Merge #486: Add pippenger_wnaf for multi-multiplication
d2f9c6b Use more precise pippenger bucket windows (Jonas Nick) 4c950bb Save some additions per window in _pippenger_wnaf (Peter Dettman) a58f543 Add flags for choosing algorithm in ecmult_multi benchmark (Jonas Nick) 36b22c9 Use scratch space dependent batching in ecmult_multi (Jonas Nick) 355a38f Add pippenger_wnaf ecmult_multi (Jonas Nick) bc65aa7 Add bench_ecmult (Pieter Wuille) dba5471 Add ecmult_multi tests (Andrew Poelstra) 8c1c831 Generalize Strauss to support multiple points (Pieter Wuille) 548de42 add resizeable scratch space API (Andrew Poelstra) Pull request description: This PR is based on #473 and adds a variant of "Pippengers algorithm" (see [Bernstein et al., Faster batch forgery identification](https://eprint.iacr.org/2012/549.pdf), page 15 and https://github.com/scipr-lab/libff/pull/10) for point multi-multiplication that performs better with a large number of points than Strauss' algorithm.  Thanks to @sipa for providing `wnaf_fixed`, benchmarking, and the crucial suggestion to use affine addition. The PR also makes `ecmult_multi` decide which algorithm to use, based on the number of points and the available scratch space. For restricted scratch spaces this can be further optimized in the future (f.e. a 35kB scratch space allows batches of 11 points with strauss or 95 points with pippenger; choosing pippenger would be 5% faster). As soon as this PR has received some feedback I'll repeat the benchmarks to determine the optimal `pippenger_bucket_window` with the new benchmarking code in #473. Tree-SHA512: 8e155107a00d35f412300275803f912b1d228b7adff578bc4754c5b29641100b51b9d37f989316b636f7144e6b199febe7de302a44f498bbfd8d463bdbe31a5c
This commit is contained in:
commit
c77fc08597
@ -42,6 +42,8 @@ noinst_HEADERS += src/field_5x52_asm_impl.h
|
|||||||
noinst_HEADERS += src/java/org_bitcoin_NativeSecp256k1.h
|
noinst_HEADERS += src/java/org_bitcoin_NativeSecp256k1.h
|
||||||
noinst_HEADERS += src/java/org_bitcoin_Secp256k1Context.h
|
noinst_HEADERS += src/java/org_bitcoin_Secp256k1Context.h
|
||||||
noinst_HEADERS += src/util.h
|
noinst_HEADERS += src/util.h
|
||||||
|
noinst_HEADERS += src/scratch.h
|
||||||
|
noinst_HEADERS += src/scratch_impl.h
|
||||||
noinst_HEADERS += src/testrand.h
|
noinst_HEADERS += src/testrand.h
|
||||||
noinst_HEADERS += src/testrand_impl.h
|
noinst_HEADERS += src/testrand_impl.h
|
||||||
noinst_HEADERS += src/hash.h
|
noinst_HEADERS += src/hash.h
|
||||||
@ -79,7 +81,7 @@ libsecp256k1_jni_la_CPPFLAGS = -DSECP256K1_BUILD $(JNI_INCLUDES)
|
|||||||
|
|
||||||
noinst_PROGRAMS =
|
noinst_PROGRAMS =
|
||||||
if USE_BENCHMARK
|
if USE_BENCHMARK
|
||||||
noinst_PROGRAMS += bench_verify bench_sign bench_internal
|
noinst_PROGRAMS += bench_verify bench_sign bench_internal bench_ecmult
|
||||||
bench_verify_SOURCES = src/bench_verify.c
|
bench_verify_SOURCES = src/bench_verify.c
|
||||||
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
|
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
|
||||||
bench_sign_SOURCES = src/bench_sign.c
|
bench_sign_SOURCES = src/bench_sign.c
|
||||||
@ -87,6 +89,9 @@ bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
|
|||||||
bench_internal_SOURCES = src/bench_internal.c
|
bench_internal_SOURCES = src/bench_internal.c
|
||||||
bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB)
|
bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB)
|
||||||
bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES)
|
bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES)
|
||||||
|
bench_ecmult_SOURCES = src/bench_ecmult.c
|
||||||
|
bench_ecmult_LDADD = $(SECP_LIBS) $(COMMON_LIB)
|
||||||
|
bench_ecmult_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES)
|
||||||
endif
|
endif
|
||||||
|
|
||||||
TESTS =
|
TESTS =
|
||||||
@ -159,6 +164,7 @@ $(gen_context_BIN): $(gen_context_OBJECTS)
|
|||||||
$(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h
|
$(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h
|
||||||
$(tests_OBJECTS): src/ecmult_static_context.h
|
$(tests_OBJECTS): src/ecmult_static_context.h
|
||||||
$(bench_internal_OBJECTS): src/ecmult_static_context.h
|
$(bench_internal_OBJECTS): src/ecmult_static_context.h
|
||||||
|
$(bench_ecmult_OBJECTS): src/ecmult_static_context.h
|
||||||
|
|
||||||
src/ecmult_static_context.h: $(gen_context_BIN)
|
src/ecmult_static_context.h: $(gen_context_BIN)
|
||||||
./$(gen_context_BIN)
|
./$(gen_context_BIN)
|
||||||
|
@ -42,6 +42,19 @@ extern "C" {
|
|||||||
*/
|
*/
|
||||||
typedef struct secp256k1_context_struct secp256k1_context;
|
typedef struct secp256k1_context_struct secp256k1_context;
|
||||||
|
|
||||||
|
/** Opaque data structure that holds rewriteable "scratch space"
|
||||||
|
*
|
||||||
|
* The purpose of this structure is to replace dynamic memory allocations,
|
||||||
|
* because we target architectures where this may not be available. It is
|
||||||
|
* essentially a resizable (within specified parameters) block of bytes,
|
||||||
|
* which is initially created either by memory allocation or TODO as a pointer
|
||||||
|
* into some fixed rewritable space.
|
||||||
|
*
|
||||||
|
* Unlike the context object, this cannot safely be shared between threads
|
||||||
|
* without additional synchronization logic.
|
||||||
|
*/
|
||||||
|
typedef struct secp256k1_scratch_space_struct secp256k1_scratch_space;
|
||||||
|
|
||||||
/** Opaque data structure that holds a parsed and valid public key.
|
/** Opaque data structure that holds a parsed and valid public key.
|
||||||
*
|
*
|
||||||
* The exact representation of data inside is implementation defined and not
|
* The exact representation of data inside is implementation defined and not
|
||||||
@ -243,6 +256,28 @@ SECP256K1_API void secp256k1_context_set_error_callback(
|
|||||||
const void* data
|
const void* data
|
||||||
) SECP256K1_ARG_NONNULL(1);
|
) SECP256K1_ARG_NONNULL(1);
|
||||||
|
|
||||||
|
/** Create a secp256k1 scratch space object.
|
||||||
|
*
|
||||||
|
* Returns: a newly created scratch space.
|
||||||
|
* Args: ctx: an existing context object (cannot be NULL)
|
||||||
|
* In: init_size: initial amount of memory to allocate
|
||||||
|
* max_size: maximum amount of memory to allocate
|
||||||
|
*/
|
||||||
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space* secp256k1_scratch_space_create(
|
||||||
|
const secp256k1_context* ctx,
|
||||||
|
size_t init_size,
|
||||||
|
size_t max_size
|
||||||
|
) SECP256K1_ARG_NONNULL(1);
|
||||||
|
|
||||||
|
/** Destroy a secp256k1 scratch space.
|
||||||
|
*
|
||||||
|
* The pointer may not be used afterwards.
|
||||||
|
* Args: scratch: space to destroy
|
||||||
|
*/
|
||||||
|
SECP256K1_API void secp256k1_scratch_space_destroy(
|
||||||
|
secp256k1_scratch_space* scratch
|
||||||
|
);
|
||||||
|
|
||||||
/** Parse a variable-length public key into the pubkey object.
|
/** Parse a variable-length public key into the pubkey object.
|
||||||
*
|
*
|
||||||
* Returns: 1 if the public key was fully valid.
|
* Returns: 1 if the public key was fully valid.
