/*********************************************************************** * Copyright (c) 2020 Peter Dettman * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef SECP256K1_MODINV32_IMPL_H #define SECP256K1_MODINV32_IMPL_H #include "modinv32.h" #include "util.h" static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int32_t sign, const secp256k1_modinv32_modinfo *modinfo) { const int32_t M30 = (int32_t)(UINT32_MAX >> 2); int32_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4], r5 = r->v[5], r6 = r->v[6], r7 = r->v[7], r8 = r->v[8]; int32_t cond_add, cond_negate; cond_add = r8 >> 31; r0 += modinfo->modulus.v[0] & cond_add; r1 += modinfo->modulus.v[1] & cond_add; r2 += modinfo->modulus.v[2] & cond_add; r3 += modinfo->modulus.v[3] & cond_add; r4 += modinfo->modulus.v[4] & cond_add; r5 += modinfo->modulus.v[5] & cond_add; r6 += modinfo->modulus.v[6] & cond_add; r7 += modinfo->modulus.v[7] & cond_add; r8 += modinfo->modulus.v[8] & cond_add; cond_negate = sign >> 31; r0 = (r0 ^ cond_negate) - cond_negate; r1 = (r1 ^ cond_negate) - cond_negate; r2 = (r2 ^ cond_negate) - cond_negate; r3 = (r3 ^ cond_negate) - cond_negate; r4 = (r4 ^ cond_negate) - cond_negate; r5 = (r5 ^ cond_negate) - cond_negate; r6 = (r6 ^ cond_negate) - cond_negate; r7 = (r7 ^ cond_negate) - cond_negate; r8 = (r8 ^ cond_negate) - cond_negate; r1 += r0 >> 30; r0 &= M30; r2 += r1 >> 30; r1 &= M30; r3 += r2 >> 30; r2 &= M30; r4 += r3 >> 30; r3 &= M30; r5 += r4 >> 30; r4 &= M30; r6 += r5 >> 30; r5 &= M30; r7 += r6 >> 30; r6 &= M30; r8 += r7 >> 30; r7 &= M30; cond_add = r8 >> 31; r0 += modinfo->modulus.v[0] & cond_add; r1 += modinfo->modulus.v[1] & cond_add; r2 += modinfo->modulus.v[2] & cond_add; r3 += modinfo->modulus.v[3] & cond_add; r4 += modinfo->modulus.v[4] & cond_add; r5 += modinfo->modulus.v[5] & cond_add; r6 += modinfo->modulus.v[6] & cond_add; r7 += modinfo->modulus.v[7] & cond_add; r8 += modinfo->modulus.v[8] & cond_add; r1 += r0 >> 30; r0 &= M30; r2 += r1 >> 30; r1 &= M30; r3 += r2 >> 30; r2 &= M30; r4 += r3 >> 30; r3 &= M30; r5 += r4 >> 30; r4 &= M30; r6 += r5 >> 30; r5 &= M30; r7 += r6 >> 30; r6 &= M30; r8 += r7 >> 30; r7 &= M30; r->v[0] = r0; r->v[1] = r1; r->v[2] = r2; r->v[3] = r3; r->v[4] = r4; r->v[5] = r5; r->v[6] = r6; r->v[7] = r7; r->v[8] = r8; } typedef struct { int32_t u, v, q, r; } secp256k1_modinv32_trans2x2; static int32_t secp256k1_modinv32_divsteps_30(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) { uint32_t u = 1, v = 0, q = 0, r = 1; uint32_t c1, c2, f = f0, g = g0, x, y, z; int i; for (i = 0; i < 30; ++i) { VERIFY_CHECK((f & 1) == 1); VERIFY_CHECK((u * f0 + v * g0) == f << i); VERIFY_CHECK((q * f0 + r * g0) == g << i); c1 = eta >> 31; c2 = -(g & 1); x = (f ^ c1) - c1; y = (u ^ c1) - c1; z = (v ^ c1) - c1; g += x & c2; q += y & c2; r += z & c2; c1 &= c2; eta = (eta ^ c1) - (c1 + 1); f += g & c1; u += q & c1; v += r & c1; g >>= 1; u <<= 1; v <<= 1; } t->u = (int32_t)u; t->v = (int32_t)v; t->q = (int32_t)q; t->r = (int32_t)r; return eta; } static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) { /* inv256[i] = -(2*i+1)^-1 (mod 256) */ static const uint8_t inv256[128] = { 0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59, 0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31, 