/********************************************************************** * Copyright (c) 2020 Andrew Poelstra * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_MODULE_BPPP_TEST_ #define _SECP256K1_MODULE_BPPP_TEST_ #include #include "include/secp256k1_bppp.h" #include "bppp_norm_product_impl.h" #include "bppp_util.h" #include "bppp_transcript_impl.h" #include "test_vectors/verify.h" static void test_bppp_generators_api(void) { /* The BP generator API requires no precomp */ secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); secp256k1_bppp_generators *gens; secp256k1_bppp_generators *gens_orig; unsigned char gens_ser[330]; size_t len = sizeof(gens_ser); int32_t ecount = 0; secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); /* Create */ gens = secp256k1_bppp_generators_create(none, 10); CHECK(gens != NULL && ecount == 0); gens_orig = gens; /* Preserve for round-trip test */ /* Serialize */ ecount = 0; CHECK(!secp256k1_bppp_generators_serialize(none, NULL, gens_ser, &len)); CHECK(ecount == 1); CHECK(!secp256k1_bppp_generators_serialize(none, gens, NULL, &len)); CHECK(ecount == 2); CHECK(!secp256k1_bppp_generators_serialize(none, gens, gens_ser, NULL)); CHECK(ecount == 3); len = 0; CHECK(!secp256k1_bppp_generators_serialize(none, gens, gens_ser, &len)); CHECK(ecount == 4); len = sizeof(gens_ser) - 1; CHECK(!secp256k1_bppp_generators_serialize(none, gens, gens_ser, &len)); CHECK(ecount == 5); len = sizeof(gens_ser); { /* Output buffer can be greater than minimum needed */ unsigned char gens_ser_tmp[331]; size_t len_tmp = sizeof(gens_ser_tmp); CHECK(secp256k1_bppp_generators_serialize(none, gens, gens_ser_tmp, &len_tmp)); CHECK(len_tmp == sizeof(gens_ser_tmp) - 1); CHECK(ecount == 5); } /* Parse */ CHECK(secp256k1_bppp_generators_serialize(none, gens, gens_ser, &len)); ecount = 0; gens = secp256k1_bppp_generators_parse(none, NULL, sizeof(gens_ser)); CHECK(gens == NULL && ecount == 1); /* Not a multiple of 33 */ gens = secp256k1_bppp_generators_parse(none, gens_ser, sizeof(gens_ser) - 1); CHECK(gens == NULL && ecount == 1); gens = secp256k1_bppp_generators_parse(none, gens_ser, sizeof(gens_ser)); CHECK(gens != NULL && ecount == 1); /* Not valid generators */ memset(gens_ser, 1, sizeof(gens_ser)); CHECK(secp256k1_bppp_generators_parse(none, gens_ser, sizeof(gens_ser)) == NULL); CHECK(ecount == 1); /* Check that round-trip succeeded */ CHECK(gens->n == gens_orig->n); for (len = 0; len < gens->n; len++) { ge_equals_ge(&gens->gens[len], &gens_orig->gens[len]); } /* Destroy (we allow destroying a NULL context, it's just a noop. like free().) */ ecount = 0; secp256k1_bppp_generators_destroy(none, NULL); secp256k1_bppp_generators_destroy(none, gens); secp256k1_bppp_generators_destroy(none, gens_orig); CHECK(ecount == 0); secp256k1_context_destroy(none); } static void test_bppp_generators_fixed(void) { secp256k1_bppp_generators *gens = secp256k1_bppp_generators_create(ctx, 3); unsigned char gens_ser[330]; const unsigned char fixed_first_3[99] = { 0x0b, 0xb3, 0x4d, 0x5f, 0xa6, 0xb8, 0xf3, 0xd1, 0x38, 0x49, 0xce, 0x51, 0x91, 0xb7, 0xf6, 0x76, 0x18, 0xfe, 0x5b, 