bppp: align terminology with paper (mu, rho)

q-> mu, r -> rho
This commit is contained in:
Jonas Nick 2023-04-19 12:20:32 +00:00
parent f4dd0419aa
commit dbf2e4d3e1
No known key found for this signature in database
GPG Key ID: 4861DBF262123605
2 changed files with 103 additions and 103 deletions

View File

@ -43,7 +43,7 @@ static int secp256k1_scalar_inner_product(
/* Computes the q-weighted inner product of two vectors of scalars
* for elements starting from offset a and offset b respectively with the
* given step.
* Returns: Sum_{i=0..len-1}(a[offset_a + step*i] * b[offset_b2 + step*i]*q^(i+1)) */
* Returns: Sum_{i=0..len-1}(a[offset_a + step*i] * b[offset_b2 + step*i]*mu^(i+1)) */
static int secp256k1_weighted_scalar_inner_product(
secp256k1_scalar* res,
const secp256k1_scalar* a_vec,
@ -52,29 +52,29 @@ static int secp256k1_weighted_scalar_inner_product(
const size_t b_offset,
const size_t step,
const size_t len,
const secp256k1_scalar* q
const secp256k1_scalar* mu
) {
secp256k1_scalar q_pow;
secp256k1_scalar mu_pow;
size_t i;
secp256k1_scalar_set_int(res, 0);
q_pow = *q;
mu_pow = *mu;
for (i = 0; i < len; i++) {
secp256k1_scalar term;
secp256k1_scalar_mul(&term, &a_vec[a_offset + step*i], &b_vec[b_offset + step*i]);
secp256k1_scalar_mul(&term, &term, &q_pow);
secp256k1_scalar_mul(&q_pow, &q_pow, q);
secp256k1_scalar_mul(&term, &term, &mu_pow);
secp256k1_scalar_mul(&mu_pow, &mu_pow, mu);
secp256k1_scalar_add(res, res, &term);
}
return 1;
}
/* Compute the powers of r as r, r^2, r^4 ... r^(2^(n-1)) */
static void secp256k1_bppp_powers_of_r(secp256k1_scalar *powers, const secp256k1_scalar *r, size_t n) {
/* Compute the powers of rho as rho, rho^2, rho^4 ... rho^(2^(n-1)) */
static void secp256k1_bppp_powers_of_rho(secp256k1_scalar *powers, const secp256k1_scalar *rho, size_t n) {
size_t i;
if (n == 0) {
return;
}
powers[0] = *r;
powers[0] = *rho;
for (i = 1; i < n; i++) {
secp256k1_scalar_sqr(&powers[i], &powers[i - 1]);
}
@ -99,7 +99,7 @@ static int ecmult_bp_commit_cb(secp256k1_scalar *sc, secp256k1_ge *pt, size_t id
}
/* Create a commitment `commit` = vG + n_vec*G_vec + l_vec*H_vec where
v = |n_vec*n_vec|_q + <l_vec, c_vec>. |w|_q denotes q-weighted norm of w and
v = |n_vec*n_vec|_mu + <l_vec, c_vec>. |w|_mu denotes mu-weighted norm of w and
<l, r> denotes inner product of l and r.