|
||||||
|
16
src/bench.h
16
src/bench.h
@ -8,6 +8,7 @@
|
|||||||
#define SECP256K1_BENCH_H
|
#define SECP256K1_BENCH_H
|
||||||
|
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
|
#include <string.h>
|
||||||
#include <math.h>
|
#include <math.h>
|
||||||
#include "sys/time.h"
|
#include "sys/time.h"
|
||||||
|
|
||||||
@ -63,4 +64,19 @@ void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), v
|
|||||||
printf("us\n");
|
printf("us\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int have_flag(int argc, char** argv, char *flag) {
|
||||||
|
char** argm = argv + argc;
|
||||||
|
argv++;
|
||||||
|
if (argv == argm) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
while (argv != NULL && argv != argm) {
|
||||||
|
if (strcmp(*argv, flag) == 0) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
argv++;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
#endif /* SECP256K1_BENCH_H */
|
#endif /* SECP256K1_BENCH_H */
|
||||||
|
196
src/bench_ecmult.c
Normal file
196
src/bench_ecmult.c
Normal file
@ -0,0 +1,196 @@
|
|||||||
|
/**********************************************************************
|
||||||
|
* Copyright (c) 2017 Pieter Wuille *
|
||||||
|
* Distributed under the MIT software license, see the accompanying *
|
||||||
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||||
|
**********************************************************************/
|
||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
|
#include "include/secp256k1.h"
|
||||||
|
|
||||||
|
#include "util.h"
|
||||||
|
#include "hash_impl.h"
|
||||||
|
#include "num_impl.h"
|
||||||
|
#include "field_impl.h"
|
||||||
|
#include "group_impl.h"
|
||||||
|
#include "scalar_impl.h"
|
||||||
|
#include "ecmult_impl.h"
|
||||||
|
#include "bench.h"
|
||||||
|
#include "secp256k1.c"
|
||||||
|
|
||||||
|
#define POINTS 32768
|
||||||
|
#define ITERS 10000
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
/* Setup once in advance */
|
||||||
|
secp256k1_context* ctx;
|
||||||
|
secp256k1_scratch_space* scratch;
|
||||||
|
secp256k1_scalar* scalars;
|
||||||
|
secp256k1_ge* pubkeys;
|
||||||
|
secp256k1_scalar* seckeys;
|
||||||
|
secp256k1_gej* expected_output;
|
||||||
|
secp256k1_ecmult_multi_func ecmult_multi;
|
||||||
|
|
||||||
|
/* Changes per test */
|
||||||
|
size_t count;
|
||||||
|
int includes_g;
|
||||||
|
|
||||||
|
/* Changes per test iteration */
|
||||||
|
size_t offset1;
|
||||||
|
size_t offset2;
|
||||||
|
|
||||||
|
/* Test output. */
|
||||||
|
secp256k1_gej* output;
|
||||||
|
} bench_data;
|
||||||
|
|
||||||
|
static int bench_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, void* arg) {
|
||||||
|
bench_data* data = (bench_data*)arg;
|
||||||
|
if (data->includes_g) ++idx;
|
||||||
|
if (idx == 0) {
|
||||||
|
*sc = data->scalars[data->offset1];
|
||||||
|
*ge = secp256k1_ge_const_g;
|
||||||
|
} else {
|
||||||
|
*sc = data->scalars[(data->offset1 + idx) % POINTS];
|
||||||
|
*ge = data->pubkeys[(data->offset2 + idx - 1) % POINTS];
|
||||||
|
}
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void bench_ecmult(void* arg) {
|
||||||
|
bench_data* data = (bench_data*)arg;
|
||||||
|
|
||||||
|
size_t count = data->count;
|
||||||
|
int includes_g = data->includes_g;
|
||||||
|
size_t iters = 1 + ITERS / count;
|
||||||
|
size_t iter;
|
||||||
|
|
||||||
|
for (iter = 0; iter < iters; ++iter) {
|
||||||
|
data->ecmult_multi(&data->ctx->ecmult_ctx, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_callback, arg, count - includes_g);
|
||||||
|
data->offset1 = (data->offset1 + count) % POINTS;
|
||||||
|
data->offset2 = (data->offset2 + count - 1) % POINTS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void bench_ecmult_setup(void* arg) {
|
||||||
|
bench_data* data = (bench_data*)arg;
|
||||||
|
data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS;
|
||||||
|
data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void bench_ecmult_teardown(void* arg) {
|
||||||
|
bench_data* data = (bench_data*)arg;
|
||||||
|
size_t iters = 1 + ITERS / data->count;
|
||||||
|
size_t iter;
|
||||||
|
/* Verify the results in teardown, to avoid doing comparisons while benchmarking. */
|
||||||
|
for (iter = 0; iter < iters; ++iter) {
|
||||||
|
secp256k1_gej tmp;
|
||||||
|
secp256k1_gej_add_var(&tmp, &data->output[iter], &data->expected_output[iter], NULL);
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&tmp));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) {
|
||||||
|
secp256k1_sha256 sha256;
|
||||||
|
unsigned char c[11] = {'e', 'c', 'm', 'u', 'l', 't', 0, 0, 0, 0};
|
||||||
|
unsigned char buf[32];
|
||||||
|
int overflow = 0;
|
||||||
|
c[6] = num;
|
||||||
|
c[7] = num >> 8;
|
||||||
|
c[8] = num >> 16;
|
||||||
|
c[9] = num >> 24;
|
||||||
|
secp256k1_sha256_initialize(&sha256);
|
||||||
|
secp256k1_sha256_write(&sha256, c, sizeof(c));
|
||||||
|
secp256k1_sha256_finalize(&sha256, buf);
|
||||||
|
secp256k1_scalar_set_b32(scalar, buf, &overflow);
|
||||||
|
CHECK(!overflow);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void run_test(bench_data* data, size_t count, int includes_g) {
|
||||||
|
char str[32];
|
||||||
|
static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
||||||
|
size_t iters = 1 + ITERS / count;
|
||||||
|
size_t iter;
|
||||||
|
|
||||||
|
data->count = count;
|
||||||
|
data->includes_g = includes_g;
|
||||||
|
|
||||||
|
/* Compute (the negation of) the expected results directly. */
|
||||||
|
data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS;
|
||||||
|
data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS;
|
||||||
|
for (iter = 0; iter < iters; ++iter) {
|
||||||
|
secp256k1_scalar tmp;
|
||||||
|
secp256k1_scalar total = data->scalars[(data->offset1++) % POINTS];
|
||||||
|
size_t i = 0;
|
||||||
|
for (i = 0; i + 1 < count; ++i) {
|
||||||
|
secp256k1_scalar_mul(&tmp, &data->seckeys[(data->offset2++) % POINTS], &data->scalars[(data->offset1++) % POINTS]);
|
||||||
|
secp256k1_scalar_add(&total, &total, &tmp);
|
||||||
|
}
|
||||||
|
secp256k1_scalar_negate(&total, &total);
|
||||||
|
secp256k1_ecmult(&data->ctx->ecmult_ctx, &data->expected_output[iter], NULL, &zero, &total);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Run the benchmark. */
|
||||||
|
sprintf(str, includes_g ? "ecmult_%ig" : "ecmult_%i", (int)count);
|
||||||
|
run_benchmark(str, bench_ecmult, bench_ecmult_setup, bench_ecmult_teardown, data, 10, count * (1 + ITERS / count));
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
bench_data data;
|
||||||
|
int i, p;
|
||||||
|
secp256k1_gej* pubkeys_gej;
|
||||||
|
size_t scratch_size;
|
||||||
|
|
||||||
|
if (argc > 1) {
|
||||||
|
if(have_flag(argc, argv, "pippenger_wnaf")) {
|
||||||
|
printf("Using pippenger_wnaf:\n");
|
||||||
|
data.ecmult_multi = secp256k1_ecmult_pippenger_batch_single;
|
||||||
|
} else if(have_flag(argc, argv, "strauss_wnaf")) {
|
||||||
|
printf("Using strauss_wnaf:\n");
|
||||||
|
data.ecmult_multi = secp256k1_ecmult_strauss_batch_single;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
data.ecmult_multi = secp256k1_ecmult_multi_var;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Allocate stuff */
|
||||||
|
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
||||||
|
scratch_size = secp256k1_strauss_scratch_size(POINTS) + STRAUSS_SCRATCH_OBJECTS*16;
|
||||||
|
data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size, scratch_size);
|
||||||
|
data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS);
|
||||||
|
data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS);
|
||||||
|
data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS);
|
||||||
|
data.expected_output = malloc(sizeof(secp256k1_gej) * (ITERS + 1));
|
||||||
|
data.output = malloc(sizeof(secp256k1_gej) * (ITERS + 1));
|
||||||
|
|
||||||
|
/* Generate a set of scalars, and private/public keypairs. */
|
||||||
|
pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS);
|
||||||
|
secp256k1_gej_set_ge(&pubkeys_gej[0], &secp256k1_ge_const_g);
|
||||||
|
secp256k1_scalar_set_int(&data.seckeys[0], 1);
|
||||||
|
for (i = 0; i < POINTS; ++i) {
|
||||||
|
generate_scalar(i, &data.scalars[i]);
|
||||||
|
if (i) {
|
||||||
|
secp256k1_gej_double_var(&pubkeys_gej[i], &pubkeys_gej[i - 1], NULL);
|
||||||
|
secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS, &data.ctx->error_callback);
|
||||||
|
free(pubkeys_gej);
|
||||||
|
|
||||||
|
for (i = 1; i <= 8; ++i) {
|
||||||
|
run_test(&data, i, 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (p = 0; p <= 11; ++p) {
|
||||||
|
for (i = 9; i <= 16; ++i) {
|
||||||
|
run_test(&data, i << p, 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
secp256k1_context_destroy(data.ctx);
|
||||||
|
secp256k1_scratch_space_destroy(data.scratch);
|
||||||
|
free(data.scalars);
|
||||||
|
free(data.pubkeys);
|
||||||
|
free(data.seckeys);
|
||||||
|
free(data.output);
|
||||||
|
free(data.expected_output);
|
||||||
|
|
||||||
|
return(0);
|
||||||
|
}
|
@ -324,21 +324,6 @@ void bench_num_jacobi(void* arg) {
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
int have_flag(int argc, char** argv, char *flag) {
|
|
||||||
char** argm = argv + argc;
|
|
||||||
argv++;
|
|
||||||
if (argv == argm) {
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
while (argv != NULL && argv != argm) {
|
|
||||||
if (strcmp(*argv, flag) == 0) {
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
argv++;
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
int main(int argc, char **argv) {
|
int main(int argc, char **argv) {
|
||||||
bench_inv data;
|
bench_inv data;
|
||||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, 2000000);
|
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, 2000000);
|
||||||
|
18
src/ecmult.h
18
src/ecmult.h
@ -1,5 +1,5 @@
|
|||||||
/**********************************************************************
|
/**********************************************************************
|
||||||
* Copyright (c) 2013, 2014 Pieter Wuille *
|
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra *
|
||||||
* Distributed under the MIT software license, see the accompanying *
|
* Distributed under the MIT software license, see the accompanying *
|
||||||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||||
**********************************************************************/
|
**********************************************************************/
|
||||||
@ -9,6 +9,8 @@
|
|||||||
|
|
||||||
#include "num.h"
|
#include "num.h"
|
||||||
#include "group.h"
|
#include "group.h"
|
||||||
|
#include "scalar.h"
|
||||||
|
#include "scratch.h"
|
||||||
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
/* For accelerating the computation of a*P + b*G: */
|
/* For accelerating the computation of a*P + b*G: */
|
||||||
@ -28,4 +30,18 @@ static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx
|
|||||||
/** Double multiply: R = na*A + ng*G */
|
/** Double multiply: R = na*A + ng*G */
|
||||||
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
|
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
|
||||||
|
|
||||||
|
typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
|
||||||
|
* Chooses the right algorithm for a given number of points and scratch space
|
||||||
|
* size. Resets and overwrites the given scratch space. If the points do not
|
||||||
|
* fit in the scratch space the algorithm is repeatedly run with batches of
|
||||||
|
* points.
