
|
|
return ctx0;
|
|
}
|
|
|
|
void test_xonly_pubkey(void) {
|
|
secp256k1_pubkey pk;
|
|
secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp;
|
|
secp256k1_ge pk1;
|
|
secp256k1_ge pk2;
|
|
secp256k1_fe y;
|
|
unsigned char sk[32];
|
|
unsigned char xy_sk[32];
|
|
unsigned char buf32[32];
|
|
unsigned char ones32[32];
|
|
unsigned char zeros64[64] = { 0 };
|
|
int pk_parity;
|
|
int i;
|
|
|
|
int ecount;
|
|
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
|
|
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
|
|
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
|
|
|
|
secp256k1_testrand256(sk);
|
|
memset(ones32, 0xFF, 32);
|
|
secp256k1_testrand256(xy_sk);
|
|
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
|
|
|
|
/* Test xonly_pubkey_from_pubkey */
|
|
ecount = 0;
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(sign, &xonly_pk, &pk_parity, &pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(verify, &xonly_pk, &pk_parity, &pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, NULL, &pk_parity, &pk) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
memset(&pk, 0, sizeof(pk));
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 0);
|
|
CHECK(ecount == 3);
|
|
|
|
/* Choose a secret key such that the resulting pubkey and xonly_pubkey match. */
|
|
memset(sk, 0, sizeof(sk));
|
|
sk[0] = 1;
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1);
|
|
CHECK(secp256k1_memcmp_var(&pk, &xonly_pk, sizeof(pk)) == 0);
|
|
CHECK(pk_parity == 0);
|
|
|
|
/* Choose a secret key such that pubkey and xonly_pubkey are each others
|
|
* negation. */
|
|
sk[0] = 2;
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1);
|
|
CHECK(secp256k1_memcmp_var(&xonly_pk, &pk, sizeof(xonly_pk)) != 0);
|
|
CHECK(pk_parity == 1);
|
|
secp256k1_pubkey_load(ctx, &pk1, &pk);
|
|
secp256k1_pubkey_load(ctx, &pk2, (secp256k1_pubkey *) &xonly_pk);
|
|
CHECK(secp256k1_fe_equal(&pk1.x, &pk2.x) == 1);
|
|
secp256k1_fe_negate(&y, &pk2.y, 1);
|
|
CHECK(secp256k1_fe_equal(&pk1.y, &y) == 1);
|
|
|
|
/* Test xonly_pubkey_serialize and xonly_pubkey_parse */
|
|
ecount = 0;
|
|
CHECK(secp256k1_xonly_pubkey_serialize(none, NULL, &xonly_pk) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, NULL) == 0);
|
|
CHECK(secp256k1_memcmp_var(buf32, zeros64, 32) == 0);
|
|
CHECK(ecount == 2);
|
|
{
|
|
/* A pubkey filled with 0s will fail to serialize due to pubkey_load
|
|
* special casing. */
|
|
secp256k1_xonly_pubkey pk_tmp;
|
|
memset(&pk_tmp, 0, sizeof(pk_tmp));
|
|
CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, &pk_tmp) == 0);
|
|
}
|
|
/* pubkey_load called illegal callback */
|
|
CHECK(ecount == 3);
|
|
|
|
CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, &xonly_pk) == 1);
|
|
ecount = 0;
|
|
CHECK(secp256k1_xonly_pubkey_parse(none, NULL, buf32) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
|
|
/* Serialization and parse roundtrip */
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &xonly_pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk_tmp, buf32) == 1);
|
|
CHECK(secp256k1_memcmp_var(&xonly_pk, &xonly_pk_tmp, sizeof(xonly_pk)) == 0);
|
|
|
|
/* Test parsing invalid field elements */
|
|
memset(&xonly_pk, 1, sizeof(xonly_pk));
|
|
/* Overflowing field element */
|
|
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, ones32) == 0);
|
|
CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
|
|
memset(&xonly_pk, 1, sizeof(xonly_pk));
|
|
/* There's no point with x-coordinate 0 on secp256k1 */
|
|
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, zeros64) == 0);
|
|
CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
|
|
/* If a random 32-byte string can not be parsed with ec_pubkey_parse
|
|
* (because interpreted as X coordinate it does not correspond to a point on
|
|
