/*********************************************************************** * Copyright (c) 2020 Peter Dettman * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef SECP256K1_MODINV64_IMPL_H #define SECP256K1_MODINV64_IMPL_H #include "modinv64.h" #include "util.h" static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo) { const int64_t M62 = (int64_t)(UINT64_MAX >> 2); int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4]; int64_t cond_add, cond_negate; cond_add = r4 >> 63; r0 += modinfo->modulus.v[0] & cond_add; r1 += modinfo->modulus.v[1] & cond_add; r2 += modinfo->modulus.v[2] & cond_add; r3 += modinfo->modulus.v[3] & cond_add; r4 += modinfo->modulus.v[4] & cond_add; cond_negate = sign >> 63; r0 = (r0 ^ cond_negate) - cond_negate; r1 = (r1 ^ cond_negate) - cond_negate; r2 = (r2 ^ cond_negate) - cond_negate; r3 = (r3 ^ cond_negate) - cond_negate; r4 = (r4 ^ cond_negate) - cond_negate; r1 += r0 >> 62; r0 &= M62; r2 += r1 >> 62; r1 &= M62; r3 += r2 >> 62; r2 &= M62; r4 += r3 >> 62; r3 &= M62; cond_add = r4 >> 63; r0 += modinfo->modulus.v[0] & cond_add; r1 += modinfo->modulus.v[1] & cond_add; r2 += modinfo->modulus.v[2] & cond_add; r3 += modinfo->modulus.v[3] & cond_add; r4 += modinfo->modulus.v[4] & cond_add; r1 += r0 >> 62; r0 &= M62; r2 += r1 >> 62; r1 &= M62; r3 += r2 >> 62; r2 &= M62; r4 += r3 >> 62; r3 &= M62; r->v[0] = r0; r->v[1] = r1; r->v[2] = r2; r->v[3] = r3; r->v[4] = r4; } typedef struct { int64_t u, v, q, r; } secp256k1_modinv64_trans2x2; static int64_t secp256k1_modinv64_divsteps_62(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) { uint64_t u = 1, v = 0, q = 0, r = 1; uint64_t c1, c2, f = f0, g = g0, x, y, z; int i; for (i = 0; i < 62; ++i) { VERIFY_CHECK((f & 1) == 1); VERIFY_CHECK((u * f0 + v * g0) == f << i); VERIFY_CHECK((q * f0 + r * g0) == g << i); c1 = eta >> 63; c2 = -(g & 1); x = (f ^ c1) - c1; y = (u ^ c1) - c1; z = (v ^ c1) - c1; g += x & c2; q += y & c2; r += z & c2; c1 &= c2; eta = (eta ^ c1) - (c1 + 1); f += g & c1; u += q & c1; v += r & c1; g >>= 1; u <<= 1; v <<= 1; } t->u = (int64_t)u; t->v = (int64_t)v; t->q = (int64_t)q; t->r = (int64_t)r; return eta; } static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) { /* inv256[i] = -(2*i+1)^-1 (mod 256) */ static const uint8_t inv256[128] = { 0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59, 0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31, 0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89, 0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61, 0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9, 0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91, 0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9, 0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1, 0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19, 0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1, 0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01 }; uint64_t u = 1, v = 0, q = 0, r = 1; uint64_t f = f0, g = g0, m; uint32_t w; int i = 62, limit, zeros; for (;;) { /* Use a sentinel bit to count zeros only up to i. */ zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i)); g >>= zeros; u <<= zeros; v <<= zeros; eta -= zeros; i -= zeros; if (i <= 0) { break; } VERIFY_CHECK((f & 1) == 1); VERIFY_CHECK((g & 1) == 1); VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i)); VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i)); if (eta < 0) { uint64_t tmp; eta = -eta; tmp = f; f = g; g = -tmp; tmp = u; u = q; q = -tmp; tmp = v; v = r; r = -tmp; } /* Handle up to 8 divsteps at once, subject to eta and i. */ limit = ((int)eta + 1) > i ? i : ((int)eta + 1); m = (UINT64_MAX >> (64 - limit)) & 255U; w = (g * inv256[(f >> 1) & 127]) & m; g += f * w; q += u * w; r += v * w; VERIFY_CHECK((g & m) == 0); } t->u = (int64_t)u; t->v = (int64_t)v; t->q = (int64_t)q; t->r = (int64_t)r; return eta; } static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo* modinfo) { const int64_t M62 = (int64_t)(UINT64_MAX >> 2); const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4]; const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4]; const int64_t u = t->u, v = t->v, q = t->q, r = t->r; int64_t md, me, sd, se; int128_t cd, ce; /* * On input, d/e must be in the range (-2.P, P). For initially negative d (resp. e), we add * u and/or v (resp. q and/or r) multiples of the modulus to the corresponding output (prior * to division by 2^62). This has the same effect as if we added the modulus to the input(s). */ sd = d4 >> 63; se = e4 >> 63; md = (u & sd) + (v & se); me = (q & sd) + (r & se); cd = (int128_t)u * d0 + (int128_t)v * e0; ce = (int128_t)q * d0 + (int128_t)r * e0; /* * Subtract from md/me an extra term in the range [0, 2^62) such that the low 62 bits of each * sum of products will be 0. This allows clean division by 2^62. On output, d/e are thus in * the range (-2.P, P), consistent with the input constraint. */ md -= (modinfo->modulus_inv62 * (uint64_t)cd + md) & M62; me -= (modinfo->modulus_inv62 * (uint64_t)ce + me) & M62; cd += (int128_t)modinfo->modulus.v[0] * md; ce += (int128_t)modinfo->modulus.v[0] * me; VERIFY_CHECK(((int64_t)cd & M62) == 0); cd >>= 62; VERIFY_CHECK(((int64_t)ce & M62) == 0); ce >>= 62; cd += (int128_t)u * d1 + (int128_t)v * e1; ce += (int128_t)q * d1 + (int128_t)r * e1; cd += (int128_t)modinfo->modulus.v[1] * md; ce += (int128_t)modinfo->modulus.v[1] * me; d->v[0] = (int64_t)cd & M62; cd >>= 62; e->v[0] = (int64_t)ce & M62; ce >>= 62; cd += (int128_t)u * d2 + (int128_t)v * e2; ce += (int128_t)q * d2 + (int128_t)r * e2; cd += (int128_t)modinfo->modulus.v[2] * md; ce += (int128_t)modinfo->modulus.v[2] * me; d->v[1] = (int64_t)cd & M62; cd >>= 62; e->v[1] = (int64_t)ce & M62; ce >>= 62; cd += (int128_t)u * d3 + (int128_t)v * e3; ce += (int128_t)q * d3 + (int128_t)r * e3; cd += (int128_t)modinfo->modulus.v[3] * md; ce += (int128_t)modinfo->modulus.v[3] * me; d->v[2] = (int64_t)cd & M62; cd >>= 62; e->v[2] = (int64_t)ce & M62; ce >>= 62; cd += (int128_t)u * d4 + (int128_t)v * e4; ce += (int128_t)q * d4 + (int128_t)r * e4; cd += (int128_t)modinfo->modulus.v[4] * md; ce += (int128_t)modinfo->modulus.v[4] * me; d->v[3] = (int64_t)cd & M62; cd >>= 62; e->v[3] = (int64_t)ce & M62; ce >>= 62; d->v[4] = (int64_t)cd; e->v[4] = (int64_t)ce; } static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) { const int64_t M62 = (int64_t)(UINT64_MAX >> 2); const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4]; const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4]; const int64_t u = t->u, v = t->v, q = t->q, r = t->r; int128_t cf, cg; cf = (int128_t)u * f0 + (int128_t)v * g0; cg = (int128_t)q * f0 + (int128_t)r * g0; VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62; VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62; cf += (int128_t)u * f1 + (int128_t)v * g1; cg += (int128_t)q * f1 + (int128_t)r * g1; f->v[0] = (int64_t)cf & M62; cf >>= 62; g->v[0] = (int64_t)cg & M62; cg >>= 62; cf += (int128_t)u * f2 + (int128_t)v * g2; cg += (int128_t)q * f2 + (int128_t)r * g2; f->v[1] = (int64_t)cf & M62; cf >>= 62; g->v[1] = (int64_t)cg & M62; cg >>= 62; cf += (int128_t)u * f3 + (int128_t)v * g3; cg += (int128_t)q * f3 + (int128_t)r * g3; f->v[2] = (int64_t)cf & M62; cf >>= 62; g->v[2] = (int64_t)cg & M62; cg >>= 62; cf += (int128_t)u * f4 + (int128_t)v * g4; cg += (int128_t)q * f4 + (int128_t)r * g4; f->v[3] = (int64_t)cf & M62; cf >>= 62; g->v[3] = (int64_t)cg & M62; cg >>= 62; f->v[4] = (int64_t)cf; g->v[4] = (int64_t)cg; } static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) { /* Modular inversion based on the paper "Fast constant-time gcd computation and * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. */ secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}}; secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}}; secp256k1_modinv64_signed62 f = modinfo->modulus; secp256k1_modinv64_signed62 g = *x; int i; int64_t eta; /* The paper uses 'delta'; eta == -delta (a performance tweak). * * If the maximum bitlength of g is known to be less than 256, then eta can be set * initially to -(1 + (256 - maxlen(g))), and only (741 - (256 - maxlen(g))) total * divsteps are needed. */ eta = -1; for (i = 0; i < 12; ++i) { secp256k1_modinv64_trans2x2 t; eta = secp256k1_modinv64_divsteps_62(eta, f.v[0], g.v[0], &t); secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo); secp256k1_modinv64_update_fg_62(&f, &g, &t); } /* At this point sufficient iterations have been performed that g must have reached 0 * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g * values i.e. +/- 1, and d now contains +/- the modular inverse. */ VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4]) == 0); secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo); *x = d; } static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) { /* Modular inversion based on the paper "Fast constant-time gcd computation and * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. */ secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}}; secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}}; secp256k1_modinv64_signed62 f = modinfo->modulus; secp256k1_modinv64_signed62 g = *x; int j; uint64_t eta; int64_t cond; /* The paper uses 'delta'; eta == -delta (a performance tweak). * * If g has leading zeros (w.r.t 256 bits), then eta can be set initially to * -(1 + clz(g)), and the worst-case divstep count would be only (741 - clz(g)). */ eta = -1; while (1) { secp256k1_modinv64_trans2x2 t; eta = secp256k1_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t); secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo); secp256k1_modinv64_update_fg_62(&f, &g, &t); if (g.v[0] == 0) { cond = 0; for (j = 1; j < 5; ++j) { cond |= g.v[j]; } if (cond == 0) break; } } secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo); *x = d; } #endif /* SECP256K1_MODINV64_IMPL_H */