|
||||||
|
* Returns: 1 on success (including when inp_g_sc is NULL and n is 0)
|
||||||
|
* 0 if there is not enough scratch space for a single point or
|
||||||
|
* callback returns 0
|
||||||
|
*/
|
||||||
|
static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n);
|
||||||
|
|
||||||
#endif /* SECP256K1_ECMULT_H */
|
#endif /* SECP256K1_ECMULT_H */
|
||||||
|
@ -12,13 +12,6 @@
|
|||||||
#include "ecmult_const.h"
|
#include "ecmult_const.h"
|
||||||
#include "ecmult_impl.h"
|
#include "ecmult_impl.h"
|
||||||
|
|
||||||
#ifdef USE_ENDOMORPHISM
|
|
||||||
#define WNAF_BITS 128
|
|
||||||
#else
|
|
||||||
#define WNAF_BITS 256
|
|
||||||
#endif
|
|
||||||
#define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
|
|
||||||
|
|
||||||
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
|
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
|
||||||
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
|
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
|
||||||
int m; \
|
int m; \
|
||||||
|
@ -1,13 +1,14 @@
|
|||||||
/**********************************************************************
|
/*****************************************************************************
|
||||||
* Copyright (c) 2013, 2014 Pieter Wuille *
|
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick *
|
||||||
* Distributed under the MIT software license, see the accompanying *
|
* Distributed under the MIT software license, see the accompanying *
|
||||||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php. *
|
||||||
**********************************************************************/
|
*****************************************************************************/
|
||||||
|
|
||||||
#ifndef SECP256K1_ECMULT_IMPL_H
|
#ifndef SECP256K1_ECMULT_IMPL_H
|
||||||
#define SECP256K1_ECMULT_IMPL_H
|
#define SECP256K1_ECMULT_IMPL_H
|
||||||
|
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
|
||||||
#include "group.h"
|
#include "group.h"
|
||||||
#include "scalar.h"
|
#include "scalar.h"
|
||||||
@ -41,9 +42,35 @@
|
|||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
#define WNAF_BITS 128
|
||||||
|
#else
|
||||||
|
#define WNAF_BITS 256
|
||||||
|
#endif
|
||||||
|
#define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
|
||||||
|
|
||||||
/** The number of entries a table with precomputed multiples needs to have. */
|
/** The number of entries a table with precomputed multiples needs to have. */
|
||||||
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
|
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
|
||||||
|
|
||||||
|
/* The number of objects allocated on the scratch space for ecmult_multi algorithms */
|
||||||
|
#define PIPPENGER_SCRATCH_OBJECTS 6
|
||||||
|
#define STRAUSS_SCRATCH_OBJECTS 6
|
||||||
|
|
||||||
|
#define PIPPENGER_MAX_BUCKET_WINDOW 12
|
||||||
|
|
||||||
|
/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
#define ECMULT_PIPPENGER_THRESHOLD 88
|
||||||
|
#else
|
||||||
|
#define ECMULT_PIPPENGER_THRESHOLD 160
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
#define ECMULT_MAX_POINTS_PER_BATCH 5000000
|
||||||
|
#else
|
||||||
|
#define ECMULT_MAX_POINTS_PER_BATCH 10000000
|
||||||
|
#endif
|
||||||
|
|
||||||
/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
|
/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
|
||||||
* the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
|
* the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
|
||||||
* contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
|
* contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
|
||||||
@ -283,50 +310,78 @@ static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a,
|
|||||||
return last_set_bit + 1;
|
return last_set_bit + 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
|
struct secp256k1_strauss_point_state {
|
||||||
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
|
|
||||||
secp256k1_ge tmpa;
|
|
||||||
secp256k1_fe Z;
|
|
||||||
#ifdef USE_ENDOMORPHISM
|
#ifdef USE_ENDOMORPHISM
|
||||||
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
|
|
||||||
secp256k1_scalar na_1, na_lam;
|
secp256k1_scalar na_1, na_lam;
|
||||||
/* Splitted G factors. */
|
|
||||||
secp256k1_scalar ng_1, ng_128;
|
|
||||||
int wnaf_na_1[130];
|
int wnaf_na_1[130];
|
||||||
int wnaf_na_lam[130];
|
int wnaf_na_lam[130];
|
||||||
int bits_na_1;
|
int bits_na_1;
|
||||||
int bits_na_lam;
|
int bits_na_lam;
|
||||||
int wnaf_ng_1[129];
|
|
||||||
int bits_ng_1;
|
|
||||||
int wnaf_ng_128[129];
|
|
||||||
int bits_ng_128;
|
|
||||||
#else
|
#else
|
||||||
int wnaf_na[256];
|
int wnaf_na[256];
|
||||||
int bits_na;
|
int bits_na;
|
||||||
|
#endif
|
||||||
|
size_t input_pos;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct secp256k1_strauss_state {
|
||||||
|
secp256k1_gej* prej;
|
||||||
|
secp256k1_fe* zr;
|
||||||
|
secp256k1_ge* pre_a;
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
secp256k1_ge* pre_a_lam;
|
||||||
|
#endif
|
||||||
|
struct secp256k1_strauss_point_state* ps;
|
||||||
|
};
|
||||||
|
|
||||||
|
static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, const struct secp256k1_strauss_state *state, secp256k1_gej *r, int num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
|
||||||
|
secp256k1_ge tmpa;
|
||||||
|
secp256k1_fe Z;
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
/* Splitted G factors. */
|
||||||
|
secp256k1_scalar ng_1, ng_128;
|
||||||
|
int wnaf_ng_1[129];
|
||||||
|
int bits_ng_1 = 0;
|
||||||
|
int wnaf_ng_128[129];
|
||||||
|
int bits_ng_128 = 0;
|
||||||
|
#else
|
||||||
int wnaf_ng[256];
|
int wnaf_ng[256];
|
||||||
int bits_ng;
|
int bits_ng = 0;
|
||||||
#endif
|
#endif
|
||||||
int i;
|
int i;
|
||||||
int bits;
|
int bits = 0;
|
||||||
|
int np;
|
||||||
|
int no = 0;
|
||||||
|
|
||||||
|
for (np = 0; np < num; ++np) {
|
||||||
|
if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
state->ps[no].input_pos = np;
|
||||||
#ifdef USE_ENDOMORPHISM
|
#ifdef USE_ENDOMORPHISM
|
||||||
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
|
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
|
||||||
secp256k1_scalar_split_lambda(&na_1, &na_lam, na);
|
secp256k1_scalar_split_lambda(&state->ps[no].na_1, &state->ps[no].na_lam, &na[np]);
|
||||||
|
|
||||||
/* build wnaf representation for na_1 and na_lam. */
|
/* build wnaf representation for na_1 and na_lam. */
|
||||||
bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, 130, &na_1, WINDOW_A);
|
state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 130, &state->ps[no].na_1, WINDOW_A);
|
||||||
bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A);
|
state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 130, &state->ps[no].na_lam, WINDOW_A);
|
||||||
VERIFY_CHECK(bits_na_1 <= 130);
|
VERIFY_CHECK(state->ps[no].bits_na_1 <= 130);
|
||||||
VERIFY_CHECK(bits_na_lam <= 130);
|
VERIFY_CHECK(state->ps[no].bits_na_lam <= 130);
|
||||||
bits = bits_na_1;
|
if (state->ps[no].bits_na_1 > bits) {
|
||||||
if (bits_na_lam > bits) {
|
bits = state->ps[no].bits_na_1;
|
||||||
bits = bits_na_lam;
|
}
|
||||||
}
|
if (state->ps[no].bits_na_lam > bits) {
|
||||||
|
bits = state->ps[no].bits_na_lam;
|
||||||
|
}
|
||||||
#else
|
#else
|
||||||
/* build wnaf representation for na. */
|
/* build wnaf representation for na. */
|
||||||
bits_na = secp256k1_ecmult_wnaf(wnaf_na, 256, na, WINDOW_A);
|
state->ps[no].bits_na = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na, 256, &na[np], WINDOW_A);
|
||||||
bits = bits_na;
|
if (state->ps[no].bits_na > bits) {
|
||||||
|
bits = state->ps[no].bits_na;
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
|
++no;
|
||||||
|
}
|
||||||
|
|
||||||
/* Calculate odd multiples of a.
|
/* Calculate odd multiples of a.
|
||||||
* All multiples are brought to the same Z 'denominator', which is stored
|
* All multiples are brought to the same Z 'denominator', which is stored
|
||||||
@ -338,29 +393,51 @@ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej
|
|||||||
* of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
|
* of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
|
||||||
* isomorphism to efficiently add with a known Z inverse.
|
* isomorphism to efficiently add with a known Z inverse.
|
||||||
*/
|
*/
|
||||||
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a);
|
if (no > 0) {
|
||||||
|
/* Compute the odd multiples in Jacobian form. */
|
||||||
|
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej, state->zr, &a[state->ps[0].input_pos]);
|
||||||
|
for (np = 1; np < no; ++np) {
|
||||||
|
secp256k1_gej tmp = a[state->ps[np].input_pos];
|
||||||
|
#ifdef VERIFY
|
||||||
|
secp256k1_fe_normalize_var(&(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z));
|
||||||
|
#endif
|
||||||
|
secp256k1_gej_rescale(&tmp, &(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z));
|
||||||
|
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &tmp);
|
||||||
|
secp256k1_fe_mul(state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &(a[state->ps[np].input_pos].z));
|
||||||
|
}
|
||||||
|
/* Bring them to the same Z denominator. */
|
||||||
|
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, &Z, state->prej, state->zr);
|
||||||
|
} else {
|
||||||
|
secp256k1_fe_set_int(&Z, 1);
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef USE_ENDOMORPHISM
|
#ifdef USE_ENDOMORPHISM
|
||||||
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
|
for (np = 0; np < no; ++np) {
|
||||||
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
|
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
|
||||||
|
secp256k1_ge_mul_lambda(&state->pre_a_lam[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i]);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
|
if (ng) {
|
||||||
secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
|
/* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
|
||||||
|
secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
|
||||||
|
|
||||||
/* Build wnaf representation for ng_1 and ng_128 */
|
/* Build wnaf representation for ng_1 and ng_128 */
|
||||||
bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
|
bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
|
||||||
bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
|
bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
|
||||||
if (bits_ng_1 > bits) {
|
if (bits_ng_1 > bits) {
|
||||||
bits = bits_ng_1;
|
bits = bits_ng_1;
|
||||||
}
|
}
|
||||||
if (bits_ng_128 > bits) {
|
if (bits_ng_128 > bits) {
|
||||||
bits = bits_ng_128;
|
bits = bits_ng_128;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
|
if (ng) {
|
||||||
if (bits_ng > bits) {
|
bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
|
||||||
bits = bits_ng;
|
if (bits_ng > bits) {
|
||||||
|
bits = bits_ng;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@ -370,13 +447,15 @@ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej
|
|||||||
int n;
|
int n;
|
||||||
secp256k1_gej_double_var(r, r, NULL);
|
secp256k1_gej_double_var(r, r, NULL);
|
||||||
#ifdef USE_ENDOMORPHISM
|
#ifdef USE_ENDOMORPHISM
|
||||||
if (i < bits_na_1 && (n = wnaf_na_1[i])) {
|
for (np = 0; np < no; ++np) {
|
||||||
ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
|
if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) {
|
||||||
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
|
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
|
||||||
}
|
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
|
||||||
if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
|
}
|
||||||
ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
|
if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) {
|
||||||
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
|
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a_lam + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
|
||||||
|
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
|
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
|
||||||
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
|
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
|
||||||
@ -387,9 +466,11 @@ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej
|
|||||||
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
|
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
if (i < bits_na && (n = wnaf_na[i])) {
|
for (np = 0; np < no; ++np) {
|
||||||
ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
|
if (i < state->ps[np].bits_na && (n = state->ps[np].wnaf_na[i])) {
|
||||||
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
|
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
|
||||||
|
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
if (i < bits_ng && (n = wnaf_ng[i])) {
|
if (i < bits_ng && (n = wnaf_ng[i])) {
|
||||||
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
|
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
|
||||||
@ -403,4 +484,528 @@ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
|
||||||
|
secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||||
|
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||||
|
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||||
|
struct secp256k1_strauss_point_state ps[1];
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||||
|
#endif
|
||||||
|
struct secp256k1_strauss_state state;
|
||||||
|
|
||||||
|
state.prej = prej;
|
||||||
|
state.zr = zr;
|
||||||
|
state.pre_a = pre_a;
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
state.pre_a_lam = pre_a_lam;
|
||||||
|
#endif
|
||||||
|
state.ps = ps;
|
||||||
|
secp256k1_ecmult_strauss_wnaf(ctx, &state, r, 1, a, na, ng);
|
||||||
|
}
|
||||||
|
|
||||||
|
static size_t secp256k1_strauss_scratch_size(size_t n_points) {
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
static const size_t point_size = (2 * sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
|
||||||
|
#else
|
||||||
|
static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
|
||||||
|
#endif
|
||||||
|
return n_points*point_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int secp256k1_ecmult_strauss_batch(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
|
||||||
|
secp256k1_gej* points;
|
||||||
|
secp256k1_scalar* scalars;
|
||||||
|
struct secp256k1_strauss_state state;
|
||||||
|
size_t i;
|
||||||
|
|
||||||
|
secp256k1_gej_set_infinity(r);
|
||||||
|
if (inp_g_sc == NULL && n_points == 0) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!secp256k1_scratch_resize(scratch, secp256k1_strauss_scratch_size(n_points), STRAUSS_SCRATCH_OBJECTS)) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
secp256k1_scratch_reset(scratch);
|
||||||
|
points = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_gej));
|
||||||
|
scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_scalar));
|
||||||
|
state.prej = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_gej));
|
||||||
|
state.zr = (secp256k1_fe*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe));
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * 2 * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
|
||||||
|
state.pre_a_lam = state.pre_a + n_points * ECMULT_TABLE_SIZE(WINDOW_A);
|
||||||
|
#else
|
||||||
|
state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
|
||||||
|
#endif
|
||||||
|
state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(scratch, n_points * sizeof(struct secp256k1_strauss_point_state));
|
||||||
|
|
||||||
|
for (i = 0; i < n_points; i++) {
|
||||||
|
secp256k1_ge point;
|
||||||
|
if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) return 0;
|
||||||
|
secp256k1_gej_set_ge(&points[i], &point);
|
||||||
|
}
|
||||||
|
secp256k1_ecmult_strauss_wnaf(ctx, &state, r, n_points, points, scalars, inp_g_sc);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Wrapper for secp256k1_ecmult_multi_func interface */
|
||||||
|
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
|
||||||
|
return secp256k1_ecmult_strauss_batch(actx, scratch, r, inp_g_sc, cb, cbdata, n, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
static size_t secp256k1_strauss_max_points(secp256k1_scratch *scratch) {
|
||||||
|
return secp256k1_scratch_max_allocation(scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Convert a number to WNAF notation.
