/*********************************************************************** * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_ECMULT_GEN_IMPL_H #define SECP256K1_ECMULT_GEN_IMPL_H #include "util.h" #include "scalar.h" #include "group.h" #include "ecmult_gen.h" #include "hash_impl.h" #include "precomputed_ecmult_gen.h" static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx) { secp256k1_ecmult_gen_blind(ctx, NULL); ctx->built = 1; } static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) { return ctx->built; } static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) { ctx->built = 0; secp256k1_scalar_clear(&ctx->blind); secp256k1_gej_clear(&ctx->initial); } /* For accelerating the computation of a*G: * To harden against timing attacks, use the following mechanism: * * Break up the multiplicand into groups of PREC_BITS bits, called n_0, n_1, n_2, ..., n_(PREC_N-1). * * Compute sum(n_i * (PREC_G)^i * G + U_i, i=0 ... PREC_N-1), where: * * U_i = U * 2^i, for i=0 ... PREC_N-2 * * U_i = U * (1-2^(PREC_N-1)), for i=PREC_N-1 * where U is a point with no known corresponding scalar. Note that sum(U_i, i=0 ... PREC_N-1) = 0. * For each i, and each of the PREC_G possible values of n_i, (n_i * (PREC_G)^i * G + U_i) is * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0 ... PREC_N-1). * None of the resulting prec group elements have a known scalar, and neither do any of * the intermediate sums while computing a*G. * The prec values are stored in secp256k1_ecmult_gen_prec_table[i][n_i] = n_i * (PREC_G)^i * G + U_i. */ static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) { int bits = ECMULT_GEN_PREC_BITS; int g = ECMULT_GEN_PREC_G(bits); int n = ECMULT_GEN_PREC_N(bits); secp256k1_ge add; secp256k1_ge_storage adds; secp256k1_scalar gnb; int i, j, n_i; memset(&adds, 0, sizeof(adds)); *r = ctx->initial; /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */ secp256k1_scalar_add(&gnb, gn, &ctx->blind); add.infinity = 0; for (i = 0; i < n; i++) { n_i = secp256k1_scalar_get_bits(&gnb, i * bits, bits); for (j = 0; j < g; j++) { /** This uses a conditional move to avoid any secret data in array indexes. * _Any_ use of secret indexes has been demonstrated to result in timing * sidechannels, even when the cache-line access patterns are uniform. * See also: * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006, * by Dag Arne Osvik, Adi Shamir, and Eran Tromer * (https://www.tau.ac.il/~tromer/papers/cache.pdf) */ secp256k1_ge_storage_cmov(&adds, &secp256k1_ecmult_gen_prec_table[i][j], j == n_i); } secp256k1_ge_from_storage(&add, &adds); secp256k1_gej_add_ge(r, r, &add); } n_i = 0; secp256k1_ge_clear(&add); secp256k1_scalar_clear(&gnb); } /* Setup blinding values for secp256k1_ecmult_gen. */ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) { secp256k1_scalar b; secp256k1_gej gb; secp256k1_fe s; unsigned char nonce32[32]; secp256k1_rfc6979_hmac_sha256 rng; unsigned char keydata[64]; if (seed32 == NULL) { /* When seed is NULL, reset the initial point and blinding value. */ secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g); secp256k1_gej_neg(&ctx->initial, &ctx->initial); secp256k1_scalar_set_int(&ctx->blind, 1); return; } /* The prior blinding value (if not reset) is chained forward by including it in the hash. */ secp256k1_scalar_get_b32(keydata, &ctx->blind); /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data, * and guards against weak or adversarial seeds. This is a simpler and safer interface than * asking the caller for blinding values directly and expecting them to retry on failure. */ VERIFY_CHECK(seed32 != NULL); memcpy(keydata + 32, seed32, 32); secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, 64); memset(keydata, 0, sizeof(keydata)); secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); secp256k1_fe_set_b32_mod(&s, nonce32); secp256k1_fe_cmov(&s, &secp256k1_fe_one, secp256k1_fe_normalizes_to_zero(&s)); /* Randomize the projection to defend against multiplier sidechannels. Do this before our own call to secp256k1_ecmult_gen below. */ secp256k1_gej_rescale(&ctx->initial, &s); secp256k1_fe_clear(&s); secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); secp256k1_scalar_set_b32(&b, nonce32, NULL); /* A blinding value of 0 works, but would undermine the projection hardening. */ secp256k1_scalar_cmov(&b, &secp256k1_scalar_one, secp256k1_scalar_is_zero(&b)); secp256k1_rfc6979_hmac_sha256_finalize(&rng); memset(nonce32, 0, 32); /* The random projection in ctx->initial ensures that gb will have a random projection. */ secp256k1_ecmult_gen(ctx, &gb, &b); secp256k1_scalar_negate(&b, &b); ctx->blind = b; ctx->initial = gb; secp256k1_scalar_clear(&b); secp256k1_gej_clear(&gb); } #endif /* SECP256K1_ECMULT_GEN_IMPL_H */