0xd1, 0x2a, 0x88, 0xb2, 0x0e, 0xac, 0x33, 0x89, 0x45, 0x66, 0x7f, 0xb3, 0x30, 0x56, 0x0a, 0x62, 0x86, 0x15, 0x16, 0x92, 0x42, 0x10, 0x9e, 0x9e, 0x64, 0xd4, 0xcb, 0x28, 0x81, 0x60, 0x9c, 0x24, 0xb9, 0x89, 0x51, 0x2a, 0xd9, 0x01, 0xae, 0xff, 0x75, 0x64, 0x9c, 0x37, 0x5d, 0xbd, 0x79, 0x0a, 0xed, 0xe0, 0x6e, 0x07, 0x5e, 0x79, 0xd0, 0xf7, 0x7b, 0x03, 0x3e, 0xb9, 0xa9, 0x21, 0xa4, 0x5b, 0x99, 0xf3, 0x9b, 0xee, 0xfe, 0xa0, 0x37, 0xa2, 0x1f, 0xe9, 0xd7, 0x4f, 0x95, 0x8b, 0x10, 0xe2, }; size_t len; len = 99; CHECK(secp256k1_bppp_generators_serialize(ctx, gens, gens_ser, &len)); CHECK(memcmp(gens_ser, fixed_first_3, sizeof(fixed_first_3)) == 0); len = sizeof(gens_ser); CHECK(secp256k1_bppp_generators_serialize(ctx, gens, gens_ser, &len)); CHECK(memcmp(gens_ser, fixed_first_3, sizeof(fixed_first_3)) == 0); secp256k1_bppp_generators_destroy(ctx, gens); } static void test_bppp_tagged_hash(void) { unsigned char tag_data[29] = "Bulletproofs_pp/v0/commitment"; secp256k1_sha256 sha; secp256k1_sha256 sha_cached; unsigned char output[32]; unsigned char output_cached[32]; secp256k1_scalar s; secp256k1_sha256_initialize_tagged(&sha, tag_data, sizeof(tag_data)); secp256k1_bppp_sha256_tagged_commitment_init(&sha_cached); secp256k1_sha256_finalize(&sha, output); secp256k1_sha256_finalize(&sha_cached, output_cached); CHECK(secp256k1_memcmp_var(output, output_cached, 32) == 0); { unsigned char expected[32] = { 0x21, 0x2F, 0xB6, 0x4F, 0x9D, 0x8C, 0x3B, 0xC5, 0xF6, 0x91, 0x15, 0xEE, 0x74, 0xF5, 0x12, 0x67, 0x8A, 0x41, 0xC6, 0x85, 0x1A, 0x79, 0x14, 0xFC, 0x48, 0x15, 0xC7, 0x2D, 0xF8, 0x63, 0x8F, 0x1B }; secp256k1_bppp_sha256_tagged_commitment_init(&sha); secp256k1_bppp_challenge_scalar(&s, &sha, 0); secp256k1_scalar_get_b32(output, &s); CHECK(memcmp(output, expected, sizeof(output)) == 0); } { unsigned char tmp[3] = {0, 1, 2}; unsigned char expected[32] = { 0x8D, 0xAA, 0xB7, 0x7E, 0x3C, 0x6A, 0x9E, 0xEC, 0x72, 0x7E, 0x3E, 0xB7, 0x10, 0x03, 0xF0, 0xE9, 0x69, 0x4D, 0xAA, 0x96, 0xCE, 0x98, 0xBB, 0x39, 0x1C, 0x2F, 0x7C, 0x2E, 0x1C, 0x17, 0x78, 0x6D }; secp256k1_sha256_write(&sha, tmp, sizeof(tmp)); secp256k1_bppp_challenge_scalar(&s, &sha, 0); secp256k1_scalar_get_b32(output, &s); CHECK(memcmp(output, expected, sizeof(output)) == 0); } } void test_log_exp(void) { CHECK(secp256k1_is_power_of_two(0) == 0); CHECK(secp256k1_is_power_of_two(1) == 1); CHECK(secp256k1_is_power_of_two(2) == 1); CHECK(secp256k1_is_power_of_two(64) == 1); CHECK(secp256k1_is_power_of_two(63) == 0); CHECK(secp256k1_is_power_of_two(256) == 1); CHECK(secp256k1_bppp_log2(1) == 0); CHECK(secp256k1_bppp_log2(2) == 1); CHECK(secp256k1_bppp_log2(255) == 7); CHECK(secp256k1_bppp_log2(256) == 8); CHECK(secp256k1_bppp_log2(257) == 8); } void test_norm_util_helpers(void) { secp256k1_scalar a_vec[4], b_vec[4], rho_pows[4], res, res2, mu, rho; int i; /* a = {1, 2, 3, 4} b = {5, 6, 7, 8}, mu = 4, rho = 2 */ for (i = 0; i < 4; i++) { secp256k1_scalar_set_int(&a_vec[i], i + 1); secp256k1_scalar_set_int(&b_vec[i], i + 5); } secp256k1_scalar_set_int(&mu, 4); secp256k1_scalar_set_int(&rho, 2); secp256k1_scalar_inner_product(&res, a_vec, 