*/
static int secp256k1_bppp_commit(
@ -113,7 +113,7 @@ static int secp256k1_bppp_commit(
size_t l_vec_len,
const secp256k1_scalar* c_vec,
size_t c_vec_len,
const secp256k1_scalar* q
const secp256k1_scalar* mu
) {
secp256k1_scalar v, l_c;
/* First n_vec_len generators are Gs, rest are Hs*/
@ -125,8 +125,8 @@ static int secp256k1_bppp_commit(
VERIFY_CHECK(secp256k1_is_power_of_two(n_vec_len));
VERIFY_CHECK(secp256k1_is_power_of_two(c_vec_len));
/* Compute v = n_vec*n_vec*q + l_vec*c_vec */
secp256k1_weighted_scalar_inner_product(&v, n_vec, 0 /*a offset */, n_vec, 0 /*b offset*/, 1 /*step*/, n_vec_len, q);
/* Compute v = n_vec*n_vec*mu + l_vec*c_vec */
secp256k1_weighted_scalar_inner_product(&v, n_vec, 0 /*a offset */, n_vec, 0 /*b offset*/, 1 /*step*/, n_vec_len, mu);
secp256k1_scalar_inner_product(&l_c, l_vec, 0 /*a offset */, c_vec, 0 /*b offset*/, 1 /*step*/, l_vec_len);
secp256k1_scalar_add(&v, &v, &l_c);
@ -150,8 +150,8 @@ typedef struct ecmult_x_cb_data {
const secp256k1_scalar *n;
const secp256k1_ge *g;
const secp256k1_scalar *l;
const secp256k1_scalar *r;
const secp256k1_scalar *r_inv;
const secp256k1_scalar *rho;
const secp256k1_scalar *rho_inv;
size_t G_GENS_LEN; /* Figure out initialization syntax so that this can also be const */
size_t n_len;
} ecmult_x_cb_data;
@ -160,10 +160,10 @@ static int ecmult_x_cb(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void
ecmult_x_cb_data *data = (ecmult_x_cb_data*) cbdata;
if (idx < data->n_len) {
if (idx % 2 == 0) {
secp256k1_scalar_mul(sc, &data->n[idx + 1], data->r);
secp256k1_scalar_mul(sc, &data->n[idx + 1], data->rho);
*pt = data->g[idx];
} else {
secp256k1_scalar_mul(sc, &data->n[idx - 1], data->r_inv);
secp256k1_scalar_mul(sc, &data->n[idx - 1], data->rho_inv);
*pt = data->g[idx];
}
} else {
@ -201,11 +201,11 @@ static int ecmult_r_cb(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void
}
/* Recursively compute the norm argument proof satisfying the relation
* <n_vec, n_vec>_q + <c_vec, l_vec> = v for some commitment
* C = v*G + <n_vec, G_vec> + <l_vec, H_vec>. <x, x>_q is the weighted inner
* product of x with itself, where the weights are the first n powers of q.
* <x, x>_q = q*x_1^2 + q^2*x_2^2 + q^3*x_3^2 + ... + q^n*x_n^2.
* The API computes q as square of the r challenge (`r^2`).
* <n_vec, n_vec>_mu + <c_vec, l_vec> = v for some commitment
* C = v*G + <n_vec, G_vec> + <l_vec, H_vec>. <x, x>_mu is the weighted inner
* product of x with itself, where the weights are the first n powers of mu.
* <x, x>_mu = mu*x_1^2 + mu^2*x_2^2 + mu^3*x_3^2 + ... + mu^n*x_n^2.
* The API computes mu as square of the r challenge (`r^2`).
*
* The norm argument is not zero knowledge and does not operate on any secret data.
* Thus the following code uses variable time operations while computing the proof.
@ -222,7 +222,7 @@ static int secp256k1_bppp_rangeproof_norm_product_prove(
unsigned char* proof,
size_t *proof_len,
secp256k1_sha256* transcript, /* Transcript hash of the parent protocol */
const secp256k1_scalar* r,
const secp256k1_scalar* rho,
secp256k1_ge* g_vec,
size_t g_vec_len,
secp256k1_scalar* n_vec,