|
||||||
|
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
|
||||||
|
* It has the following guarantees:
|
||||||
|
* - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w)
|
||||||
|
* - the number of words set is always WNAF_SIZE(w)
|
||||||
|
* - the returned skew is 0 without endomorphism, or 0 or 1 with endomorphism
|
||||||
|
*/
|
||||||
|
static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) {
|
||||||
|
int sign = 0;
|
||||||
|
int skew = 0;
|
||||||
|
int pos = 1;
|
||||||
|
#ifndef USE_ENDOMORPHISM
|
||||||
|
secp256k1_scalar neg_s;
|
||||||
|
#endif
|
||||||
|
const secp256k1_scalar *work = s;
|
||||||
|
|
||||||
|
if (secp256k1_scalar_is_zero(s)) {
|
||||||
|
while (pos * w < WNAF_BITS) {
|
||||||
|
wnaf[pos] = 0;
|
||||||
|
++pos;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (secp256k1_scalar_is_even(s)) {
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
skew = 1;
|
||||||
|
#else
|
||||||
|
secp256k1_scalar_negate(&neg_s, s);
|
||||||
|
work = &neg_s;
|
||||||
|
sign = -1;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
wnaf[0] = (secp256k1_scalar_get_bits_var(work, 0, w) + skew + sign) ^ sign;
|
||||||
|
|
||||||
|
while (pos * w < WNAF_BITS) {
|
||||||
|
int now = w;
|
||||||
|
int val;
|
||||||
|
if (now + pos * w > WNAF_BITS) {
|
||||||
|
now = WNAF_BITS - pos * w;
|
||||||
|
}
|
||||||
|
val = secp256k1_scalar_get_bits_var(work, pos * w, now);
|
||||||
|
if ((val & 1) == 0) {
|
||||||
|
wnaf[pos - 1] -= ((1 << w) + sign) ^ sign;
|
||||||
|
wnaf[pos] = (val + 1 + sign) ^ sign;
|
||||||
|
} else {
|
||||||
|
wnaf[pos] = (val + sign) ^ sign;
|
||||||
|
}
|
||||||
|
++pos;
|
||||||
|
}
|
||||||
|
VERIFY_CHECK(pos == WNAF_SIZE(w));
|
||||||
|
|
||||||
|
return skew;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct secp256k1_pippenger_point_state {
|
||||||
|
int skew_na;
|
||||||
|
size_t input_pos;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct secp256k1_pippenger_state {
|
||||||
|
int *wnaf_na;
|
||||||
|
struct secp256k1_pippenger_point_state* ps;
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
* pippenger_wnaf computes the result of a multi-point multiplication as
|
||||||
|
* follows: The scalars are brought into wnaf with n_wnaf elements each. Then
|
||||||
|
* for every i < n_wnaf, first each point is added to a "bucket" corresponding
|
||||||
|
* to the point's wnaf[i]. Second, the buckets are added together such that
|
||||||
|
* r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ...
|
||||||
|
*/
|
||||||
|
static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, secp256k1_scalar *sc, secp256k1_ge *pt, size_t num) {
|
||||||
|
size_t n_wnaf = WNAF_SIZE(bucket_window+1);
|
||||||
|
size_t np;
|
||||||
|
size_t no = 0;
|
||||||
|
int i;
|
||||||
|
int j;
|
||||||
|
|
||||||
|
for (np = 0; np < num; ++np) {
|
||||||
|
if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
state->ps[no].input_pos = np;
|
||||||
|
state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1);
|
||||||
|
no++;
|
||||||
|
}
|
||||||
|
secp256k1_gej_set_infinity(r);
|
||||||
|
|
||||||
|
if (no == 0) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i = n_wnaf - 1; i >= 0; i--) {
|
||||||
|
secp256k1_gej running_sum;
|
||||||
|
|
||||||
|
for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) {
|
||||||
|
secp256k1_gej_set_infinity(&buckets[j]);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (np = 0; np < no; ++np) {
|
||||||
|
int n = state->wnaf_na[np*n_wnaf + i];
|
||||||
|
struct secp256k1_pippenger_point_state point_state = state->ps[np];
|
||||||
|
secp256k1_ge tmp;
|
||||||
|
int idx;
|
||||||
|
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
if (i == 0) {
|
||||||
|
/* correct for wnaf skew */
|
||||||
|
int skew = point_state.skew_na;
|
||||||
|
if (skew) {
|
||||||
|
secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
|
||||||
|
secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
if (n > 0) {
|
||||||
|
idx = (n - 1)/2;
|
||||||
|
secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL);
|
||||||
|
} else if (n < 0) {
|
||||||
|
idx = -(n + 1)/2;
|
||||||
|
secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
|
||||||
|
secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for(j = 0; j < bucket_window; j++) {
|
||||||
|
secp256k1_gej_double_var(r, r, NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
secp256k1_gej_set_infinity(&running_sum);
|
||||||
|
/* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ...
|
||||||
|
* = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ...
|
||||||
|
* + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...)
|
||||||
|
* using an intermediate running sum:
|
||||||
|
* running_sum = bucket[0] + bucket[1] + bucket[2] + ...
|
||||||
|
*
|
||||||
|
* The doubling is done implicitly by deferring the final window doubling (of 'r').
|
||||||
|
*/
|
||||||
|
for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) {
|
||||||
|
secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL);
|
||||||
|
secp256k1_gej_add_var(r, r, &running_sum, NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL);
|
||||||
|
secp256k1_gej_double_var(r, r, NULL);
|
||||||
|
secp256k1_gej_add_var(r, r, &running_sum, NULL);
|
||||||
|
}
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns optimal bucket_window (number of bits of a scalar represented by a
|
||||||
|
* set of buckets) for a given number of points.
|
||||||
|
*/
|
||||||
|
static int secp256k1_pippenger_bucket_window(size_t n) {
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
if (n <= 1) {
|
||||||
|
return 1;
|
||||||
|
} else if (n <= 4) {
|
||||||
|
return 2;
|
||||||
|
} else if (n <= 20) {
|
||||||
|
return 3;
|
||||||
|
} else if (n <= 57) {
|
||||||
|
return 4;
|
||||||
|
} else if (n <= 136) {
|
||||||
|
return 5;
|
||||||
|
} else if (n <= 235) {
|
||||||
|
return 6;
|
||||||
|
} else if (n <= 1260) {
|
||||||
|
return 7;
|
||||||
|
} else if (n <= 4420) {
|
||||||
|
return 9;
|
||||||
|
} else if (n <= 7880) {
|
||||||
|
return 10;
|
||||||
|
} else if (n <= 16050) {
|
||||||
|
return 11;
|
||||||
|
} else {
|
||||||
|
return PIPPENGER_MAX_BUCKET_WINDOW;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
if (n <= 1) {
|
||||||
|
return 1;
|
||||||
|
} else if (n <= 11) {
|
||||||
|
return 2;
|
||||||
|
} else if (n <= 45) {
|
||||||
|
return 3;
|
||||||
|
} else if (n <= 100) {
|
||||||
|
return 4;
|
||||||
|
} else if (n <= 275) {
|
||||||
|
return 5;
|
||||||
|
} else if (n <= 625) {
|
||||||
|
return 6;
|
||||||
|
} else if (n <= 1850) {
|
||||||
|
return 7;
|
||||||
|
} else if (n <= 3400) {
|
||||||
|
return 8;
|
||||||
|
} else if (n <= 9630) {
|
||||||
|
return 9;
|
||||||
|
} else if (n <= 17900) {
|
||||||
|
return 10;
|
||||||
|
} else if (n <= 32800) {
|
||||||
|
return 11;
|
||||||
|
} else {
|
||||||
|
return PIPPENGER_MAX_BUCKET_WINDOW;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the maximum optimal number of points for a bucket_window.
|
||||||
|
*/
|
||||||
|
static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) {
|
||||||
|
switch(bucket_window) {
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
case 1: return 1;
|
||||||
|
case 2: return 4;
|
||||||
|
case 3: return 20;
|
||||||
|
case 4: return 57;
|
||||||
|
case 5: return 136;
|
||||||
|
case 6: return 235;
|
||||||
|
case 7: return 1260;
|
||||||
|
case 8: return 1260;
|
||||||
|
case 9: return 4420;
|
||||||
|
case 10: return 7880;
|
||||||
|
case 11: return 16050;
|
||||||
|
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
|
||||||
|
#else
|
||||||
|
case 1: return 1;
|
||||||
|
case 2: return 11;
|
||||||
|
case 3: return 45;
|
||||||
|
case 4: return 100;
|
||||||
|
case 5: return 275;
|
||||||
|
case 6: return 625;
|
||||||
|
case 7: return 1850;
|
||||||
|
case 8: return 3400;
|
||||||
|
case 9: return 9630;
|
||||||
|
case 10: return 17900;
|
||||||
|
case 11: return 32800;
|
||||||
|
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) {
|
||||||
|
secp256k1_scalar tmp = *s1;
|
||||||
|
secp256k1_scalar_split_lambda(s1, s2, &tmp);
|
||||||
|
secp256k1_ge_mul_lambda(p2, p1);
|
||||||
|
|
||||||
|
if (secp256k1_scalar_is_high(s1)) {
|
||||||
|
secp256k1_scalar_negate(s1, s1);
|
||||||
|
secp256k1_ge_neg(p1, p1);
|
||||||
|
}
|
||||||
|
if (secp256k1_scalar_is_high(s2)) {
|
||||||
|
secp256k1_scalar_negate(s2, s2);
|
||||||
|
secp256k1_ge_neg(p2, p2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the scratch size required for a given number of points (excluding
|
||||||
|
* base point G) without considering alignment.