0, b_vec, 0, 1, 4); secp256k1_scalar_set_int(&res2, 70); CHECK(secp256k1_scalar_eq(&res2, &res) == 1); secp256k1_scalar_inner_product(&res, a_vec, 0, b_vec, 1, 2, 2); secp256k1_scalar_set_int(&res2, 30); CHECK(secp256k1_scalar_eq(&res2, &res) == 1); secp256k1_scalar_inner_product(&res, a_vec, 1, b_vec, 0, 2, 2); secp256k1_scalar_set_int(&res2, 38); CHECK(secp256k1_scalar_eq(&res2, &res) == 1); secp256k1_scalar_inner_product(&res, a_vec, 1, b_vec, 1, 2, 2); secp256k1_scalar_set_int(&res2, 44); CHECK(secp256k1_scalar_eq(&res2, &res) == 1); secp256k1_weighted_scalar_inner_product(&res, a_vec, 0, a_vec, 0, 1, 4, &mu); secp256k1_scalar_set_int(&res2, 4740); /*i*i*4^(i+1) */ CHECK(secp256k1_scalar_eq(&res2, &res) == 1); secp256k1_bppp_powers_of_rho(rho_pows, &rho, 4); secp256k1_scalar_set_int(&res, 2); CHECK(secp256k1_scalar_eq(&res, &rho_pows[0])); secp256k1_scalar_set_int(&res, 4); CHECK(secp256k1_scalar_eq(&res, &rho_pows[1])); secp256k1_scalar_set_int(&res, 16); CHECK(secp256k1_scalar_eq(&res, &rho_pows[2])); secp256k1_scalar_set_int(&res, 256); CHECK(secp256k1_scalar_eq(&res, &rho_pows[3])); } void test_serialize_two_points_roundtrip(secp256k1_ge *X, secp256k1_ge *R) { secp256k1_ge X_tmp, R_tmp; unsigned char buf[65]; secp256k1_bppp_serialize_points(buf, X, R); CHECK(secp256k1_bppp_parse_one_of_points(&X_tmp, buf, 0)); CHECK(secp256k1_bppp_parse_one_of_points(&R_tmp, buf, 1)); ge_equals_ge(X, &X_tmp); ge_equals_ge(R, &R_tmp); } void test_serialize_two_points(void) { secp256k1_ge X, R; int i; for (i = 0; i < count; i++) { random_group_element_test(&X); random_group_element_test(&R); test_serialize_two_points_roundtrip(&X, &R); } for (i = 0; i < count; i++) { random_group_element_test(&X); secp256k1_ge_set_infinity(&R); test_serialize_two_points_roundtrip(&X, &R); } for (i = 0; i < count; i++) { secp256k1_ge_set_infinity(&X); random_group_element_test(&R); test_serialize_two_points_roundtrip(&X, &R); } secp256k1_ge_set_infinity(&X); secp256k1_ge_set_infinity(&R); test_serialize_two_points_roundtrip(&X, &R); /* Test invalid sign byte */ { secp256k1_ge X_tmp, R_tmp; unsigned char buf[65]; random_group_element_test(&X); random_group_element_test(&R); secp256k1_bppp_serialize_points(buf, &X, &R); buf[0] |= 4 + (unsigned char)secp256k1_testrandi64(4, 255); CHECK(!secp256k1_bppp_parse_one_of_points(&X_tmp, buf, 0)); CHECK(!secp256k1_bppp_parse_one_of_points(&R_tmp, buf, 0)); } /* Check that sign bit is 0 for point at infinity */ for (i = 0; i < count; i++) { secp256k1_ge X_tmp, R_tmp; unsigned char buf[65]; int expect; random_group_element_test(&X); random_group_element_test(&R); secp256k1_bppp_serialize_points(buf, &X, &R); memset(&buf[1], 0, 32); if ((buf[0] & 2) == 0) { expect = 1; } else { expect = 0; } CHECK(secp256k1_bppp_parse_one_of_points(&X_tmp, buf, 0) == expect); CHECK(secp256k1_bppp_parse_one_of_points(&R_tmp, buf, 1)); memset(&buf[33], 0, 32); if ((buf[0] & 1) == 0) { expect = 1; } else { expect = 0; } CHECK(secp256k1_bppp_parse_one_of_points(&R_tmp, buf, 1) == expect); } } static void secp256k1_norm_arg_commit_initial_data( secp256k1_sha256* transcript, const