* the curve) then xonly_pubkey_parse should fail as well. */
|
|
for (i = 0; i < count; i++) {
|
|
unsigned char rand33[33];
|
|
secp256k1_testrand256(&rand33[1]);
|
|
rand33[0] = SECP256K1_TAG_PUBKEY_EVEN;
|
|
if (!secp256k1_ec_pubkey_parse(ctx, &pk, rand33, 33)) {
|
|
memset(&xonly_pk, 1, sizeof(xonly_pk));
|
|
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 0);
|
|
CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
|
|
} else {
|
|
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 1);
|
|
}
|
|
}
|
|
CHECK(ecount == 2);
|
|
|
|
secp256k1_context_destroy(none);
|
|
secp256k1_context_destroy(sign);
|
|
secp256k1_context_destroy(verify);
|
|
}
|
|
|
|
void test_xonly_pubkey_comparison(void) {
|
|
unsigned char pk1_ser[32] = {
|
|
0x58, 0x84, 0xb3, 0xa2, 0x4b, 0x97, 0x37, 0x88, 0x92, 0x38, 0xa6, 0x26, 0x62, 0x52, 0x35, 0x11,
|
|
0xd0, 0x9a, 0xa1, 0x1b, 0x80, 0x0b, 0x5e, 0x93, 0x80, 0x26, 0x11, 0xef, 0x67, 0x4b, 0xd9, 0x23
|
|
};
|
|
const unsigned char pk2_ser[32] = {
|
|
0xde, 0x36, 0x0e, 0x87, 0x59, 0x8f, 0x3c, 0x01, 0x36, 0x2a, 0x2a, 0xb8, 0xc6, 0xf4, 0x5e, 0x4d,
|
|
0xb2, 0xc2, 0xd5, 0x03, 0xa7, 0xf9, 0xf1, 0x4f, 0xa8, 0xfa, 0x95, 0xa8, 0xe9, 0x69, 0x76, 0x1c
|
|
};
|
|
secp256k1_xonly_pubkey pk1;
|
|
secp256k1_xonly_pubkey pk2;
|
|
int ecount = 0;
|
|
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
|
|
|
|
CHECK(secp256k1_xonly_pubkey_parse(none, &pk1, pk1_ser) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_parse(none, &pk2, pk2_ser) == 1);
|
|
|
|
CHECK(secp256k1_xonly_pubkey_cmp(none, NULL, &pk2) < 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_xonly_pubkey_cmp(none, &pk1, NULL) > 0);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_xonly_pubkey_cmp(none, &pk1, &pk2) < 0);
|
|
CHECK(secp256k1_xonly_pubkey_cmp(none, &pk2, &pk1) > 0);
|
|
CHECK(secp256k1_xonly_pubkey_cmp(none, &pk1, &pk1) == 0);
|
|
CHECK(secp256k1_xonly_pubkey_cmp(none, &pk2, &pk2) == 0);
|
|
CHECK(ecount == 2);
|
|
memset(&pk1, 0, sizeof(pk1)); /* illegal pubkey */
|
|
CHECK(secp256k1_xonly_pubkey_cmp(none, &pk1, &pk2) < 0);
|
|
CHECK(ecount == 3);
|
|
CHECK(secp256k1_xonly_pubkey_cmp(none, &pk1, &pk1) == 0);
|
|
CHECK(ecount == 5);
|
|
CHECK(secp256k1_xonly_pubkey_cmp(none, &pk2, &pk1) > 0);
|
|
CHECK(ecount == 6);
|
|
|
|
secp256k1_context_destroy(none);
|
|
}
|
|
|
|
void test_xonly_pubkey_tweak(void) {
|
|
unsigned char zeros64[64] = { 0 };
|
|
unsigned char overflows[32];
|
|
unsigned char sk[32];
|
|
secp256k1_pubkey internal_pk;
|
|
secp256k1_xonly_pubkey internal_xonly_pk;
|
|
secp256k1_pubkey output_pk;
|
|
int pk_parity;
|
|
unsigned char tweak[32];
|
|
int i;
|
|
|
|
int ecount;
|
|
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
|
|
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
|
|
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
|
|
|
|
memset(overflows, 0xff, sizeof(overflows));
|
|
secp256k1_testrand256(tweak);
|
|
secp256k1_testrand256(sk);
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
|
|
|
|
ecount = 0;
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(none, &output_pk, &internal_xonly_pk, tweak) == 1);
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(sign, &output_pk, &internal_xonly_pk, tweak) == 1);
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, NULL, &internal_xonly_pk, tweak) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, NULL, tweak) == 0);
|
|
CHECK(ecount == 2);
|
|
/* NULL internal_xonly_pk zeroes the output_pk */
|
|
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, NULL) == 0);
|
|
CHECK(ecount == 3);
|
|
/* NULL tweak zeroes the output_pk */
|
|
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
|
|
|
/* Invalid tweak zeroes the output_pk */
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, overflows) == 0);
|
|
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
|
|