0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89, 0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61, 0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9, 0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91, 0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9, 0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1, 0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19, 0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1, 0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01 }; uint32_t u = 1, v = 0, q = 0, r = 1; uint32_t f = f0, g = g0, m; uint16_t w; int i = 30, limit, zeros; for (;;) { /* Use a sentinel bit to count zeros only up to i. */ zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i)); g >>= zeros; u <<= zeros; v <<= zeros; eta -= zeros; i -= zeros; if (i <= 0) { break; } VERIFY_CHECK((f & 1) == 1); VERIFY_CHECK((g & 1) == 1); VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i)); VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i)); if (eta < 0) { uint32_t tmp; eta = -eta; tmp = f; f = g; g = -tmp; tmp = u; u = q; q = -tmp; tmp = v; v = r; r = -tmp; } /* Handle up to 8 divsteps at once, subject to eta and i. */ limit = ((int)eta + 1) > i ? i : ((int)eta + 1); m = (UINT32_MAX >> (32 - limit)) & 255U; w = (g * inv256[(f >> 1) & 127]) & m; g += f * w; q += u * w; r += v * w; VERIFY_CHECK((g & m) == 0); } t->u = (int32_t)u; t->v = (int32_t)v; t->q = (int32_t)q; t->r = (int32_t)r; return eta; } static void secp256k1_modinv32_update_de_30(secp256k1_modinv32_signed30 *d, secp256k1_modinv32_signed30 *e, const secp256k1_modinv32_trans2x2 *t, const secp256k1_modinv32_modinfo* modinfo) { const int32_t M30 = (int32_t)(UINT32_MAX >> 2); const int32_t u = t->u, v = t->v, q = t->q, r = t->r; int32_t di, ei, md, me, sd, se; int64_t cd, ce; int i; /* * On input, d/e must be in the range (-2.P, P). For initially negative d (resp. e), we add * u and/or v (resp. q and/or r) multiples of the modulus to the corresponding output (prior * to division by 2^30). This has the same effect as if we added the modulus to the input(s). */ sd = d->v[8] >> 31; se = e->v[8] >> 31; md = (u & sd) + (v & se); me = (q & sd) + (r & se); di = d->v[0]; ei = e->v[0]; cd = (int64_t)u * di + (int64_t)v * ei; ce = (int64_t)q * di + (int64_t)r * ei; /* * Subtract from md/me an extra term in the range [0, 2^30) such that the low 30 bits of each * sum of products will be 0. This allows clean division by 2^30. On output, d/e are thus in * the range (-2.P, P), consistent with the input constraint. */ md -= (modinfo->modulus_inv30 * (uint32_t)cd + md) & M30; me -= (modinfo->modulus_inv30 * (uint32_t)ce + me) & M30; cd += (int64_t)modinfo->modulus.v[0] * md; ce += (int64_t)modinfo->modulus.v[0] * me; VERIFY_CHECK(((int32_t)cd & M30) == 0); cd >>= 30; VERIFY_CHECK(((int32_t)ce & M30) == 0); ce >>= 30; for (i = 1; i < 9; ++i) { di = d->v[i]; ei = e->v[i]; cd += (int64_t)u * di + (int64_t)v * ei; ce += (int64_t)q * di + (int64_t)r * ei; cd += (int64_t)modinfo->modulus.v[i] * md; ce += (int64_t)modinfo->modulus.v[i] * me; d->v[i - 1] = (int32_t)cd & M30; cd >>= 30; e->v[i - 1] = (int32_t)ce & M30; ce >>= 30; } d->v[8] = (int32_t)cd; e->v[8] = (int32_t)ce; } static