secp256k1_scalar* rho, const secp256k1_bppp_generators* gens_vec, size_t g_len, /* Same as n_vec_len, g_len + c_vec_len = gens->n */ const secp256k1_scalar* c_vec, size_t c_vec_len, const secp256k1_ge* commit ) { /* Commit to the initial public values */ unsigned char ser_commit[33], ser_scalar[32], ser_le64[8]; size_t i; secp256k1_ge comm = *commit; secp256k1_bppp_sha256_tagged_commitment_init(transcript); secp256k1_fe_normalize(&comm.x); secp256k1_fe_normalize(&comm.y); CHECK(secp256k1_ge_is_infinity(&comm) == 0); CHECK(secp256k1_bppp_serialize_pt(&ser_commit[0], &comm)); secp256k1_sha256_write(transcript, ser_commit, 33); secp256k1_scalar_get_b32(ser_scalar, rho); secp256k1_sha256_write(transcript, ser_scalar, 32); secp256k1_bppp_le64(ser_le64, g_len); secp256k1_sha256_write(transcript, ser_le64, 8); secp256k1_bppp_le64(ser_le64, gens_vec->n); secp256k1_sha256_write(transcript, ser_le64, 8); for (i = 0; i < gens_vec->n; i++) { secp256k1_fe_normalize(&gens_vec->gens[i].x); secp256k1_fe_normalize(&gens_vec->gens[i].y); CHECK(secp256k1_bppp_serialize_pt(&ser_commit[0], &gens_vec->gens[i])); secp256k1_sha256_write(transcript, ser_commit, 33); } secp256k1_bppp_le64(ser_le64, c_vec_len); secp256k1_sha256_write(transcript, ser_le64, 8); for (i = 0; i < c_vec_len; i++) { secp256k1_scalar_get_b32(ser_scalar, &c_vec[i]); secp256k1_sha256_write(transcript, ser_scalar, 32); } } static void copy_vectors_into_scratch(secp256k1_scratch_space* scratch, secp256k1_scalar **ns, secp256k1_scalar **ls, secp256k1_scalar **cs, secp256k1_ge **gs, const secp256k1_scalar *n_vec, const secp256k1_scalar *l_vec, const secp256k1_scalar *c_vec, const secp256k1_ge *gens_vec, size_t g_len, size_t h_len) { *ns = (secp256k1_scalar*)secp256k1_scratch_alloc(&ctx->error_callback, scratch, g_len * sizeof(secp256k1_scalar)); *ls = (secp256k1_scalar*)secp256k1_scratch_alloc(&ctx->error_callback, scratch, h_len * sizeof(secp256k1_scalar)); *cs = (secp256k1_scalar*)secp256k1_scratch_alloc(&ctx->error_callback, scratch, h_len * sizeof(secp256k1_scalar)); *gs = (secp256k1_ge*)secp256k1_scratch_alloc(&ctx->error_callback, scratch, (g_len + h_len) * sizeof(secp256k1_ge)); CHECK(ns != NULL && ls != NULL && cs != NULL && gs != NULL); memcpy(*ns, n_vec, g_len * sizeof(secp256k1_scalar)); memcpy(*ls, l_vec, h_len * sizeof(secp256k1_scalar)); memcpy(*cs, c_vec, h_len * sizeof(secp256k1_scalar)); memcpy(*gs, gens_vec, (g_len + h_len) * sizeof(secp256k1_ge)); } /* A complete norm argument. In contrast to secp256k1_bppp_rangeproof_norm_product_prove, this is meant to be used as a standalone norm argument. This is a simple wrapper around secp256k1_bppp_rangeproof_norm_product_prove that also commits to the initial public values used in the protocol. In this case, these public values are commitment. */ static int secp256k1_norm_arg_prove( secp256k1_scratch_space* scratch, unsigned char* proof, size_t *proof_len, const secp256k1_scalar* rho, const secp256k1_bppp_generators* gens_vec, const secp256k1_scalar* n_vec, size_t n_vec_len, const secp256k1_scalar* l_vec, size_t l_vec_len, const secp256k1_scalar* c_vec, size_t