|
||||||
|
*/
|
||||||
|
static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) {
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
size_t entries = 2*n_points + 2;
|
||||||
|
#else
|
||||||
|
size_t entries = n_points + 1;
|
||||||
|
#endif
|
||||||
|
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
|
||||||
|
return ((1<<bucket_window) * sizeof(secp256k1_gej) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
static int secp256k1_ecmult_pippenger_batch(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
|
||||||
|
/* Use 2(n+1) with the endomorphism, n+1 without, when calculating batch
|
||||||
|
* sizes. The reason for +1 is that we add the G scalar to the list of
|
||||||
|
* other scalars. */
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
size_t entries = 2*n_points + 2;
|
||||||
|
#else
|
||||||
|
size_t entries = n_points + 1;
|
||||||
|
#endif
|
||||||
|
secp256k1_ge *points;
|
||||||
|
secp256k1_scalar *scalars;
|
||||||
|
secp256k1_gej *buckets;
|
||||||
|
struct secp256k1_pippenger_state *state_space;
|
||||||
|
size_t idx = 0;
|
||||||
|
size_t point_idx = 0;
|
||||||
|
int i, j;
|
||||||
|
int bucket_window;
|
||||||
|
|
||||||
|
(void)ctx;
|
||||||
|
secp256k1_gej_set_infinity(r);
|
||||||
|
if (inp_g_sc == NULL && n_points == 0) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
bucket_window = secp256k1_pippenger_bucket_window(n_points);
|
||||||
|
if (!secp256k1_scratch_resize(scratch, secp256k1_pippenger_scratch_size(n_points, bucket_window), PIPPENGER_SCRATCH_OBJECTS)) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
secp256k1_scratch_reset(scratch);
|
||||||
|
points = (secp256k1_ge *) secp256k1_scratch_alloc(scratch, entries * sizeof(*points));
|
||||||
|
scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(scratch, entries * sizeof(*scalars));
|
||||||
|
state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(scratch, sizeof(*state_space));
|
||||||
|
state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(scratch, entries * sizeof(*state_space->ps));
|
||||||
|
state_space->wnaf_na = (int *) secp256k1_scratch_alloc(scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int));
|
||||||
|
buckets = (secp256k1_gej *) secp256k1_scratch_alloc(scratch, (1<<bucket_window) * sizeof(*buckets));
|
||||||
|
|
||||||
|
if (inp_g_sc != NULL) {
|
||||||
|
scalars[0] = *inp_g_sc;
|
||||||
|
points[0] = secp256k1_ge_const_g;
|
||||||
|
idx++;
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]);
|
||||||
|
idx++;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
while (point_idx < n_points) {
|
||||||
|
if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
idx++;
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]);
|
||||||
|
idx++;
|
||||||
|
#endif
|
||||||
|
point_idx++;
|
||||||
|
}
|
||||||
|
|
||||||
|
secp256k1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx);
|
||||||
|
|
||||||
|
/* Clear data */
|
||||||
|
for(i = 0; (size_t)i < idx; i++) {
|
||||||
|
secp256k1_scalar_clear(&scalars[i]);
|
||||||
|
state_space->ps[i].skew_na = 0;
|
||||||
|
for(j = 0; j < WNAF_SIZE(bucket_window+1); j++) {
|
||||||
|
state_space->wnaf_na[i * WNAF_SIZE(bucket_window+1) + j] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for(i = 0; i < 1<<bucket_window; i++) {
|
||||||
|
secp256k1_gej_clear(&buckets[i]);
|
||||||
|
}
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Wrapper for secp256k1_ecmult_multi_func interface */
|
||||||
|
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
|
||||||
|
return secp256k1_ecmult_pippenger_batch(actx, scratch, r, inp_g_sc, cb, cbdata, n, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the maximum number of points in addition to G that can be used with
|
||||||
|
* a given scratch space. The function ensures that fewer points may also be
|
||||||
|
* used.
|
||||||
|
*/
|
||||||
|
static size_t secp256k1_pippenger_max_points(secp256k1_scratch *scratch) {
|
||||||
|
size_t max_alloc = secp256k1_scratch_max_allocation(scratch, PIPPENGER_SCRATCH_OBJECTS);
|
||||||
|
int bucket_window;
|
||||||
|
size_t res = 0;
|
||||||
|
|
||||||
|
for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) {
|
||||||
|
size_t n_points;
|
||||||
|
size_t max_points = secp256k1_pippenger_bucket_window_inv(bucket_window);
|
||||||
|
size_t space_for_points;
|
||||||
|
size_t space_overhead;
|
||||||
|
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
|
||||||
|
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
entry_size = 2*entry_size;
|
||||||
|
#endif
|
||||||
|
space_overhead = ((1<<bucket_window) * sizeof(secp256k1_gej) + entry_size + sizeof(struct secp256k1_pippenger_state));
|
||||||
|
if (space_overhead > max_alloc) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
space_for_points = max_alloc - space_overhead;
|
||||||
|
|
||||||
|
n_points = space_for_points/entry_size;
|
||||||
|
n_points = n_points > max_points ? max_points : n_points;
|
||||||
|
if (n_points > res) {
|
||||||
|
res = n_points;
|
||||||
|
}
|
||||||
|
if (n_points < max_points) {
|
||||||
|
/* A larger bucket_window may support even more points. But if we
|
||||||
|
* would choose that then the caller couldn't safely use any number
|
||||||
|
* smaller than what this function returns */
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t);
|
||||||
|
static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
|
||||||
|
size_t i;
|
||||||
|
|
||||||
|
int (*f)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t);
|
||||||
|
size_t max_points;
|
||||||
|
size_t n_batches;
|
||||||
|
size_t n_batch_points;
|
||||||
|
|
||||||
|
secp256k1_gej_set_infinity(r);
|
||||||
|
if (inp_g_sc == NULL && n == 0) {
|
||||||
|
return 1;
|
||||||
|
} else if (n == 0) {
|
||||||
|
secp256k1_scalar szero;
|
||||||
|
secp256k1_scalar_set_int(&szero, 0);
|
||||||
|
secp256k1_ecmult(ctx, r, r, &szero, inp_g_sc);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
max_points = secp256k1_pippenger_max_points(scratch);
|
||||||
|
if (max_points == 0) {
|
||||||
|
return 0;
|
||||||
|
} else if (max_points > ECMULT_MAX_POINTS_PER_BATCH) {
|
||||||
|
max_points = ECMULT_MAX_POINTS_PER_BATCH;
|
||||||
|
}
|
||||||
|
n_batches = (n+max_points-1)/max_points;
|
||||||
|
n_batch_points = (n+n_batches-1)/n_batches;
|
||||||
|
|
||||||
|
if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) {
|
||||||
|
f = secp256k1_ecmult_pippenger_batch;
|
||||||
|
} else {
|
||||||
|
max_points = secp256k1_strauss_max_points(scratch);
|
||||||
|
if (max_points == 0) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
n_batches = (n+max_points-1)/max_points;
|
||||||
|
n_batch_points = (n+n_batches-1)/n_batches;
|
||||||
|
f = secp256k1_ecmult_strauss_batch;
|
||||||
|
}
|
||||||
|
for(i = 0; i < n_batches; i++) {
|
||||||
|
size_t nbp = n < n_batch_points ? n : n_batch_points;
|
||||||
|
size_t offset = n_batch_points*i;
|
||||||
|
secp256k1_gej tmp;
|
||||||
|
if (!f(ctx, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
secp256k1_gej_add_var(r, r, &tmp, NULL);
|
||||||
|
n -= nbp;
|
||||||
|
}
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
#endif /* SECP256K1_ECMULT_IMPL_H */
|
#endif /* SECP256K1_ECMULT_IMPL_H */
|
||||||
|
@ -79,6 +79,9 @@ static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej
|
|||||||
* stored in globalz. */
|
* stored in globalz. */
|
||||||
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
|
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
|
||||||
|
|
||||||
|
/** Set a group element (affine) equal to the point at infinity. */
|
||||||
|
static void secp256k1_ge_set_infinity(secp256k1_ge *r);
|
||||||
|
|
||||||
/** Set a group element (jacobian) equal to the point at infinity. */
|
/** Set a group element (jacobian) equal to the point at infinity. */
|
||||||
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
|
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
|
||||||
|
|
||||||
|
@ -200,6 +200,12 @@ static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
|
|||||||
secp256k1_fe_clear(&r->z);
|
secp256k1_fe_clear(&r->z);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
|
||||||
|
r->infinity = 1;
|
||||||
|
secp256k1_fe_clear(&r->x);
|
||||||
|
secp256k1_fe_clear(&r->y);
|
||||||
|
}
|
||||||
|
|
||||||
static void secp256k1_gej_clear(secp256k1_gej *r) {
|
static void secp256k1_gej_clear(secp256k1_gej *r) {
|
||||||
r->infinity = 0;
|
r->infinity = 0;
|
||||||
secp256k1_fe_clear(&r->x);
|
secp256k1_fe_clear(&r->x);
|
||||||
|
35
src/scratch.h
Normal file
35
src/scratch.h
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
/**********************************************************************
|
||||||
|
* Copyright (c) 2017 Andrew Poelstra *
|
||||||
|
* Distributed under the MIT software license, see the accompanying *
|
||||||
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||||
|
**********************************************************************/
|
||||||
|
|
||||||
|
#ifndef _SECP256K1_SCRATCH_
|
||||||
|
#define _SECP256K1_SCRATCH_
|
||||||
|
|
||||||
|
/* The typedef is used internally; the struct name is used in the public API
|
||||||
|
* (where it is exposed as a different typedef) */
|
||||||
|
typedef struct secp256k1_scratch_space_struct {
|
||||||
|
void *data;
|
||||||
|
size_t offset;
|
||||||
|
size_t init_size;
|
||||||
|
size_t max_size;
|
||||||
|
const secp256k1_callback* error_callback;
|
||||||
|
} secp256k1_scratch;
|
||||||
|
|
||||||
|
static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t init_size, size_t max_size);
|
||||||
|
static void secp256k1_scratch_destroy(secp256k1_scratch* scratch);
|
||||||
|
|
||||||
|
/** Returns the maximum allocation the scratch space will allow */
|
||||||
|
static size_t secp256k1_scratch_max_allocation(const secp256k1_scratch* scratch, size_t n_objects);
|
||||||
|
|
||||||
|
/** Attempts to allocate so that there are `n` available bytes. Returns 1 on success, 0 on failure */
|
||||||
|
static int secp256k1_scratch_resize(secp256k1_scratch* scratch, size_t n, size_t n_objects);
|
||||||
|
|
||||||
|
/** Returns a pointer into the scratch space or NULL if there is insufficient available space */
|
||||||
|
static void *secp256k1_scratch_alloc(secp256k1_scratch* scratch, size_t n);
|
||||||
|
|
||||||
|
/** Resets the returned pointer to the beginning of space */
|
||||||
|
static void secp256k1_scratch_reset(secp256k1_scratch* scratch);
|
||||||
|
|
||||||
|
#endif
|
77
src/scratch_impl.h
Normal file
77
src/scratch_impl.h
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
/**********************************************************************
|
||||||
|
* Copyright (c) 2017 Andrew Poelstra *
|
||||||
|
* Distributed under the MIT software license, see the accompanying *
|
||||||
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||||
|
**********************************************************************/
|
||||||
|
|
||||||
|
#ifndef _SECP256K1_SCRATCH_IMPL_H_
|
||||||
|
#define _SECP256K1_SCRATCH_IMPL_H_
|
||||||
|
|
||||||
|
#include "scratch.h"
|
||||||
|
|
||||||
|
/* Using 16 bytes alignment because common architectures never have alignment
|
||||||
|
* requirements above 8 for any of the types we care about. In addition we
|
||||||
|
* leave some room because currently we don't care about a few bytes.