void secp256k1_modinv32_update_fg_30(secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) { const int32_t M30 = (int32_t)(UINT32_MAX >> 2); const int32_t u = t->u, v = t->v, q = t->q, r = t->r; int32_t fi, gi; int64_t cf, cg; int i; fi = f->v[0]; gi = g->v[0]; cf = (int64_t)u * fi + (int64_t)v * gi; cg = (int64_t)q * fi + (int64_t)r * gi; VERIFY_CHECK(((int32_t)cf & M30) == 0); VERIFY_CHECK(((int32_t)cg & M30) == 0); cf >>= 30; cg >>= 30; for (i = 1; i < 9; ++i) { fi = f->v[i]; gi = g->v[i]; cf += (int64_t)u * fi + (int64_t)v * gi; cg += (int64_t)q * fi + (int64_t)r * gi; f->v[i - 1] = (int32_t)cf & M30; cf >>= 30; g->v[i - 1] = (int32_t)cg & M30; cg >>= 30; } f->v[8] = (int32_t)cf; g->v[8] = (int32_t)cg; } static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) { /* Modular inversion based on the paper "Fast constant-time gcd computation and * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. */ secp256k1_modinv32_signed30 d = {{0}}; secp256k1_modinv32_signed30 e = {{1}}; secp256k1_modinv32_signed30 f = modinfo->modulus; secp256k1_modinv32_signed30 g = *x; int i; int32_t eta; /* The paper uses 'delta'; eta == -delta (a performance tweak). * * If the maximum bitlength of g is known to be less than 256, then eta can be set * initially to -(1 + (256 - maxlen(g))), and only (741 - (256 - maxlen(g))) total * divsteps are needed. */ eta = -1; for (i = 0; i < 25; ++i) { secp256k1_modinv32_trans2x2 t; eta = secp256k1_modinv32_divsteps_30(eta, f.v[0], g.v[0], &t); secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo); secp256k1_modinv32_update_fg_30(&f, &g, &t); } /* At this point sufficient iterations have been performed that g must have reached 0 * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g * values i.e. +/- 1, and d now contains +/- the modular inverse. */ VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4] | g.v[5] | g.v[6] | g.v[7] | g.v[8]) == 0); secp256k1_modinv32_normalize_30(&d, f.v[8] >> 31, modinfo); *x = d; } static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) { /* Modular inversion based on the paper "Fast constant-time gcd computation and * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. */ secp256k1_modinv32_signed30 d = {{0, 0, 0, 0, 0, 0, 0, 0, 0}}; secp256k1_modinv32_signed30 e = {{1, 0, 0, 0, 0, 0, 0, 0, 0}}; secp256k1_modinv32_signed30 f = modinfo->modulus; secp256k1_modinv32_signed30 g = *x; int j; int32_t eta; int32_t cond; /* The paper uses 'delta'; eta == -delta (a performance tweak). * * If g has leading zeros (w.r.t 256 bits), then eta can be set initially to * -(1 + clz(g)), and the worst-case divstep count would be only (741 - clz(g)). */ eta = -1; while (1) { secp256k1_modinv32_trans2x2 t; eta = secp256k1_modinv32_divsteps_30_var(eta, f.v[0], g.v[0], &t); secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo); secp256k1_modinv32_update_fg_30(&f, &g, &t); if (g.v[0] == 0) { cond = 0; for (j = 1; j < 9; ++j) { cond |= g.v[j]; } if (cond == 0) break; } } /* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of * the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */ secp256k1_modinv32_normalize_30(&d, f.v[8] >> 31, modinfo); *x = d; } #endif /* SECP256K1_MODINV32_IMPL_H */