@ -232,7 +232,7 @@ static int secp256k1_bppp_rangeproof_norm_product_prove(
secp256k1_scalar* c_vec,
size_t c_vec_len
) {
secp256k1_scalar q_f, r_f = *r;
secp256k1_scalar mu_f, rho_f = *rho;
size_t proof_idx = 0;
ecmult_x_cb_data x_cb_data;
ecmult_r_cb_data r_cb_data;
@ -259,30 +259,30 @@ static int secp256k1_bppp_rangeproof_norm_product_prove(
r_cb_data.g1 = g_vec;
r_cb_data.l1 = l_vec;
r_cb_data.G_GENS_LEN = G_GENS_LEN;
secp256k1_scalar_sqr(&q_f, &r_f);
secp256k1_scalar_sqr(&mu_f, &rho_f);
while (g_len > 1 || h_len > 1) {
size_t i, num_points;
secp256k1_scalar q_sq, r_inv, c0_l1, c1_l0, x_v, c1_l1, r_v;
secp256k1_scalar mu_sq, rho_inv, c0_l1, c1_l0, x_v, c1_l1, r_v;
secp256k1_gej rj, xj;
secp256k1_ge r_ge, x_ge;
secp256k1_scalar e;
secp256k1_scalar_inverse_var(&r_inv, &r_f);
secp256k1_scalar_sqr(&q_sq, &q_f);
secp256k1_scalar_inverse_var(&rho_inv, &rho_f);
secp256k1_scalar_sqr(&mu_sq, &mu_f);
/* Compute the X commitment X = WIP(r_inv*n0,n1)_q2 * g + r<n1,G> + <r_inv*x0, G1> */
/* Compute the X commitment X = WIP(rho_inv*n0,n1)_mu2 * g + r<n1,G> + <rho_inv*x0, G1> */
secp256k1_scalar_inner_product(&c0_l1, c_vec, 0, l_vec, 1, 2, h_len/2);
secp256k1_scalar_inner_product(&c1_l0, c_vec, 1, l_vec, 0, 2, h_len/2);
secp256k1_weighted_scalar_inner_product(&x_v, n_vec, 0, n_vec, 1, 2, g_len/2, &q_sq);
secp256k1_scalar_mul(&x_v, &x_v, &r_inv);
secp256k1_weighted_scalar_inner_product(&x_v, n_vec, 0, n_vec, 1, 2, g_len/2, &mu_sq);
secp256k1_scalar_mul(&x_v, &x_v, &rho_inv);
secp256k1_scalar_add(&x_v, &x_v, &x_v);
secp256k1_scalar_add(&x_v, &x_v, &c0_l1);
secp256k1_scalar_add(&x_v, &x_v, &c1_l0);
x_cb_data.r = &r_f;
x_cb_data.r_inv = &r_inv;
x_cb_data.rho = &rho_f;
x_cb_data.rho_inv = &rho_inv;
x_cb_data.n_len = g_len >= 2 ? g_len : 0;
num_points = x_cb_data.n_len + (h_len >= 2 ? h_len : 0);
@ -290,7 +290,7 @@ static int secp256k1_bppp_rangeproof_norm_product_prove(
return 0;
}
secp256k1_weighted_scalar_inner_product(&r_v, n_vec, 1, n_vec, 1, 2, g_len/2, &q_sq);
secp256k1_weighted_scalar_inner_product(&r_v, n_vec, 1, n_vec, 1, 2, g_len/2, &mu_sq);
secp256k1_scalar_inner_product(&c1_l1, c_vec, 1, l_vec, 1, 2, h_len/2);
secp256k1_scalar_add(&r_v, &r_v, &c1_l1);
@ -322,12 +322,12 @@ static int secp256k1_bppp_rangeproof_norm_product_prove(
for (i = 0; i < g_len; i = i + 2) {
secp256k1_scalar nl, nr;
secp256k1_gej gl, gr;
secp256k1_scalar_mul(&nl, &n_vec[i], &r_inv);
secp256k1_scalar_mul(&nl, &n_vec[i], &rho_inv);
secp256k1_scalar_mul(&nr, &n_vec[i + 1], &e);
secp256k1_scalar_add(&n_vec[i/2], &nl, &nr);
secp256k1_gej_set_ge(&gl, &g_vec[i]);
secp256k1_ecmult(&gl, &gl, &r_f, NULL);
secp256k1_ecmult(&gl, &gl, &rho_f, NULL);
secp256k1_gej_set_ge(&gr, &g_vec[i + 1]);
secp256k1_ecmult(&gr, &gr, &e, NULL);
secp256k1_gej_add_var(&gl, &gl, &gr, NULL);
@ -353,8 +353,8 @@ static int secp256k1_bppp_rangeproof_norm_product_prove(
}
g_len = g_len / 2;
h_len = h_len / 2;
r_f = q_f;
q_f = q_sq;
rho_f = mu_f;
mu_f = mu_sq;
}
secp256k1_scalar_get_b32(&proof[proof_idx], &n_vec[0]);
@ -432,15 +432,15 @@ static int secp256k1_bppp_rangeproof_norm_product_verify(
const unsigned char* proof,
size_t proof_len,
secp256k1_sha256* transcript,