c_vec_len, const secp256k1_ge* commit ) { secp256k1_scalar *ns, *ls, *cs; secp256k1_ge *gs, comm = *commit; size_t scratch_checkpoint; size_t g_len = n_vec_len, h_len = l_vec_len; int res; secp256k1_sha256 transcript; scratch_checkpoint = secp256k1_scratch_checkpoint(&ctx->error_callback, scratch); copy_vectors_into_scratch(scratch, &ns, &ls, &cs, &gs, n_vec, l_vec, c_vec, gens_vec->gens, g_len, h_len); /* Commit to the initial public values */ secp256k1_norm_arg_commit_initial_data(&transcript, rho, gens_vec, g_len, c_vec, c_vec_len, &comm); res = secp256k1_bppp_rangeproof_norm_product_prove( ctx, scratch, proof, proof_len, &transcript, /* Transcript hash of the parent protocol */ rho, gs, gens_vec->n, ns, n_vec_len, ls, l_vec_len, cs, c_vec_len ); secp256k1_scratch_apply_checkpoint(&ctx->error_callback, scratch, scratch_checkpoint); return res; } /* Verify the proof */ static int secp256k1_norm_arg_verify( secp256k1_scratch_space* scratch, const unsigned char* proof, size_t proof_len, const secp256k1_scalar* rho, const secp256k1_bppp_generators* gens_vec, size_t g_len, const secp256k1_scalar* c_vec, size_t c_vec_len, const secp256k1_ge* commit ) { secp256k1_ge comm = *commit; int res; secp256k1_sha256 transcript; /* Commit to the initial public values */ secp256k1_norm_arg_commit_initial_data(&transcript, rho, gens_vec, g_len, c_vec, c_vec_len, &comm); res = secp256k1_bppp_rangeproof_norm_product_verify( ctx, scratch, proof, proof_len, &transcript, rho, gens_vec, g_len, c_vec, c_vec_len, commit ); return res; } void norm_arg_zero(void) { secp256k1_scalar n_vec[64], l_vec[64], c_vec[64]; secp256k1_scalar rho, mu; secp256k1_ge commit; size_t i; secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 1000*10); /* shouldn't need much */ unsigned char proof[1000]; secp256k1_sha256 transcript; random_scalar_order(&rho); secp256k1_scalar_sqr(&mu, &rho); /* l is zero vector and n is zero vectors of length 1 each. */ { size_t plen = sizeof(proof); unsigned int n_vec_len = 1; unsigned int c_vec_len = 1; secp256k1_bppp_generators *gens = secp256k1_bppp_generators_create(ctx, n_vec_len + c_vec_len); secp256k1_scalar_set_int(&n_vec[0], 0); secp256k1_scalar_set_int(&l_vec[0], 0); random_scalar_order(&c_vec[0]); secp256k1_sha256_initialize(&transcript); /* No challenges used in n = 1, l = 1, but we set transcript as a good practice*/ CHECK(secp256k1_bppp_commit(ctx, scratch, &commit, gens, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &mu)); { secp256k1_scalar *ns, *ls, *cs; secp256k1_ge *gs; size_t scratch_checkpoint = secp256k1_scratch_checkpoint(&ctx->error_callback, scratch); copy_vectors_into_scratch(scratch, &ns, &ls, &cs, &gs, n_vec, l_vec, c_vec, gens->gens, n_vec_len, c_vec_len); CHECK(secp256k1_bppp_rangeproof_norm_product_prove(ctx, scratch, proof, &plen, &transcript, &rho, gs, gens->n, ns, n_vec_len, ls, c_vec_len, cs, c_vec_len)); secp256k1_scratch_apply_checkpoint(&ctx->error_callback, scratch, scratch_checkpoint); } secp256k1_sha256_initialize(&transcript); CHECK(secp256k1_bppp_rangeproof_norm_product_verify(ctx, scratch, proof, plen, &transcript, &rho, gens, c_vec_len, c_vec, c_vec_len, &commit)); secp256k1_bppp_generators_destroy(ctx, gens); } /* l