|
||||||
|
* TODO: Determine this at configure time. */
|
||||||
|
#define ALIGNMENT 16
|
||||||
|
|
||||||
|
static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t init_size, size_t max_size) {
|
||||||
|
secp256k1_scratch* ret = (secp256k1_scratch*)checked_malloc(error_callback, sizeof(*ret));
|
||||||
|
if (ret != NULL) {
|
||||||
|
ret->data = checked_malloc(error_callback, init_size);
|
||||||
|
if (ret->data == NULL) {
|
||||||
|
free (ret);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
ret->offset = 0;
|
||||||
|
ret->init_size = init_size;
|
||||||
|
ret->max_size = max_size;
|
||||||
|
ret->error_callback = error_callback;
|
||||||
|
}
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void secp256k1_scratch_destroy(secp256k1_scratch* scratch) {
|
||||||
|
if (scratch != NULL) {
|
||||||
|
free(scratch->data);
|
||||||
|
free(scratch);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static size_t secp256k1_scratch_max_allocation(const secp256k1_scratch* scratch, size_t objects) {
|
||||||
|
if (scratch->max_size <= objects * ALIGNMENT) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
return scratch->max_size - objects * ALIGNMENT;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int secp256k1_scratch_resize(secp256k1_scratch* scratch, size_t n, size_t objects) {
|
||||||
|
n += objects * ALIGNMENT;
|
||||||
|
if (n > scratch->init_size && n <= scratch->max_size) {
|
||||||
|
void *tmp = checked_realloc(scratch->error_callback, scratch->data, n);
|
||||||
|
if (tmp == NULL) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
scratch->init_size = n;
|
||||||
|
scratch->data = tmp;
|
||||||
|
}
|
||||||
|
return n <= scratch->max_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void *secp256k1_scratch_alloc(secp256k1_scratch* scratch, size_t size) {
|
||||||
|
void *ret;
|
||||||
|
size = ((size + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT;
|
||||||
|
if (size + scratch->offset > scratch->init_size) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
ret = (void *) ((unsigned char *) scratch->data + scratch->offset);
|
||||||
|
memset(ret, 0, size);
|
||||||
|
scratch->offset += size;
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void secp256k1_scratch_reset(secp256k1_scratch* scratch) {
|
||||||
|
scratch->offset = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
@ -17,6 +17,7 @@
|
|||||||
#include "ecdsa_impl.h"
|
#include "ecdsa_impl.h"
|
||||||
#include "eckey_impl.h"
|
#include "eckey_impl.h"
|
||||||
#include "hash_impl.h"
|
#include "hash_impl.h"
|
||||||
|
#include "scratch_impl.h"
|
||||||
|
|
||||||
#define ARG_CHECK(cond) do { \
|
#define ARG_CHECK(cond) do { \
|
||||||
if (EXPECT(!(cond), 0)) { \
|
if (EXPECT(!(cond), 0)) { \
|
||||||
@ -114,6 +115,17 @@ void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(co
|
|||||||
ctx->error_callback.data = data;
|
ctx->error_callback.data = data;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
secp256k1_scratch_space* secp256k1_scratch_space_create(const secp256k1_context* ctx, size_t init_size, size_t max_size) {
|
||||||
|
VERIFY_CHECK(ctx != NULL);
|
||||||
|
ARG_CHECK(max_size >= init_size);
|
||||||
|
|
||||||
|
return secp256k1_scratch_create(&ctx->error_callback, init_size, max_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
void secp256k1_scratch_space_destroy(secp256k1_scratch_space* scratch) {
|
||||||
|
secp256k1_scratch_destroy(scratch);
|
||||||
|
}
|
||||||
|
|
||||||
static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) {
|
static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) {
|
||||||
if (sizeof(secp256k1_ge_storage) == 64) {
|
if (sizeof(secp256k1_ge_storage) == 64) {
|
||||||
/* When the secp256k1_ge_storage type is exactly 64 byte, use its
|
/* When the secp256k1_ge_storage type is exactly 64 byte, use its
|
||||||
|
484
src/tests.c
484
src/tests.c
@ -248,6 +248,41 @@ void run_context_tests(void) {
|
|||||||
secp256k1_context_destroy(NULL);
|
secp256k1_context_destroy(NULL);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void run_scratch_tests(void) {
|
||||||
|
int32_t ecount = 0;
|
||||||
|
secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
||||||
|
secp256k1_scratch_space *scratch;
|
||||||
|
|
||||||
|
/* Test public API */
|
||||||
|
secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
|
||||||
|
scratch = secp256k1_scratch_space_create(none, 100, 10);
|
||||||
|
CHECK(scratch == NULL);
|
||||||
|
CHECK(ecount == 1);
|
||||||
|
|
||||||
|
scratch = secp256k1_scratch_space_create(none, 100, 100);
|
||||||
|
CHECK(scratch != NULL);
|
||||||
|
CHECK(ecount == 1);
|
||||||
|
secp256k1_scratch_space_destroy(scratch);
|
||||||
|
|
||||||
|
scratch = secp256k1_scratch_space_create(none, 100, 1000);
|
||||||
|
CHECK(scratch != NULL);
|
||||||
|
CHECK(ecount == 1);
|
||||||
|
|
||||||
|
/* Test internal API */
|
||||||
|
CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000);
|
||||||
|
CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 1000);
|
||||||
|
CHECK(secp256k1_scratch_resize(scratch, 50, 1) == 1); /* no-op */
|
||||||
|
CHECK(secp256k1_scratch_resize(scratch, 200, 1) == 1);
|
||||||
|
CHECK(secp256k1_scratch_resize(scratch, 950, 1) == 1);
|
||||||
|
CHECK(secp256k1_scratch_resize(scratch, 1000, 1) == 0);
|
||||||
|
CHECK(secp256k1_scratch_resize(scratch, 2000, 1) == 0);
|
||||||
|
CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000);
|
||||||
|
|
||||||
|
/* cleanup */
|
||||||
|
secp256k1_scratch_space_destroy(scratch);
|
||||||
|
secp256k1_context_destroy(none);
|
||||||
|
}
|
||||||
|
|
||||||
/***** HASH TESTS *****/
|
/***** HASH TESTS *****/
|
||||||
|
|
||||||
void run_sha256_tests(void) {
|
void run_sha256_tests(void) {
|
||||||
@ -2487,6 +2522,395 @@ void run_ecmult_const_tests(void) {
|
|||||||
ecmult_const_chain_multiply();
|
ecmult_const_chain_multiply();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
secp256k1_scalar *sc;
|
||||||
|
secp256k1_ge *pt;
|
||||||
|
} ecmult_multi_data;
|
||||||
|
|
||||||
|
static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) {
|
||||||
|
ecmult_multi_data *data = (ecmult_multi_data*) cbdata;
|
||||||
|
*sc = data->sc[idx];
|
||||||
|
*pt = data->pt[idx];
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int ecmult_multi_false_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) {
|
||||||
|
(void)sc;
|
||||||
|
(void)pt;
|
||||||
|
(void)idx;
|
||||||
|
(void)cbdata;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func ecmult_multi) {
|
||||||
|
int ncount;
|
||||||
|
secp256k1_scalar szero;
|
||||||
|
secp256k1_scalar sc[32];
|
||||||
|
secp256k1_ge pt[32];
|
||||||
|
secp256k1_gej r;
|
||||||
|
secp256k1_gej r2;
|
||||||
|
ecmult_multi_data data;
|
||||||
|
secp256k1_scratch *scratch_empty;
|
||||||
|
|
||||||
|
data.sc = sc;
|
||||||
|
data.pt = pt;
|
||||||
|
secp256k1_scalar_set_int(&szero, 0);
|
||||||
|
secp256k1_scratch_reset(scratch);
|
||||||
|
|
||||||
|
/* No points to multiply */
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, NULL, ecmult_multi_callback, &data, 0));
|
||||||
|
|
||||||
|
/* Check 1- and 2-point multiplies against ecmult */
|
||||||
|
for (ncount = 0; ncount < count; ncount++) {
|
||||||
|
secp256k1_ge ptg;
|
||||||
|
secp256k1_gej ptgj;
|
||||||
|
random_scalar_order(&sc[0]);
|
||||||
|
random_scalar_order(&sc[1]);
|
||||||
|
|
||||||
|
random_group_element_test(&ptg);
|
||||||
|
secp256k1_gej_set_ge(&ptgj, &ptg);
|
||||||
|
pt[0] = ptg;
|
||||||
|
pt[1] = secp256k1_ge_const_g;
|
||||||
|
|
||||||
|
/* only G scalar */
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &szero, &sc[0]);
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &sc[0], ecmult_multi_callback, &data, 0));
|
||||||
|
secp256k1_gej_neg(&r2, &r2);
|
||||||
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
|
||||||
|
/* 1-point */
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &szero);
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 1));
|
||||||
|
secp256k1_gej_neg(&r2, &r2);
|
||||||
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
|
||||||
|
/* Try to multiply 1 point, but scratch space is empty */
|
||||||
|
scratch_empty = secp256k1_scratch_create(&ctx->error_callback, 0, 0);
|
||||||
|
CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch_empty, &r, &szero, ecmult_multi_callback, &data, 1));
|
||||||
|
secp256k1_scratch_destroy(scratch_empty);
|
||||||
|
|
||||||
|
/* Try to multiply 1 point, but callback returns false */
|
||||||
|
CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_false_callback, &data, 1));
|
||||||
|
|
||||||
|
/* 2-point */
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]);
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 2));
|
||||||
|
secp256k1_gej_neg(&r2, &r2);
|
||||||
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
|
||||||
|
/* 2-point with G scalar */
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]);
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &sc[1], ecmult_multi_callback, &data, 1));
|
||||||
|
secp256k1_gej_neg(&r2, &r2);
|
||||||
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Check infinite outputs of various forms */
|
||||||
|
for (ncount = 0; ncount < count; ncount++) {
|
||||||
|
secp256k1_ge ptg;
|
||||||
|
size_t i, j;
|
||||||
|
size_t sizes[] = { 2, 10, 32 };
|
||||||
|
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
for (i = 0; i < 32; i++) {
|
||||||
|
random_scalar_order(&sc[i]);
|
||||||
|
secp256k1_ge_set_infinity(&pt[i]);
|
||||||
|
}
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
}
|
||||||
|
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
for (i = 0; i < 32; i++) {
|
||||||
|
random_group_element_test(&ptg);
|
||||||
|
pt[i] = ptg;
|
||||||
|
secp256k1_scalar_set_int(&sc[i], 0);
|
||||||
|
}
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
}
|
||||||
|
|
||||||
|
for (j = 0; j < 3; j++) {
|
||||||
|
random_group_element_test(&ptg);
|
||||||
|
for (i = 0; i < 16; i++) {
|
||||||
|
random_scalar_order(&sc[2*i]);
|
||||||
|
secp256k1_scalar_negate(&sc[2*i + 1], &sc[2*i]);
|
||||||
|
pt[2 * i] = ptg;
|
||||||
|
pt[2 * i + 1] = ptg;
|
||||||
|
}
|
||||||
|
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
|
||||||
|
random_scalar_order(&sc[0]);
|
||||||
|
for (i = 0; i < 16; i++) {
|
||||||
|
random_group_element_test(&ptg);
|
||||||
|
|
||||||
|
sc[2*i] = sc[0];
|
||||||
|
sc[2*i+1] = sc[0];
|
||||||
|
pt[2 * i] = ptg;
|
||||||
|
secp256k1_ge_neg(&pt[2*i+1], &pt[2*i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
}
|
||||||
|
|
||||||
|
random_group_element_test(&ptg);
|
||||||
|
secp256k1_scalar_set_int(&sc[0], 0);
|
||||||
|
pt[0] = ptg;
|
||||||
|
for (i = 1; i < 32; i++) {
|
||||||
|
pt[i] = ptg;
|
||||||
|
|
||||||
|
random_scalar_order(&sc[i]);
|
||||||
|
secp256k1_scalar_add(&sc[0], &sc[0], &sc[i]);
|
||||||
|
secp256k1_scalar_negate(&sc[i], &sc[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 32));
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Check random points, constant scalar */
|
||||||
|
for (ncount = 0; ncount < count; ncount++) {
|
||||||
|
size_t i;
|
||||||
|
secp256k1_gej_set_infinity(&r);
|
||||||
|
|
||||||
|
random_scalar_order(&sc[0]);
|
||||||
|
for (i = 0; i < 20; i++) {
|
||||||
|
secp256k1_ge ptg;
|
||||||
|
sc[i] = sc[0];
|
||||||
|
random_group_element_test(&ptg);
|
||||||
|
pt[i] = ptg;
|
||||||
|
secp256k1_gej_add_ge_var(&r, &r, &pt[i], NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &r, &sc[0], &szero);
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
|
||||||
|
secp256k1_gej_neg(&r2, &r2);
|
||||||
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Check random scalars, constant point */
|
||||||
|
for (ncount = 0; ncount < count; ncount++) {
|
||||||
|
size_t i;
|
||||||
|
secp256k1_ge ptg;
|
||||||
|
secp256k1_gej p0j;
|
||||||
|
secp256k1_scalar rs;
|
||||||
|
secp256k1_scalar_set_int(&rs, 0);
|
||||||
|
|
||||||
|
random_group_element_test(&ptg);
|
||||||
|
for (i = 0; i < 20; i++) {
|
||||||
|
random_scalar_order(&sc[i]);
|
||||||
|
pt[i] = ptg;
|
||||||
|
secp256k1_scalar_add(&rs, &rs, &sc[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
secp256k1_gej_set_ge(&p0j, &pt[0]);
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &p0j, &rs, &szero);
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
|
||||||
|
secp256k1_gej_neg(&r2, &r2);
|
||||||
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Sanity check that zero scalars don't cause problems */
|
||||||
|
secp256k1_scalar_clear(&sc[0]);
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
|
||||||
|
secp256k1_scalar_clear(&sc[1]);
|
||||||
|
secp256k1_scalar_clear(&sc[2]);
|
||||||
|
secp256k1_scalar_clear(&sc[3]);
|
||||||
|
secp256k1_scalar_clear(&sc[4]);
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 6));
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 5));
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
|
||||||
|
/* Run through s0*(t0*P) + s1*(t1*P) exhaustively for many small values of s0, s1, t0, t1 */
|
||||||
|
{
|
||||||
|
const size_t TOP = 8;
|
||||||
|
size_t s0i, s1i;
|
||||||
|
size_t t0i, t1i;
|
||||||
|
secp256k1_ge ptg;
|
||||||
|
secp256k1_gej ptgj;
|
||||||
|
|
||||||
|
random_group_element_test(&ptg);
|
||||||
|
secp256k1_gej_set_ge(&ptgj, &ptg);
|
||||||
|
|
||||||
|
for(t0i = 0; t0i < TOP; t0i++) {
|
||||||
|
for(t1i = 0; t1i < TOP; t1i++) {
|
||||||
|
secp256k1_gej t0p, t1p;
|
||||||
|
secp256k1_scalar t0, t1;
|
||||||
|
|
||||||
|
secp256k1_scalar_set_int(&t0, (t0i + 1) / 2);
|
||||||
|
secp256k1_scalar_cond_negate(&t0, t0i & 1);
|
||||||
|
secp256k1_scalar_set_int(&t1, (t1i + 1) / 2);
|
||||||
|
secp256k1_scalar_cond_negate(&t1, t1i & 1);
|
||||||
|
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &t0p, &ptgj, &t0, &szero);
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &t1p, &ptgj, &t1, &szero);
|
||||||
|
|
||||||
|
for(s0i = 0; s0i < TOP; s0i++) {
|
||||||
|
for(s1i = 0; s1i < TOP; s1i++) {
|
||||||
|
secp256k1_scalar tmp1, tmp2;
|
||||||
|
secp256k1_gej expected, actual;
|
||||||
|
|
||||||
|
secp256k1_ge_set_gej(&pt[0], &t0p);
|
||||||
|
secp256k1_ge_set_gej(&pt[1], &t1p);
|
||||||
|
|
||||||
|
secp256k1_scalar_set_int(&sc[0], (s0i + 1) / 2);
|
||||||
|
secp256k1_scalar_cond_negate(&sc[0], s0i & 1);
|
||||||
|
secp256k1_scalar_set_int(&sc[1], (s1i + 1) / 2);
|
||||||
|
secp256k1_scalar_cond_negate(&sc[1], s1i & 1);
|
||||||
|
|
||||||
|
secp256k1_scalar_mul(&tmp1, &t0, &sc[0]);
|
||||||
|
secp256k1_scalar_mul(&tmp2, &t1, &sc[1]);
|
||||||
|
secp256k1_scalar_add(&tmp1, &tmp1, &tmp2);
|
||||||
|
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &expected, &ptgj, &tmp1, &szero);
|
||||||
|
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &actual, &szero, ecmult_multi_callback, &data, 2));
|
||||||
|
secp256k1_gej_neg(&expected, &expected);
|
||||||
|
secp256k1_gej_add_var(&actual, &actual, &expected, NULL);
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&actual));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_secp256k1_pippenger_bucket_window_inv(void) {
|
||||||
|
int i;
|
||||||
|
|
||||||
|
CHECK(secp256k1_pippenger_bucket_window_inv(0) == 0);
|
||||||
|
for(i = 1; i <= PIPPENGER_MAX_BUCKET_WINDOW; i++) {
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
/* Bucket_window of 8 is not used with endo */
|
||||||
|
if (i == 8) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)) == i);
|
||||||
|
if (i != PIPPENGER_MAX_BUCKET_WINDOW) {
|
||||||
|
CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)+1) > i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Probabilistically test the function returning the maximum number of possible points
|
||||||
|
* for a given scratch space.
|
||||||
|
*/
|
||||||
|
void test_ecmult_multi_pippenger_max_points(void) {
|
||||||
|
size_t scratch_size = secp256k1_rand_int(256);
|
||||||
|
size_t max_size = secp256k1_pippenger_scratch_size(secp256k1_pippenger_bucket_window_inv(PIPPENGER_MAX_BUCKET_WINDOW-1)+512, 12);
|
||||||
|
secp256k1_scratch *scratch;
|
||||||
|
size_t n_points_supported;
|
||||||
|
int bucket_window = 0;
|
||||||
|
|
||||||
|
for(; scratch_size < max_size; scratch_size+=256) {
|
||||||
|
scratch = secp256k1_scratch_create(&ctx->error_callback, 0, scratch_size);
|
||||||
|
CHECK(scratch != NULL);
|
||||||
|
n_points_supported = secp256k1_pippenger_max_points(scratch);
|
||||||
|
if (n_points_supported == 0) {
|
||||||
|
secp256k1_scratch_destroy(scratch);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
bucket_window = secp256k1_pippenger_bucket_window(n_points_supported);
|
||||||
|
CHECK(secp256k1_scratch_resize(scratch, secp256k1_pippenger_scratch_size(n_points_supported, bucket_window), PIPPENGER_SCRATCH_OBJECTS));
|
||||||
|
secp256k1_scratch_destroy(scratch);
|
||||||
|
}
|
||||||
|
CHECK(bucket_window == PIPPENGER_MAX_BUCKET_WINDOW);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Run secp256k1_ecmult_multi_var with num points and a scratch space restricted to
|
||||||
|
* 1 <= i <= num points.