const secp256k1_scalar* r,
const secp256k1_scalar* rho,
const secp256k1_bppp_generators* g_vec,
size_t g_len,
const secp256k1_scalar* c_vec,
size_t c_vec_len,
const secp256k1_ge* commit
) {
secp256k1_scalar r_f, q_f, v, n, l, r_inv, h_c;
secp256k1_scalar *es, *s_g, *s_h, *r_inv_pows;
secp256k1_scalar rho_f, mu_f, v, n, l, rho_inv, h_c;
secp256k1_scalar *es, *s_g, *s_h, *rho_inv_pows;
secp256k1_gej res1, res2;
size_t i = 0, scratch_checkpoint;
int overflow;
@ -467,27 +467,27 @@ static int secp256k1_bppp_rangeproof_norm_product_verify(
if (overflow) return 0;
secp256k1_scalar_set_b32(&l, &proof[n_rounds*65 + 32], &overflow); /* l */
if (overflow) return 0;
if (secp256k1_scalar_is_zero(r)) return 0;
if (secp256k1_scalar_is_zero(rho)) return 0;
/* Collect the challenges in a new vector */
scratch_checkpoint = secp256k1_scratch_checkpoint(&ctx->error_callback, scratch);
es = (secp256k1_scalar*)secp256k1_scratch_alloc(&ctx->error_callback, scratch, n_rounds * sizeof(secp256k1_scalar));
s_g = (secp256k1_scalar*)secp256k1_scratch_alloc(&ctx->error_callback, scratch, g_len * sizeof(secp256k1_scalar));
s_h = (secp256k1_scalar*)secp256k1_scratch_alloc(&ctx->error_callback, scratch, h_len * sizeof(secp256k1_scalar));
r_inv_pows = (secp256k1_scalar*)secp256k1_scratch_alloc(&ctx->error_callback, scratch, log_g_len * sizeof(secp256k1_scalar));
if (es == NULL || s_g == NULL || s_h == NULL || r_inv_pows == NULL) {
rho_inv_pows = (secp256k1_scalar*)secp256k1_scratch_alloc(&ctx->error_callback, scratch, log_g_len * sizeof(secp256k1_scalar));
if (es == NULL || s_g == NULL || s_h == NULL || rho_inv_pows == NULL) {
secp256k1_scratch_apply_checkpoint(&ctx->error_callback, scratch, scratch_checkpoint);
return 0;
}
/* Compute powers of r_inv. Later used in g_factor computations*/
secp256k1_scalar_inverse_var(&r_inv, r);
secp256k1_bppp_powers_of_r(r_inv_pows, &r_inv, log_g_len);
/* Compute powers of rho_inv. Later used in g_factor computations*/
secp256k1_scalar_inverse_var(&rho_inv, rho);
secp256k1_bppp_powers_of_rho(rho_inv_pows, &rho_inv, log_g_len);
/* Compute r_f = r^(2^log_g_len) */
r_f = *r;
/* Compute rho_f = rho^(2^log_g_len) */
rho_f = *rho;
for (i = 0; i < log_g_len; i++) {
secp256k1_scalar_sqr(&r_f, &r_f);
secp256k1_scalar_sqr(&rho_f, &rho_f);
}
for (i = 0; i < n_rounds; i++) {
@ -496,20 +496,20 @@ static int secp256k1_bppp_rangeproof_norm_product_verify(
secp256k1_bppp_challenge_scalar(&e, transcript, 0);
es[i] = e;
}
/* s_g[0] = n * \prod_{j=0}^{log_g_len - 1} r^(2^j)
* = n * r^(2^log_g_len - 1)
* = n * r_f * r_inv */
secp256k1_scalar_mul(&s_g[0], &n, &r_f);
secp256k1_scalar_mul(&s_g[0], &s_g[0], &r_inv);
/* s_g[0] = n * \prod_{j=0}^{log_g_len - 1} rho^(2^j)
* = n * rho^(2^log_g_len - 1)
* = n * rho_f * rho_inv */
secp256k1_scalar_mul(&s_g[0], &n, &rho_f);
secp256k1_scalar_mul(&s_g[0], &s_g[0], &rho_inv);
for (i = 1; i < g_len; i++) {
size_t log_i = secp256k1_bppp_log2(i);
size_t nearest_pow_of_two = (size_t)1 << log_i;
/* This combines the two multiplications of challenges and r_invs in a
/* This combines the two multiplications of challenges and rho_invs in a
* single loop.