|
/* A zero tweak is fine */
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, zeros64) == 1);
|
|
|
|
/* Fails if the resulting key was infinity */
|
|
for (i = 0; i < count; i++) {
|
|
secp256k1_scalar scalar_tweak;
|
|
/* Because sk may be negated before adding, we need to try with tweak =
|
|
* sk as well as tweak = -sk. */
|
|
secp256k1_scalar_set_b32(&scalar_tweak, sk, NULL);
|
|
secp256k1_scalar_negate(&scalar_tweak, &scalar_tweak);
|
|
secp256k1_scalar_get_b32(tweak, &scalar_tweak);
|
|
CHECK((secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, sk) == 0)
|
|
|| (secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0));
|
|
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
|
}
|
|
|
|
/* Invalid pk with a valid tweak */
|
|
memset(&internal_xonly_pk, 0, sizeof(internal_xonly_pk));
|
|
secp256k1_testrand256(tweak);
|
|
ecount = 0;
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
|
|
|
secp256k1_context_destroy(none);
|
|
secp256k1_context_destroy(sign);
|
|
secp256k1_context_destroy(verify);
|
|
}
|
|
|
|
void test_xonly_pubkey_tweak_check(void) {
|
|
unsigned char zeros64[64] = { 0 };
|
|
unsigned char overflows[32];
|
|
unsigned char sk[32];
|
|
secp256k1_pubkey internal_pk;
|
|
secp256k1_xonly_pubkey internal_xonly_pk;
|
|
secp256k1_pubkey output_pk;
|
|
secp256k1_xonly_pubkey output_xonly_pk;
|
|
unsigned char output_pk32[32];
|
|
unsigned char buf32[32];
|
|
int pk_parity;
|
|
unsigned char tweak[32];
|
|
|
|
int ecount;
|
|
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
|
|
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
|
|
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
|
|
|
|
memset(overflows, 0xff, sizeof(overflows));
|
|
secp256k1_testrand256(tweak);
|
|
secp256k1_testrand256(sk);
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
|
|
|
|
ecount = 0;
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(verify, &output_xonly_pk, &pk_parity, &output_pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &output_xonly_pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(none, buf32, pk_parity, &internal_xonly_pk, tweak) == 1);
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(sign, buf32, pk_parity, &internal_xonly_pk, tweak) == 1);
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, &internal_xonly_pk, tweak) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, NULL, pk_parity, &internal_xonly_pk, tweak) == 0);
|
|
CHECK(ecount == 1);
|
|
/* invalid pk_parity value */
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, 2, &internal_xonly_pk, tweak) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, NULL, tweak) == 0);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, &internal_xonly_pk, NULL) == 0);
|
|
CHECK(ecount == 3);
|
|
|
|
memset(tweak, 1, sizeof(tweak));
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &internal_xonly_pk, NULL, &internal_pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, tweak) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &output_xonly_pk, &pk_parity, &output_pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_serialize(ctx, output_pk32, &output_xonly_pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, tweak) == 1);
|
|
|
|
/* Wrong pk_parity */
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, !pk_parity, &internal_xonly_pk, tweak) == 0);
|
|
/* Wrong public key */
|
|
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &internal_xonly_pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, buf32, pk_parity, &internal_xonly_pk, tweak) == 0);
|
|
|
|
/* Overflowing tweak not allowed */
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, overflows) == 0);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, overflows) == 0);
|
|
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
|
CHECK(ecount == 3);
|
|