is the zero vector and longer than n. This results in one of the * internal commitments X or R to be the point at infinity. */ { unsigned int n_vec_len = 1; unsigned int c_vec_len = 2; secp256k1_bppp_generators *gs = secp256k1_bppp_generators_create(ctx, n_vec_len + c_vec_len); size_t plen = sizeof(proof); for (i = 0; i < n_vec_len; i++) { random_scalar_order(&n_vec[i]); } for (i = 0; i < c_vec_len; i++) { secp256k1_scalar_set_int(&l_vec[i], 0); random_scalar_order(&c_vec[i]); } CHECK(secp256k1_bppp_commit(ctx, scratch, &commit, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &mu)); CHECK(secp256k1_norm_arg_prove(scratch, proof, &plen, &rho, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &commit)); secp256k1_sha256_initialize(&transcript); CHECK(secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n_vec_len, c_vec, c_vec_len, &commit)); secp256k1_bppp_generators_destroy(ctx, gs); } /* Verify |c| = 0 */ { unsigned int n_vec_len = 1; unsigned int c_vec_len = 1; secp256k1_bppp_generators *gs = secp256k1_bppp_generators_create(ctx, n_vec_len + c_vec_len); size_t plen = sizeof(proof); random_scalar_order(&n_vec[0]); random_scalar_order(&c_vec[0]); random_scalar_order(&l_vec[0]); CHECK(secp256k1_bppp_commit(ctx, scratch, &commit, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &mu)); CHECK(secp256k1_norm_arg_prove(scratch, proof, &plen, &rho, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &commit)); CHECK(secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n_vec_len, c_vec, c_vec_len, &commit)); CHECK(!secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n_vec_len, c_vec, 0, &commit)); secp256k1_bppp_generators_destroy(ctx, gs); } secp256k1_scratch_space_destroy(ctx, scratch); } void norm_arg_test(unsigned int n, unsigned int m) { secp256k1_scalar n_vec[64], l_vec[64], c_vec[64]; secp256k1_scalar rho, mu; secp256k1_ge commit; size_t i, plen; int res; secp256k1_bppp_generators *gs = secp256k1_bppp_generators_create(ctx, n + m); secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 1000*1000); /* shouldn't need much */ unsigned char proof[1000]; plen = 1000; random_scalar_order(&rho); secp256k1_scalar_sqr(&mu, &rho); for (i = 0; i < n; i++) { random_scalar_order(&n_vec[i]); } for (i = 0; i < m; i++) { random_scalar_order(&l_vec[i]); random_scalar_order(&c_vec[i]); } res = secp256k1_bppp_commit(ctx, scratch, &commit, gs, n_vec, n, l_vec, m, c_vec, m, &mu); CHECK(res == 1); res = secp256k1_norm_arg_prove(scratch, proof, &plen, &rho, gs, n_vec, n, l_vec, m, c_vec, m, &commit); CHECK(res == 1); res = secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n, c_vec, m, &commit); CHECK(res == 1); /* Changing any of last two scalars should break the proof */ proof[plen - 1] ^= 1; res = secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n, c_vec, m, &commit); CHECK(res == 0); proof[plen - 1 - 32] ^= 1; res = secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n, c_vec, m, &commit); CHECK(res == 