* s_g[i] = s_g[i - nearest_pow_of_two]
* * e[log_i] * r_inv^(2^log_i) */
* * e[log_i] * rho_inv^(2^log_i) */
secp256k1_scalar_mul(&s_g[i], &s_g[i - nearest_pow_of_two], &es[log_i]);
secp256k1_scalar_mul(&s_g[i], &s_g[i], &r_inv_pows[log_i]);
secp256k1_scalar_mul(&s_g[i], &s_g[i], &rho_inv_pows[log_i]);
}
s_h[0] = l;
secp256k1_scalar_set_int(&h_c, 0);
@ -519,10 +519,10 @@ static int secp256k1_bppp_rangeproof_norm_product_verify(
secp256k1_scalar_mul(&s_h[i], &s_h[i - nearest_pow_of_two], &es[log_i]);
}
secp256k1_scalar_inner_product(&h_c, c_vec, 0 /* a_offset */ , s_h, 0 /* b_offset */, 1 /* step */, h_len);
/* Compute v = n*n*q_f + l*h_c where q_f = r_f^2 */
secp256k1_scalar_sqr(&q_f, &r_f);
/* Compute v = n*n*mu_f + l*h_c where mu_f = rho_f^2 */
secp256k1_scalar_sqr(&mu_f, &rho_f);
secp256k1_scalar_mul(&v, &n, &n);
secp256k1_scalar_mul(&v, &v, &q_f);
secp256k1_scalar_mul(&v, &v, &mu_f);
secp256k1_scalar_add(&v, &v, &h_c);
{

View File

@ -176,15 +176,15 @@ void test_log_exp(void) {
}
void test_norm_util_helpers(void) {
secp256k1_scalar a_vec[4], b_vec[4], r_pows[4], res, res2, q, r;
secp256k1_scalar a_vec[4], b_vec[4], rho_pows[4], res, res2, mu, rho;
int i;
/* a = {1, 2, 3, 4} b = {5, 6, 7, 8}, q = 4, r = 2 */
/* a = {1, 2, 3, 4} b = {5, 6, 7, 8}, mu = 4, rho = 2 */
for (i = 0; i < 4; i++) {
secp256k1_scalar_set_int(&a_vec[i], i + 1);
secp256k1_scalar_set_int(&b_vec[i], i + 5);
}
secp256k1_scalar_set_int(&q, 4);
secp256k1_scalar_set_int(&r, 2);
secp256k1_scalar_set_int(&mu, 4);
secp256k1_scalar_set_int(&rho, 2);
secp256k1_scalar_inner_product(&res, a_vec, 0, b_vec, 0, 1, 4);
secp256k1_scalar_set_int(&res2, 70);
CHECK(secp256k1_scalar_eq(&res2, &res) == 1);
@ -201,20 +201,20 @@ void test_norm_util_helpers(void) {
secp256k1_scalar_set_int(&res2, 44);
CHECK(secp256k1_scalar_eq(&res2, &res) == 1);
secp256k1_weighted_scalar_inner_product(&res, a_vec, 0, a_vec, 0, 1, 4, &q);
secp256k1_weighted_scalar_inner_product(&res, a_vec, 0, a_vec, 0, 1, 4, &mu);
secp256k1_scalar_set_int(&res2, 4740); /*i*i*4^(i+1) */
CHECK(secp256k1_scalar_eq(&res2, &res) == 1);
secp256k1_bppp_powers_of_r(r_pows, &r, 4);
secp256k1_scalar_set_int(&res, 2); CHECK(secp256k1_scalar_eq(&res, &r_pows[0]));
secp256k1_scalar_set_int(&res, 4); CHECK(secp256k1_scalar_eq(&res, &r_pows[1]));
secp256k1_scalar_set_int(&res, 16); CHECK(secp256k1_scalar_eq(&res, &r_pows[2]));
secp256k1_scalar_set_int(&res, 256); CHECK(secp256k1_scalar_eq(&res, &r_pows[3]));
secp256k1_bppp_powers_of_rho(rho_pows, &rho, 4);
secp256k1_scalar_set_int(&res, 2); CHECK(secp256k1_scalar_eq(&res, &rho_pows[0]));
secp256k1_scalar_set_int(&res, 4); CHECK(secp256k1_scalar_eq(&res, &rho_pows[1]));
secp256k1_scalar_set_int(&res, 16); CHECK(secp256k1_scalar_eq(&res, &rho_pows[2]));
secp256k1_scalar_set_int(&res, 256); CHECK(secp256k1_scalar_eq(&res, &rho_pows[3]));
}
static void secp256k1_norm_arg_commit_initial_data(
secp256k1_sha256* transcript,
const secp256k1_scalar* r,
const secp256k1_scalar* rho,
const secp256k1_bppp_generators* gens_vec,
size_t g_len, /* Same as n_vec_len, g_len + c_vec_len = gens->n */
const secp256k1_scalar* c_vec,
