group: Further simply gej_add_ge
This commit is contained in:
parent
ac71020ebe
commit
e089eecc1e
@ -195,12 +195,6 @@ def formula_secp256k1_gej_add_ge(branch, a, b):
|
||||
n = m
|
||||
t = rr_alt^2
|
||||
rz = a.Z * m_alt
|
||||
infinity = False
|
||||
if (branch & 4) != 0:
|
||||
infinity = True
|
||||
zeroes.update({rz : 'r.z = 0'})
|
||||
else:
|
||||
nonzeroes.update({rz : 'r.z != 0'})
|
||||
t = t + q
|
||||
rx = t
|
||||
t = t * 2
|
||||
@ -213,8 +207,11 @@ def formula_secp256k1_gej_add_ge(branch, a, b):
|
||||
rx = b.X
|
||||
ry = b.Y
|
||||
rz = 1
|
||||
if infinity:
|
||||
if (branch & 4) != 0:
|
||||
zeroes.update({rz : 'r.z = 0'})
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity())
|
||||
else:
|
||||
nonzeroes.update({rz : 'r.z != 0'})
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz))
|
||||
|
||||
def formula_secp256k1_gej_add_ge_old(branch, a, b):
|
||||
|
@ -492,11 +492,11 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
|
||||
/* Operations: 7 mul, 5 sqr, 24 add/cmov/half/mul_int/negate/normalize_weak/normalizes_to_zero */
|
||||
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
|
||||
secp256k1_fe m_alt, rr_alt;
|
||||
int infinity, degenerate;
|
||||
int degenerate;
|
||||
VERIFY_CHECK(!b->infinity);
|
||||
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
|
||||
|
||||
/** In:
|
||||
/* In:
|
||||
* Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
|
||||
* In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
|
||||
* we find as solution for a unified addition/doubling formula:
|
||||
@ -558,8 +558,8 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
|
||||
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
|
||||
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
|
||||
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
|
||||
/** If lambda = R/M = R/0 we have a problem (except in the "trivial"
|
||||
* case that Z = z1z2 = 0, and this is special-cased later on). */
|
||||
/* If lambda = R/M = R/0 we have a problem (except in the "trivial"
|
||||
* case that Z = z1z2 = 0, and this is special-cased later on). */
|
||||
degenerate = secp256k1_fe_normalizes_to_zero(&m);
|
||||
/* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
|
||||
* This means either x1 == beta*x2 or beta*x1 == x2, where beta is
|
||||
@ -587,7 +587,6 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
|
||||
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
|
||||
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
|
||||
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */
|
||||
infinity = secp256k1_fe_normalizes_to_zero(&r->z) & ~a->infinity;
|
||||
secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */
|
||||
r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */
|
||||
secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */
|
||||
@ -597,11 +596,28 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
|
||||
secp256k1_fe_negate(&r->y, &t, 3); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (4) */
|
||||
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (3) */
|
||||
|
||||
/** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
|
||||
/* In case a->infinity == 1, replace r with (b->x, b->y, 1). */
|
||||
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
|
||||
secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
|
||||
secp256k1_fe_cmov(&r->z, &secp256k1_fe_one, a->infinity);
|
||||
r->infinity = infinity;
|
||||
|
||||
/* Set r->infinity if r->z is 0.
|
||||
*
|
||||
* If a->infinity is set, then r->infinity = (r->z == 0) = (1 == 0) = false,
|
||||
* which is correct because the function assumes that b is not infinity.
|
||||
*
|
||||
* Now assume !a->infinity. This implies Z = Z1 != 0.
|
||||
*
|
||||
* Case y1 = -y2:
|
||||
* In this case we could have a = -b, namely if x1 = x2.
|
||||
* We have degenerate = true, r->z = (x1 - x2) * Z.
|
||||
* Then r->infinity = ((x1 - x2)Z == 0) = (x1 == x2) = (a == -b).
|
||||
*
|
||||
* Case y1 != -y2:
|
||||
* In this case, we can't have a = -b.
|
||||
* We have degenerate = false, r->z = (y1 + y2) * Z.
|
||||
* Then r->infinity = ((y1 + y2)Z == 0) = (y1 == -y2) = false. */
|
||||
r->infinity = secp256k1_fe_normalizes_to_zero(&r->z);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user