|
|
secp256k1_context_destroy(none);
|
|
secp256k1_context_destroy(sign);
|
|
secp256k1_context_destroy(verify);
|
|
}
|
|
|
|
/* Starts with an initial pubkey and recursively creates N_PUBKEYS - 1
|
|
* additional pubkeys by calling tweak_add. Then verifies every tweak starting
|
|
* from the last pubkey. */
|
|
#define N_PUBKEYS 32
|
|
void test_xonly_pubkey_tweak_recursive(void) {
|
|
unsigned char sk[32];
|
|
secp256k1_pubkey pk[N_PUBKEYS];
|
|
unsigned char pk_serialized[32];
|
|
unsigned char tweak[N_PUBKEYS - 1][32];
|
|
int i;
|
|
|
|
secp256k1_testrand256(sk);
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk) == 1);
|
|
/* Add tweaks */
|
|
for (i = 0; i < N_PUBKEYS - 1; i++) {
|
|
secp256k1_xonly_pubkey xonly_pk;
|
|
memset(tweak[i], i + 1, sizeof(tweak[i]));
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, NULL, &pk[i]) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &pk[i + 1], &xonly_pk, tweak[i]) == 1);
|
|
}
|
|
|
|
/* Verify tweaks */
|
|
for (i = N_PUBKEYS - 1; i > 0; i--) {
|
|
secp256k1_xonly_pubkey xonly_pk;
|
|
int pk_parity;
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk[i]) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_serialize(ctx, pk_serialized, &xonly_pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, NULL, &pk[i - 1]) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, pk_serialized, pk_parity, &xonly_pk, tweak[i - 1]) == 1);
|
|
}
|
|
}
|
|
#undef N_PUBKEYS
|
|
|
|
void test_keypair(void) {
|
|
unsigned char sk[32];
|
|
unsigned char sk_tmp[32];
|
|
unsigned char zeros96[96] = { 0 };
|
|
unsigned char overflows[32];
|
|
secp256k1_keypair keypair;
|
|
secp256k1_pubkey pk, pk_tmp;
|
|
secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp;
|
|
int pk_parity, pk_parity_tmp;
|
|
int ecount;
|
|
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
|
|
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
|
|
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
|
|
secp256k1_context *sttc = secp256k1_context_clone(secp256k1_context_no_precomp);
|
|
secp256k1_context_set_error_callback(sttc, counting_illegal_callback_fn, &ecount);
|
|
secp256k1_context_set_illegal_callback(sttc, counting_illegal_callback_fn, &ecount);
|
|
|
|
CHECK(sizeof(zeros96) == sizeof(keypair));
|
|
memset(overflows, 0xFF, sizeof(overflows));
|
|
|
|
/* Test keypair_create */
|
|
ecount = 0;
|
|
secp256k1_testrand256(sk);
|
|
CHECK(secp256k1_keypair_create(none, &keypair, sk) == 1);
|
|
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) != 0);
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_keypair_create(verify, &keypair, sk) == 1);
|
|
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) != 0);
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_keypair_create(sign, NULL, sk) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_keypair_create(sign, &keypair, NULL) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_keypair_create(sttc, &keypair, sk) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
|
|
CHECK(ecount == 3);
|
|
|
|
/* Invalid secret key */
|
|
CHECK(secp256k1_keypair_create(sign, &keypair, zeros96) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
|
|
CHECK(secp256k1_keypair_create(sign, &keypair, overflows) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
|
|
|
|
/* Test keypair_pub */
|
|
ecount = 0;
|
|
secp256k1_testrand256(sk);
|
|
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
|
CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1);
|
|
CHECK(secp256k1_keypair_pub(none, NULL, &keypair) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_keypair_pub(none, &pk, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0);
|
|
|
|
/* Using an invalid keypair is fine for keypair_pub */
|
|
memset(&keypair, 0, sizeof(keypair));
|
|
CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1);
|
|
CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0);
|
|
|
|
/* keypair holds the same pubkey as pubkey_create */
|
|
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
|
|
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
|
|
CHECK(secp256k1_keypair_pub(none, &pk_tmp, &keypair) == 1);
|
|
CHECK(secp256k1_memcmp_var(&pk, &pk_tmp, sizeof(pk)) == 0);
|
|
|
|
/** Test keypair_xonly_pub **/
|
|
ecount = 0;
|
|
secp256k1_testrand256(sk);
|
|
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
|
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1);
|
|
CHECK(secp256k1_keypair_xonly_pub(none, NULL, &pk_parity, &keypair) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, NULL, &keypair) == 1);
|
|
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
|
|
/* Using an invalid keypair will set the xonly_pk to 0 (first reset
|
|
* xonly_pk). */
|
|
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1);
|
|
memset(&keypair, 0, sizeof(keypair));
|
|
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 0);
|
|
CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
|
|
CHECK(ecount == 3);
|
|
|
|
/** keypair holds the same xonly pubkey as pubkey_create **/
|
|
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
|
|
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
|
|
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk_tmp, &pk_parity_tmp, &keypair) == 1);
|
|
CHECK(secp256k1_memcmp_var(&xonly_pk, &xonly_pk_tmp, sizeof(pk)) == 0);
|
|
CHECK(pk_parity == pk_parity_tmp);
|
|
|
|
/* Test keypair_seckey */
|
|
ecount = 0;
|
|
secp256k1_testrand256(sk);
|
|
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
|
CHECK(secp256k1_keypair_sec(none, sk_tmp, &keypair) == 1);
|
|
CHECK(secp256k1_keypair_sec(none, NULL, &keypair) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_keypair_sec(none, sk_tmp, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
CHECK(secp256k1_memcmp_var(zeros96, sk_tmp, sizeof(sk_tmp)) == 0);
|
|
|
|
/* keypair returns the same seckey it got */
|
|
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
|
|
CHECK(secp256k1_keypair_sec(none, sk_tmp, &keypair) == 1);
|
|
CHECK(secp256k1_memcmp_var(sk, sk_tmp, sizeof(sk_tmp)) == 0);
|
|
|
|
|
|
/* Using an invalid keypair is fine for keypair_seckey */
|
|
memset(&keypair, 0, sizeof(keypair));
|
|
CHECK(secp256k1_keypair_sec(none, sk_tmp, &keypair) == 1);
|
|
CHECK(secp256k1_memcmp_var(zeros96, sk_tmp, sizeof(sk_tmp)) == 0);
|
|
|
|
secp256k1_context_destroy(none);
|
|
secp256k1_context_destroy(sign);
|
|
secp256k1_context_destroy(verify);
|
|
secp256k1_context_destroy(sttc);
|
|
}
|
|
|
|
void test_keypair_add(void) {
|
|
unsigned char sk[32];
|
|
secp256k1_keypair keypair;
|
|
unsigned char overflows[32];
|
|
unsigned char zeros96[96] = { 0 };
|
|
unsigned char tweak[32];
|
|
int i;
|
|
int ecount = 0;
|
|
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
|
|
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
|
|
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
|
|
|
|
CHECK(sizeof(zeros96) == sizeof(keypair));
|
|
secp256k1_testrand256(sk);
|
|
secp256k1_testrand256(tweak);
|
|
memset(overflows, 0xFF, 32);
|
|
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
|
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(none, &keypair, tweak) == 1);
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(sign, &keypair, tweak) == 1);
|
|
CHECK(ecount == 0);
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 1);
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(verify, NULL, tweak) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, NULL) == 0);
|
|
CHECK(ecount == 2);
|
|
/* This does not set the keypair to zeroes */
|
|
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) != 0);
|
|
|
|
/* Invalid tweak zeroes the keypair */