@ -231,7 +231,7 @@ static void secp256k1_norm_arg_commit_initial_data(
CHECK(secp256k1_ge_is_infinity(&comm) == 0);
CHECK(secp256k1_bppp_serialize_pt(&ser_commit[0], &comm));
secp256k1_sha256_write(transcript, ser_commit, 33);
secp256k1_scalar_get_b32(ser_scalar, r);
secp256k1_scalar_get_b32(ser_scalar, rho);
secp256k1_sha256_write(transcript, ser_scalar, 32);
secp256k1_bppp_le64(ser_le64, g_len);
secp256k1_sha256_write(transcript, ser_le64, 8);
@ -283,7 +283,7 @@ static int secp256k1_norm_arg_prove(
secp256k1_scratch_space* scratch,
unsigned char* proof,
size_t *proof_len,
const secp256k1_scalar* r,
const secp256k1_scalar* rho,
const secp256k1_bppp_generators* gens_vec,
const secp256k1_scalar* n_vec,
size_t n_vec_len,
@ -305,7 +305,7 @@ static int secp256k1_norm_arg_prove(
copy_vectors_into_scratch(scratch, &ns, &ls, &cs, &gs, n_vec, l_vec, c_vec, gens_vec->gens, g_len, h_len);
/* Commit to the initial public values */
secp256k1_norm_arg_commit_initial_data(&transcript, r, gens_vec, g_len, c_vec, c_vec_len, &comm);
secp256k1_norm_arg_commit_initial_data(&transcript, rho, gens_vec, g_len, c_vec, c_vec_len, &comm);
res = secp256k1_bppp_rangeproof_norm_product_prove(
ctx,
@ -313,7 +313,7 @@ static int secp256k1_norm_arg_prove(
proof,
proof_len,
&transcript, /* Transcript hash of the parent protocol */
r,
rho,
gs,
gens_vec->n,
ns,
@ -332,7 +332,7 @@ static int secp256k1_norm_arg_verify(
secp256k1_scratch_space* scratch,
const unsigned char* proof,
size_t proof_len,
const secp256k1_scalar* r,
const secp256k1_scalar* rho,
const secp256k1_bppp_generators* gens_vec,
size_t g_len,
const secp256k1_scalar* c_vec,
@ -344,7 +344,7 @@ static int secp256k1_norm_arg_verify(
secp256k1_sha256 transcript;
/* Commit to the initial public values */
secp256k1_norm_arg_commit_initial_data(&transcript, r, gens_vec, g_len, c_vec, c_vec_len, &comm);
secp256k1_norm_arg_commit_initial_data(&transcript, rho, gens_vec, g_len, c_vec, c_vec_len, &comm);
res = secp256k1_bppp_rangeproof_norm_product_verify(
ctx,
@ -352,7 +352,7 @@ static int secp256k1_norm_arg_verify(
proof,
proof_len,
&transcript,
r,
rho,
gens_vec,
g_len,
c_vec,
@ -364,15 +364,15 @@ static int secp256k1_norm_arg_verify(
void norm_arg_zero(void) {
secp256k1_scalar n_vec[64], l_vec[64], c_vec[64];
secp256k1_scalar r, q;
secp256k1_scalar rho, mu;
secp256k1_ge commit;
size_t i;
secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 1000*10); /* shouldn't need much */
unsigned char proof[1000];
secp256k1_sha256 transcript;
random_scalar_order(&r);
secp256k1_scalar_sqr(&q, &r);
random_scalar_order(&rho);
secp256k1_scalar_sqr(&mu, &rho);
/* l is zero vector and n is zero vectors of length 1 each. */
{
@ -386,17 +386,17 @@ void norm_arg_zero(void) {
random_scalar_order(&c_vec[0]);
secp256k1_sha256_initialize(&transcript); /* No challenges used in n = 1, l = 1, but we set transcript as a good practice*/
CHECK(secp256k1_bppp_commit(ctx, scratch, &commit, gens, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &q));
CHECK(secp256k1_bppp_commit(ctx, scratch, &commit, gens, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &mu));