0); secp256k1_scratch_space_destroy(ctx, scratch); secp256k1_bppp_generators_destroy(ctx, gs); } /* Parses generators from points compressed as pubkeys */ secp256k1_bppp_generators* bppp_generators_parse_regular(const unsigned char* data, size_t data_len) { size_t n = data_len / 33; secp256k1_bppp_generators* ret; VERIFY_CHECK(ctx != NULL); ARG_CHECK(data != NULL); if (data_len % 33 != 0) { return NULL; } ret = (secp256k1_bppp_generators *)checked_malloc(&ctx->error_callback, sizeof(*ret)); if (ret == NULL) { return NULL; } ret->n = n; ret->gens = (secp256k1_ge*)checked_malloc(&ctx->error_callback, n * sizeof(*ret->gens)); if (ret->gens == NULL) { free(ret); return NULL; } while (n--) { if (!secp256k1_eckey_pubkey_parse(&ret->gens[n], &data[33 * n], 33)) { free(ret->gens); free(ret); return NULL; } } return ret; } int norm_arg_verify_vectors_helper(secp256k1_scratch *scratch, const unsigned char *gens, const unsigned char *proof, size_t plen, const unsigned char *r32, size_t n_vec_len, const unsigned char c_vec32[][32], secp256k1_scalar *c_vec, size_t c_vec_len, const unsigned char *commit33) { secp256k1_sha256 transcript; secp256k1_bppp_generators *gs = bppp_generators_parse_regular(gens, 33*(n_vec_len + c_vec_len)); secp256k1_scalar rho; secp256k1_ge commit; int overflow; int i; int ret; CHECK(gs != NULL); secp256k1_sha256_initialize(&transcript); secp256k1_scalar_set_b32(&rho, r32, &overflow); CHECK(!overflow); for (i = 0; i < (int)c_vec_len; i++) { secp256k1_scalar_set_b32(&c_vec[i], c_vec32[i], &overflow); CHECK(!overflow); } CHECK(secp256k1_ge_parse_ext(&commit, commit33)); ret = secp256k1_bppp_rangeproof_norm_product_verify(ctx, scratch, proof, plen, &transcript, &rho, gs, n_vec_len, c_vec, c_vec_len, &commit); secp256k1_bppp_generators_destroy(ctx, gs); return ret; } #define IDX_TO_TEST(i) (norm_arg_verify_vectors_helper(scratch, verify_vector_gens, verify_vector_##i##_proof, sizeof(verify_vector_##i##_proof), verify_vector_##i##_r32, verify_vector_##i##_n_vec_len, verify_vector_##i##_c_vec32, verify_vector_##i##_c_vec, sizeof(verify_vector_##i##_c_vec)/sizeof(secp256k1_scalar), verify_vector_##i##_commit33) == verify_vector_##i##_result) void norm_arg_verify_vectors(void) { secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 1000*1000); /* shouldn't need much */ size_t alloc = scratch->alloc_size; CHECK(IDX_TO_TEST(0)); CHECK(IDX_TO_TEST(1)); CHECK(IDX_TO_TEST(2)); CHECK(IDX_TO_TEST(3)); CHECK(IDX_TO_TEST(4)); CHECK(IDX_TO_TEST(5)); CHECK(IDX_TO_TEST(6)); CHECK(IDX_TO_TEST(7)); CHECK(IDX_TO_TEST(8)); CHECK(IDX_TO_TEST(9)); CHECK(IDX_TO_TEST(10)); CHECK(IDX_TO_TEST(11)); CHECK(IDX_TO_TEST(12)); CHECK(alloc == scratch->alloc_size); secp256k1_scratch_space_destroy(ctx, scratch); } #undef IDX_TO_TEST void run_bppp_tests(void) { test_log_exp(); test_norm_util_helpers(); test_serialize_two_points(); test_bppp_generators_api(); test_bppp_generators_fixed(); test_bppp_tagged_hash(); norm_arg_zero(); norm_arg_test(1, 1); norm_arg_test(1, 64); norm_arg_test(64, 1); norm_arg_test(32, 32); norm_arg_test(32, 64); norm_arg_test(64, 32); norm_arg_test(64, 64); norm_arg_verify_vectors(); } #endif