/*********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_FIELD_IMPL_H #define SECP256K1_FIELD_IMPL_H #include "field.h" #include "util.h" #if defined(SECP256K1_WIDEMUL_INT128) #include "field_5x52_impl.h" #elif defined(SECP256K1_WIDEMUL_INT64) #include "field_10x26_impl.h" #else #error "Please select wide multiplication implementation" #endif SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) { secp256k1_fe na; SECP256K1_FE_VERIFY(a); SECP256K1_FE_VERIFY(b); SECP256K1_FE_VERIFY_MAGNITUDE(a, 1); SECP256K1_FE_VERIFY_MAGNITUDE(b, 31); secp256k1_fe_negate(&na, a, 1); secp256k1_fe_add(&na, b); return secp256k1_fe_normalizes_to_zero(&na); } static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a) { /** Given that p is congruent to 3 mod 4, we can compute the square root of * a mod p as the (p+1)/4'th power of a. * * As (p+1)/4 is an even number, it will have the same result for a and for * (-a). Only one of these two numbers actually has a square root however, * so we test at the end by squaring and comparing to the input. * Also because (p+1)/4 is an even number, the computed square root is * itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)). */ secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; int j, ret; VERIFY_CHECK(r != a); SECP256K1_FE_VERIFY(a); SECP256K1_FE_VERIFY_MAGNITUDE(a, 8); /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in * { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: * 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] */ secp256k1_fe_sqr(&x2, a); secp256k1_fe_mul(&x2, &x2, a); secp256k1_fe_sqr(&x3, &x2); secp256k1_fe_mul(&x3, &x3, a); x6 = x3; for (j=0; j<3; j++) { secp256k1_fe_sqr(&x6, &x6); } secp256k1_fe_mul(&x6, &x6, &x3); x9 = x6; for (j=0; j<3; j++) { secp256k1_fe_sqr(&x9, &x9); } secp256k1_fe_mul(&x9, &x9, &x3); x11 = x9; for (j=0; j<2; j++) { secp256k1_fe_sqr(&x11, &x11); } secp256k1_fe_mul(&x11, &x11, &x2); x22 = x11; for (j=0; j<11; j++) { secp256k1_fe_sqr(&x22, &x22); } secp256k1_fe_mul(&x22, &x22, &x11); x44 = x22; for (j=0; j<22; j++) { secp256k1_fe_sqr(&x44, &x44); } secp256k1_fe_mul(&x44, &x44, &x22); x88 = x44; for (j=0; j<44; j++) { secp256k1_fe_sqr(&x88, &x88); } secp256k1_fe_mul(&x88, &x88, &x44); x176 = x88; for (j=0; j<88; j++) { secp256k1_fe_sqr(&x176, &x176); } secp256k1_fe_mul(&x176, &x176, &x88); x220 = x176; for (j=0; j<44; j++) { secp256k1_fe_sqr(&x220, &x220); } secp256k1_fe_mul(&x220, &x220, &x44); x223 = x220; for (j=0; j<3; j++) { secp256k1_fe_sqr(&x223, &x223); } secp256k1_fe_mul(&x223, &x223, &x3); /* The final result is then assembled using a sliding window over the blocks. */ t1 = x223; for (j=0; j<23; j++) { secp256k1_fe_sqr(&t1, &t1); } secp256k1_fe_mul(&t1, &t1, &x22); for (j=0; j<6; j++) { secp256k1_fe_sqr(&t1, &t1); } secp256k1_fe_mul(&t1, &t1, &x2); secp256k1_fe_sqr(&t1, &t1); secp256k1_fe_sqr(r, &t1); /* Check that a square root was actually calculated */ secp256k1_fe_sqr(&t1, r); ret = secp256k1_fe_equal(&t1, a); #ifdef VERIFY if (!ret) { secp256k1_fe_negate(&t1, &t1, 1); secp256k1_fe_normalize_var(&t1); VERIFY_CHECK(secp256k1_fe_equal(&t1, a)); } #endif return ret; } #ifndef VERIFY static void secp256k1_fe_verify(const secp256k1_fe *a) { (void)a; } static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m) { (void)a; (void)m; } #else static void secp256k1_fe_impl_verify(const secp256k1_fe *a); static void secp256k1_fe_verify(const secp256k1_fe *a) { /* Magnitude between 0 and 32. */ SECP256K1_FE_VERIFY_MAGNITUDE(a, 32); /* Normalized is 0 or 1. */ VERIFY_CHECK((a->normalized == 0) || (a->normalized == 1)); /* If normalized, magnitude must be 0 or 1. */ if (a->normalized) SECP256K1_FE_VERIFY_MAGNITUDE(a, 1); /* Invoke implementation-specific checks. */ secp256k1_fe_impl_verify(a); } static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m) { VERIFY_CHECK(m >= 0); VERIFY_CHECK(m <= 32); VERIFY_CHECK(a->magnitude <= m); } static void secp256k1_fe_impl_normalize(secp256k1_fe *r); SECP256K1_INLINE static void secp256k1_fe_normalize(secp256k1_fe *r) { SECP256K1_FE_VERIFY(r); secp256k1_fe_impl_normalize(r); r->magnitude = 1; r->normalized = 1; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r); SECP256K1_INLINE static void secp256k1_fe_normalize_weak(secp256k1_fe *r) { SECP256K1_FE_VERIFY(r); secp256k1_fe_impl_normalize_weak(r); r->magnitude = 1; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r); SECP256K1_INLINE static void secp256k1_fe_normalize_var(secp256k1_fe *r) { SECP256K1_FE_VERIFY(r); secp256k1_fe_impl_normalize_var(r); r->magnitude = 1; r->normalized = 1; SECP256K1_FE_VERIFY(r); } static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r); SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) { SECP256K1_FE_VERIFY(r); return secp256k1_fe_impl_normalizes_to_zero(r); } static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r); SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) { SECP256K1_FE_VERIFY(r); return secp256k1_fe_impl_normalizes_to_zero_var(r); } static void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a); SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) { VERIFY_CHECK(0 <= a && a <= 0x7FFF); secp256k1_fe_impl_set_int(r, a); r->magnitude = (a != 0); r->normalized = 1; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a); SECP256K1_INLINE static void secp256k1_fe_add_int(secp256k1_fe *r, int a) { VERIFY_CHECK(0 <= a && a <= 0x7FFF); SECP256K1_FE_VERIFY(r); secp256k1_fe_impl_add_int(r, a); r->magnitude += 1; r->normalized = 0; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_clear(secp256k1_fe *a); SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) { a->magnitude = 0; a->normalized = 1; secp256k1_fe_impl_clear(a); SECP256K1_FE_VERIFY(a); } static int secp256k1_fe_impl_is_zero(const secp256k1_fe *a); SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) { SECP256K1_FE_VERIFY(a); VERIFY_CHECK(a->normalized); return secp256k1_fe_impl_is_zero(a); } static int secp256k1_fe_impl_is_odd(const secp256k1_fe *a); SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) { SECP256K1_FE_VERIFY(a); VERIFY_CHECK(a->normalized); return secp256k1_fe_impl_is_odd(a); } static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b); SECP256K1_INLINE static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) { SECP256K1_FE_VERIFY(a); SECP256K1_FE_VERIFY(b); VERIFY_CHECK(a->normalized); VERIFY_CHECK(b->normalized); return secp256k1_fe_impl_cmp_var(a, b); } static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a); SECP256K1_INLINE static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a) { secp256k1_fe_impl_set_b32_mod(r, a); r->magnitude = 1; r->normalized = 0; SECP256K1_FE_VERIFY(r); } static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a); SECP256K1_INLINE static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a) { if (secp256k1_fe_impl_set_b32_limit(r, a)) { r->magnitude = 1; r->normalized = 1; SECP256K1_FE_VERIFY(r); return 1; } else { /* Mark the output field element as invalid. */ r->magnitude = -1; return 0; } } static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a); SECP256K1_INLINE static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) { SECP256K1_FE_VERIFY(a); VERIFY_CHECK(a->normalized); secp256k1_fe_impl_get_b32(r, a); } static void secp256k1_fe_impl_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m); SECP256K1_INLINE static void secp256k1_fe_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m) { SECP256K1_FE_VERIFY(a); VERIFY_CHECK(m >= 0 && m <= 31); SECP256K1_FE_VERIFY_MAGNITUDE(a, m); secp256k1_fe_impl_negate_unchecked(r, a, m); r->magnitude = m + 1; r->normalized = 0; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_mul_int_unchecked(secp256k1_fe *r, int a); SECP256K1_INLINE static void secp256k1_fe_mul_int_unchecked(secp256k1_fe *r, int a) { SECP256K1_FE_VERIFY(r); VERIFY_CHECK(a >= 0 && a <= 32); VERIFY_CHECK(a*r->magnitude <= 32); secp256k1_fe_impl_mul_int_unchecked(r, a); r->magnitude *= a; r->normalized = 0; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a); SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) { SECP256K1_FE_VERIFY(r); SECP256K1_FE_VERIFY(a); VERIFY_CHECK(r->magnitude + a->magnitude <= 32); secp256k1_fe_impl_add(r, a); r->magnitude += a->magnitude; r->normalized = 0; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b); SECP256K1_INLINE static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) { SECP256K1_FE_VERIFY(a); SECP256K1_FE_VERIFY(b); SECP256K1_FE_VERIFY_MAGNITUDE(a, 8); SECP256K1_FE_VERIFY_MAGNITUDE(b, 8); VERIFY_CHECK(r != b); VERIFY_CHECK(a != b); secp256k1_fe_impl_mul(r, a, b); r->magnitude = 1; r->normalized = 0; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a); SECP256K1_INLINE static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) { SECP256K1_FE_VERIFY(a); SECP256K1_FE_VERIFY_MAGNITUDE(a, 8); secp256k1_fe_impl_sqr(r, a); r->magnitude = 1; r->normalized = 0; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag); SECP256K1_INLINE static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) { VERIFY_CHECK(flag == 0 || flag == 1); SECP256K1_FE_VERIFY(a); SECP256K1_FE_VERIFY(r); secp256k1_fe_impl_cmov(r, a, flag); if (a->magnitude > r->magnitude) r->magnitude = a->magnitude; if (!a->normalized) r->normalized = 0; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a); SECP256K1_INLINE static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) { SECP256K1_FE_VERIFY(a); VERIFY_CHECK(a->normalized); secp256k1_fe_impl_to_storage(r, a); } static void secp256k1_fe_impl_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a); SECP256K1_INLINE static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) { secp256k1_fe_impl_from_storage(r, a); r->magnitude = 1; r->normalized = 1; SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x); SECP256K1_INLINE static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) { int input_is_zero = secp256k1_fe_normalizes_to_zero(x); SECP256K1_FE_VERIFY(x); secp256k1_fe_impl_inv(r, x); r->magnitude = x->magnitude > 0; r->normalized = 1; VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero); SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x); SECP256K1_INLINE static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) { int input_is_zero = secp256k1_fe_normalizes_to_zero(x); SECP256K1_FE_VERIFY(x); secp256k1_fe_impl_inv_var(r, x); r->magnitude = x->magnitude > 0; r->normalized = 1; VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero); SECP256K1_FE_VERIFY(r); } static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x); SECP256K1_INLINE static int secp256k1_fe_is_square_var(const secp256k1_fe *x) { int ret; secp256k1_fe tmp = *x, sqrt; SECP256K1_FE_VERIFY(x); ret = secp256k1_fe_impl_is_square_var(x); secp256k1_fe_normalize_weak(&tmp); VERIFY_CHECK(ret == secp256k1_fe_sqrt(&sqrt, &tmp)); return ret; } static void secp256k1_fe_impl_get_bounds(secp256k1_fe* r, int m); SECP256K1_INLINE static void secp256k1_fe_get_bounds(secp256k1_fe* r, int m) { VERIFY_CHECK(m >= 0); VERIFY_CHECK(m <= 32); secp256k1_fe_impl_get_bounds(r, m); r->magnitude = m; r->normalized = (m == 0); SECP256K1_FE_VERIFY(r); } static void secp256k1_fe_impl_half(secp256k1_fe *r); SECP256K1_INLINE static void secp256k1_fe_half(secp256k1_fe *r) { SECP256K1_FE_VERIFY(r); SECP256K1_FE_VERIFY_MAGNITUDE(r, 31); secp256k1_fe_impl_half(r); r->magnitude = (r->magnitude >> 1) + 1; r->normalized = 0; SECP256K1_FE_VERIFY(r); } #endif /* defined(VERIFY) */ #endif /* SECP256K1_FIELD_IMPL_H */