{
secp256k1_scalar *ns, *ls, *cs;
secp256k1_ge *gs;
size_t scratch_checkpoint = secp256k1_scratch_checkpoint(&ctx->error_callback, scratch);
copy_vectors_into_scratch(scratch, &ns, &ls, &cs, &gs, n_vec, l_vec, c_vec, gens->gens, n_vec_len, c_vec_len);
CHECK(secp256k1_bppp_rangeproof_norm_product_prove(ctx, scratch, proof, &plen, &transcript, &r, gs, gens->n, ns, n_vec_len, ls, c_vec_len, cs, c_vec_len));
CHECK(secp256k1_bppp_rangeproof_norm_product_prove(ctx, scratch, proof, &plen, &transcript, &rho, gs, gens->n, ns, n_vec_len, ls, c_vec_len, cs, c_vec_len));
secp256k1_scratch_apply_checkpoint(&ctx->error_callback, scratch, scratch_checkpoint);
}
secp256k1_sha256_initialize(&transcript);
CHECK(secp256k1_bppp_rangeproof_norm_product_verify(ctx, scratch, proof, plen, &transcript, &r, gens, c_vec_len, c_vec, c_vec_len, &commit));
CHECK(secp256k1_bppp_rangeproof_norm_product_verify(ctx, scratch, proof, plen, &transcript, &rho, gens, c_vec_len, c_vec, c_vec_len, &commit));
secp256k1_bppp_generators_destroy(ctx, gens);
}
@ -415,8 +415,8 @@ void norm_arg_zero(void) {
secp256k1_scalar_set_int(&l_vec[i], 0);
random_scalar_order(&c_vec[i]);
}
CHECK(secp256k1_bppp_commit(ctx, scratch, &commit, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &q));
CHECK(!secp256k1_norm_arg_prove(scratch, proof, &plen, &r, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &commit));
CHECK(secp256k1_bppp_commit(ctx, scratch, &commit, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &mu));
CHECK(!secp256k1_norm_arg_prove(scratch, proof, &plen, &rho, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &commit));
secp256k1_bppp_generators_destroy(ctx, gs);
}
@ -429,11 +429,11 @@ void norm_arg_zero(void) {
random_scalar_order(&n_vec[0]);
random_scalar_order(&c_vec[0]);
random_scalar_order(&l_vec[0]);
CHECK(secp256k1_bppp_commit(ctx, scratch, &commit, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &q));
CHECK(secp256k1_norm_arg_prove(scratch, proof, &plen, &r, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &commit));
CHECK(secp256k1_norm_arg_verify(scratch, proof, plen, &r, gs, n_vec_len, c_vec, c_vec_len, &commit));
CHECK(!secp256k1_norm_arg_verify(scratch, proof, plen, &r, gs, 0, c_vec, c_vec_len, &commit));
CHECK(!secp256k1_norm_arg_verify(scratch, proof, plen, &r, gs, n_vec_len, c_vec, 0, &commit));
CHECK(secp256k1_bppp_commit(ctx, scratch, &commit, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &mu));
CHECK(secp256k1_norm_arg_prove(scratch, proof, &plen, &rho, gs, n_vec, n_vec_len, l_vec, c_vec_len, c_vec, c_vec_len, &commit));
CHECK(secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n_vec_len, c_vec, c_vec_len, &commit));
CHECK(!secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, 0, c_vec, c_vec_len, &commit));
CHECK(!secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n_vec_len, c_vec, 0, &commit));
secp256k1_bppp_generators_destroy(ctx, gs);
}
@ -443,7 +443,7 @@ void norm_arg_zero(void) {
void norm_arg_test(unsigned int n, unsigned int m) {
secp256k1_scalar n_vec[64], l_vec[64], c_vec[64];
secp256k1_scalar r, q;
secp256k1_scalar rho, mu;