|
|
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, overflows) == 0);
|
|
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0);
|
|
|
|
/* A zero tweak is fine */
|
|
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, zeros96) == 1);
|
|
|
|
/* Fails if the resulting keypair was (sk=0, pk=infinity) */
|
|
for (i = 0; i < count; i++) {
|
|
secp256k1_scalar scalar_tweak;
|
|
secp256k1_keypair keypair_tmp;
|
|
secp256k1_testrand256(sk);
|
|
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
|
memcpy(&keypair_tmp, &keypair, sizeof(keypair));
|
|
/* Because sk may be negated before adding, we need to try with tweak =
|
|
* sk as well as tweak = -sk. */
|
|
secp256k1_scalar_set_b32(&scalar_tweak, sk, NULL);
|
|
secp256k1_scalar_negate(&scalar_tweak, &scalar_tweak);
|
|
secp256k1_scalar_get_b32(tweak, &scalar_tweak);
|
|
CHECK((secp256k1_keypair_xonly_tweak_add(ctx, &keypair, sk) == 0)
|
|
|| (secp256k1_keypair_xonly_tweak_add(ctx, &keypair_tmp, tweak) == 0));
|
|
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0
|
|
|| secp256k1_memcmp_var(&keypair_tmp, zeros96, sizeof(keypair_tmp)) == 0);
|
|
}
|
|
|
|
/* Invalid keypair with a valid tweak */
|
|
memset(&keypair, 0, sizeof(keypair));
|
|
secp256k1_testrand256(tweak);
|
|
ecount = 0;
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
|
|
CHECK(ecount == 1);
|
|
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0);
|
|
/* Only seckey part of keypair invalid */
|
|
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
|
memset(&keypair, 0, 32);
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
|
|
CHECK(ecount == 2);
|
|
/* Only pubkey part of keypair invalid */
|
|
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
|
memset(&keypair.data[32], 0, 64);
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
|
|
CHECK(ecount == 3);
|
|
|
|
/* Check that the keypair_tweak_add implementation is correct */
|
|
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
|
for (i = 0; i < count; i++) {
|
|
secp256k1_xonly_pubkey internal_pk;
|
|
secp256k1_xonly_pubkey output_pk;
|
|
secp256k1_pubkey output_pk_xy;
|
|
secp256k1_pubkey output_pk_expected;
|
|
unsigned char pk32[32];
|
|
unsigned char sk32[32];
|
|
int pk_parity;
|
|
|
|
secp256k1_testrand256(tweak);
|
|
CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1);
|
|
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak) == 1);
|
|
CHECK(secp256k1_keypair_xonly_pub(ctx, &output_pk, &pk_parity, &keypair) == 1);
|
|
|
|
/* Check that it passes xonly_pubkey_tweak_add_check */
|
|
CHECK(secp256k1_xonly_pubkey_serialize(ctx, pk32, &output_pk) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, pk32, pk_parity, &internal_pk, tweak) == 1);
|
|
|
|
/* Check that the resulting pubkey matches xonly_pubkey_tweak_add */
|
|
CHECK(secp256k1_keypair_pub(ctx, &output_pk_xy, &keypair) == 1);
|
|
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk_expected, &internal_pk, tweak) == 1);
|
|
CHECK(secp256k1_memcmp_var(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
|
|
|
|
/* Check that the secret key in the keypair is tweaked correctly */
|
|
CHECK(secp256k1_keypair_sec(none, sk32, &keypair) == 1);
|
|
CHECK(secp256k1_ec_pubkey_create(ctx, &output_pk_expected, sk32) == 1);
|
|
CHECK(secp256k1_memcmp_var(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
|
|
}
|
|
secp256k1_context_destroy(none);
|
|
secp256k1_context_destroy(sign);
|
|
secp256k1_context_destroy(verify);
|
|
}
|
|
|
|
void run_extrakeys_tests(void) {
|
|
/* xonly key test cases */
|
|
test_xonly_pubkey();
|
|
test_xonly_pubkey_tweak();
|
|
test_xonly_pubkey_tweak_check();
|
|
test_xonly_pubkey_tweak_recursive();
|
|
test_xonly_pubkey_comparison();
|
|
|
|
/* keypair tests */
|
|
test_keypair();
|
|
test_keypair_add();
|
|
}
|
|
|
|
#endif
|