secp256k1_ge commit;
size_t i, plen;
int res;
@ -451,8 +451,8 @@ void norm_arg_test(unsigned int n, unsigned int m) {
secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 1000*1000); /* shouldn't need much */
unsigned char proof[1000];
plen = 1000;
random_scalar_order(&r);
secp256k1_scalar_sqr(&q, &r);
random_scalar_order(&rho);
secp256k1_scalar_sqr(&mu, &rho);
for (i = 0; i < n; i++) {
random_scalar_order(&n_vec[i]);
@ -463,20 +463,20 @@ void norm_arg_test(unsigned int n, unsigned int m) {
random_scalar_order(&c_vec[i]);
}
res = secp256k1_bppp_commit(ctx, scratch, &commit, gs, n_vec, n, l_vec, m, c_vec, m, &q);
res = secp256k1_bppp_commit(ctx, scratch, &commit, gs, n_vec, n, l_vec, m, c_vec, m, &mu);
CHECK(res == 1);
res = secp256k1_norm_arg_prove(scratch, proof, &plen, &r, gs, n_vec, n, l_vec, m, c_vec, m, &commit);
res = secp256k1_norm_arg_prove(scratch, proof, &plen, &rho, gs, n_vec, n, l_vec, m, c_vec, m, &commit);
CHECK(res == 1);
res = secp256k1_norm_arg_verify(scratch, proof, plen, &r, gs, n, c_vec, m, &commit);
res = secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n, c_vec, m, &commit);
CHECK(res == 1);
/* Changing any of last two scalars should break the proof */
proof[plen - 1] ^= 1;
res = secp256k1_norm_arg_verify(scratch, proof, plen, &r, gs, n, c_vec, m, &commit);
res = secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n, c_vec, m, &commit);
CHECK(res == 0);
proof[plen - 1 - 32] ^= 1;
res = secp256k1_norm_arg_verify(scratch, proof, plen, &r, gs, n, c_vec, m, &commit);
res = secp256k1_norm_arg_verify(scratch, proof, plen, &rho, gs, n, c_vec, m, &commit);
CHECK(res == 0);
secp256k1_scratch_space_destroy(ctx, scratch);
@ -519,7 +519,7 @@ secp256k1_bppp_generators* bppp_generators_parse_regular(const unsigned char* da
int norm_arg_verify_vectors_helper(secp256k1_scratch *scratch, const unsigned char *gens, const unsigned char *proof, size_t plen, const unsigned char *r32, size_t n_vec_len, const unsigned char c_vec32[][32], secp256k1_scalar *c_vec, size_t c_vec_len, const unsigned char *commit33) {
secp256k1_sha256 transcript;
secp256k1_bppp_generators *gs = bppp_generators_parse_regular(gens, 33*(n_vec_len + c_vec_len));
secp256k1_scalar r;
secp256k1_scalar rho;
secp256k1_ge commit;
int overflow;
int i;
@ -528,7 +528,7 @@ int norm_arg_verify_vectors_helper(secp256k1_scratch *scratch, const unsigned ch
CHECK(gs != NULL);
secp256k1_sha256_initialize(&transcript);
secp256k1_scalar_set_b32(&r, r32, &overflow);
secp256k1_scalar_set_b32(&rho, r32, &overflow);
CHECK(!overflow);
for (i = 0; i < (int)c_vec_len; i++) {
@ -536,7 +536,7 @@ int norm_arg_verify_vectors_helper(secp256k1_scratch *scratch, const unsigned ch
CHECK(!overflow);
}
CHECK(secp256k1_eckey_pubkey_parse(&commit, commit33, 33));
ret = secp256k1_bppp_rangeproof_norm_product_verify(ctx, scratch, proof, plen, &transcript, &r, gs, n_vec_len, c_vec, c_vec_len, &commit);
ret = secp256k1_bppp_rangeproof_norm_product_verify(ctx, scratch, proof, plen, &transcript, &rho, gs, n_vec_len, c_vec, c_vec_len, &commit);
secp256k1_bppp_generators_destroy(ctx, gs);
return ret;