|
||||||
|
*/
|
||||||
|
void test_ecmult_multi_batching(void) {
|
||||||
|
static const int n_points = 2*ECMULT_PIPPENGER_THRESHOLD;
|
||||||
|
secp256k1_scalar scG;
|
||||||
|
secp256k1_scalar szero;
|
||||||
|
secp256k1_scalar *sc = (secp256k1_scalar *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_scalar) * n_points);
|
||||||
|
secp256k1_ge *pt = (secp256k1_ge *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_ge) * n_points);
|
||||||
|
secp256k1_gej r;
|
||||||
|
secp256k1_gej r2;
|
||||||
|
ecmult_multi_data data;
|
||||||
|
int i;
|
||||||
|
secp256k1_scratch *scratch;
|
||||||
|
|
||||||
|
secp256k1_gej_set_infinity(&r2);
|
||||||
|
secp256k1_scalar_set_int(&szero, 0);
|
||||||
|
|
||||||
|
/* Get random scalars and group elements and compute result */
|
||||||
|
random_scalar_order(&scG);
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &r2, &szero, &scG);
|
||||||
|
for(i = 0; i < n_points; i++) {
|
||||||
|
secp256k1_ge ptg;
|
||||||
|
secp256k1_gej ptgj;
|
||||||
|
random_group_element_test(&ptg);
|
||||||
|
secp256k1_gej_set_ge(&ptgj, &ptg);
|
||||||
|
pt[i] = ptg;
|
||||||
|
random_scalar_order(&sc[i]);
|
||||||
|
secp256k1_ecmult(&ctx->ecmult_ctx, &ptgj, &ptgj, &sc[i], NULL);
|
||||||
|
secp256k1_gej_add_var(&r2, &r2, &ptgj, NULL);
|
||||||
|
}
|
||||||
|
data.sc = sc;
|
||||||
|
data.pt = pt;
|
||||||
|
|
||||||
|
/* Test with empty scratch space */
|
||||||
|
scratch = secp256k1_scratch_create(&ctx->error_callback, 0, 0);
|
||||||
|
CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1));
|
||||||
|
secp256k1_scratch_destroy(scratch);
|
||||||
|
|
||||||
|
/* Test with space for 1 point in pippenger. That's not enough because
|
||||||
|
* ecmult_multi selects strauss which requires more memory. */
|
||||||
|
scratch = secp256k1_scratch_create(&ctx->error_callback, 0, secp256k1_pippenger_scratch_size(1, 1) + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT);
|
||||||
|
CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1));
|
||||||
|
secp256k1_scratch_destroy(scratch);
|
||||||
|
|
||||||
|
secp256k1_gej_neg(&r2, &r2);
|
||||||
|
for(i = 1; i <= n_points; i++) {
|
||||||
|
if (i > ECMULT_PIPPENGER_THRESHOLD) {
|
||||||
|
int bucket_window = secp256k1_pippenger_bucket_window(i);
|
||||||
|
size_t scratch_size = secp256k1_pippenger_scratch_size(i, bucket_window);
|
||||||
|
scratch = secp256k1_scratch_create(&ctx->error_callback, 0, scratch_size + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT);
|
||||||
|
} else {
|
||||||
|
size_t scratch_size = secp256k1_strauss_scratch_size(i);
|
||||||
|
scratch = secp256k1_scratch_create(&ctx->error_callback, 0, scratch_size + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT);
|
||||||
|
}
|
||||||
|
CHECK(secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
|
||||||
|
secp256k1_gej_add_var(&r, &r, &r2, NULL);
|
||||||
|
CHECK(secp256k1_gej_is_infinity(&r));
|
||||||
|
secp256k1_scratch_destroy(scratch);
|
||||||
|
}
|
||||||
|
free(sc);
|
||||||
|
free(pt);
|
||||||
|
}
|
||||||
|
|
||||||
|
void run_ecmult_multi_tests(void) {
|
||||||
|
secp256k1_scratch *scratch;
|
||||||
|
|
||||||
|
test_secp256k1_pippenger_bucket_window_inv();
|
||||||
|
test_ecmult_multi_pippenger_max_points();
|
||||||
|
scratch = secp256k1_scratch_create(&ctx->error_callback, 0, 819200);
|
||||||
|
test_ecmult_multi(scratch, secp256k1_ecmult_multi_var);
|
||||||
|
test_ecmult_multi(scratch, secp256k1_ecmult_pippenger_batch_single);
|
||||||
|
test_ecmult_multi(scratch, secp256k1_ecmult_strauss_batch_single);
|
||||||
|
secp256k1_scratch_destroy(scratch);
|
||||||
|
|
||||||
|
/* Run test_ecmult_multi with space for exactly one point */
|
||||||
|
scratch = secp256k1_scratch_create(&ctx->error_callback, 0, secp256k1_strauss_scratch_size(1) + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT);
|
||||||
|
test_ecmult_multi(scratch, secp256k1_ecmult_multi_var);
|
||||||
|
secp256k1_scratch_destroy(scratch);
|
||||||
|
|
||||||
|
test_ecmult_multi_batching();
|
||||||
|
}
|
||||||
|
|
||||||
void test_wnaf(const secp256k1_scalar *number, int w) {
|
void test_wnaf(const secp256k1_scalar *number, int w) {
|
||||||
secp256k1_scalar x, two, t;
|
secp256k1_scalar x, two, t;
|
||||||
int wnaf[256];
|
int wnaf[256];
|
||||||
@ -2575,6 +2999,61 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
|
|||||||
CHECK(secp256k1_scalar_eq(&x, &num));
|
CHECK(secp256k1_scalar_eq(&x, &num));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void test_fixed_wnaf(const secp256k1_scalar *number, int w) {
|
||||||
|
secp256k1_scalar x, shift;
|
||||||
|
int wnaf[256] = {0};
|
||||||
|
int i;
|
||||||
|
int skew;
|
||||||
|
secp256k1_scalar num = *number;
|
||||||
|
|
||||||
|
secp256k1_scalar_set_int(&x, 0);
|
||||||
|
secp256k1_scalar_set_int(&shift, 1 << w);
|
||||||
|
/* With USE_ENDOMORPHISM on we only consider 128-bit numbers */
|
||||||
|
#ifdef USE_ENDOMORPHISM
|
||||||
|
for (i = 0; i < 16; ++i) {
|
||||||
|
secp256k1_scalar_shr_int(&num, 8);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
|
||||||
|
|
||||||
|
for (i = WNAF_SIZE(w)-1; i >= 0; --i) {
|
||||||
|
secp256k1_scalar t;
|
||||||
|
int v = wnaf[i];
|
||||||
|
CHECK(v != 0); /* check nonzero */
|
||||||
|
CHECK(v & 1); /* check parity */
|
||||||
|
CHECK(v > -(1 << w)); /* check range above */
|
||||||
|
CHECK(v < (1 << w)); /* check range below */
|
||||||
|
|
||||||
|
secp256k1_scalar_mul(&x, &x, &shift);
|
||||||
|
if (v >= 0) {
|
||||||
|
secp256k1_scalar_set_int(&t, v);
|
||||||
|
} else {
|
||||||
|
secp256k1_scalar_set_int(&t, -v);
|
||||||
|
secp256k1_scalar_negate(&t, &t);
|
||||||
|
}
|
||||||
|
secp256k1_scalar_add(&x, &x, &t);
|
||||||
|
}
|
||||||
|
/* If skew is 1 then add 1 to num */
|
||||||
|
secp256k1_scalar_cadd_bit(&num, 0, skew == 1);
|
||||||
|
CHECK(secp256k1_scalar_eq(&x, &num));
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_fixed_wnaf_zero(int w) {
|
||||||
|
int wnaf[256] = {0};
|
||||||
|
int i;
|
||||||
|
int skew;
|
||||||
|
secp256k1_scalar num;
|
||||||
|
|
||||||
|
secp256k1_scalar_set_int(&num, 0);
|
||||||
|
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
|
||||||
|
|
||||||
|
for (i = WNAF_SIZE(w)-1; i >= 0; --i) {
|
||||||
|
int v = wnaf[i];
|
||||||
|
CHECK(v == 0);
|
||||||
|
}
|
||||||
|
CHECK(skew == 0);
|
||||||
|
}
|
||||||
|
|
||||||
void run_wnaf(void) {
|
void run_wnaf(void) {
|
||||||
int i;
|
int i;
|
||||||
secp256k1_scalar n = {{0}};
|
secp256k1_scalar n = {{0}};
|
||||||
@ -2585,12 +3064,15 @@ void run_wnaf(void) {
|
|||||||
test_constant_wnaf(&n, 4);
|
test_constant_wnaf(&n, 4);
|
||||||
n.d[0] = 2;
|
n.d[0] = 2;
|
||||||
test_constant_wnaf(&n, 4);
|
test_constant_wnaf(&n, 4);
|
||||||
|
/* Test 0 */
|
||||||
|
test_fixed_wnaf_zero(4);
|
||||||
/* Random tests */
|
/* Random tests */
|
||||||
for (i = 0; i < count; i++) {
|
for (i = 0; i < count; i++) {
|
||||||
random_scalar_order(&n);
|
random_scalar_order(&n);
|
||||||
test_wnaf(&n, 4+(i%10));
|
test_wnaf(&n, 4+(i%10));
|
||||||
test_constant_wnaf_negate(&n);
|
test_constant_wnaf_negate(&n);
|
||||||
test_constant_wnaf(&n, 4 + (i % 10));
|
test_constant_wnaf(&n, 4 + (i % 10));
|
||||||
|
test_fixed_wnaf(&n, 4 + (i % 10));
|
||||||
}
|
}
|
||||||
secp256k1_scalar_set_int(&n, 0);
|
secp256k1_scalar_set_int(&n, 0);
|
||||||
CHECK(secp256k1_scalar_cond_negate(&n, 1) == -1);
|
CHECK(secp256k1_scalar_cond_negate(&n, 1) == -1);
|
||||||
@ -4451,6 +4933,7 @@ int main(int argc, char **argv) {
|
|||||||
|
|
||||||
/* initialize */
|
/* initialize */
|
||||||
run_context_tests();
|
run_context_tests();
|
||||||
|
run_scratch_tests();
|
||||||
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
||||||
if (secp256k1_rand_bits(1)) {
|
if (secp256k1_rand_bits(1)) {
|
||||||
secp256k1_rand256(run32);
|
secp256k1_rand256(run32);
|
||||||
@ -4492,6 +4975,7 @@ int main(int argc, char **argv) {
|
|||||||
run_ecmult_constants();
|
run_ecmult_constants();
|
||||||
run_ecmult_gen_blind();
|
run_ecmult_gen_blind();
|
||||||
run_ecmult_const_tests();
|
run_ecmult_const_tests();
|
||||||
|
run_ecmult_multi_tests();
|
||||||
run_ec_combine();
|
run_ec_combine();
|
||||||
|
|
||||||
/* endomorphism tests */
|
/* endomorphism tests */
|
||||||
|
@ -182,6 +182,46 @@ void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *gr
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
secp256k1_scalar sc[2];
|
||||||
|
secp256k1_ge pt[2];
|
||||||
|
} ecmult_multi_data;
|
||||||
|
|
||||||
|
static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) {
|
||||||
|
ecmult_multi_data *data = (ecmult_multi_data*) cbdata;
|
||||||
|
*sc = data->sc[idx];
|
||||||
|
*pt = data->pt[idx];
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
|
||||||
|
int i, j, k, x, y;
|
||||||
|
secp256k1_scratch *scratch = secp256k1_scratch_create(&ctx->error_callback, 1024, 4096);
|
||||||
|
for (i = 0; i < order; i++) {
|
||||||
|
for (j = 0; j < order; j++) {
|
||||||
|
for (k = 0; k < order; k++) {
|
||||||
|
for (x = 0; x < order; x++) {
|
||||||
|
for (y = 0; y < order; y++) {
|
||||||
|
secp256k1_gej tmp;
|
||||||
|
secp256k1_scalar g_sc;
|
||||||
|
ecmult_multi_data data;
|
||||||
|
|
||||||
|
secp256k1_scalar_set_int(&data.sc[0], i);
|
||||||
|
secp256k1_scalar_set_int(&data.sc[1], j);
|
||||||
|
secp256k1_scalar_set_int(&g_sc, k);
|
||||||
|
data.pt[0] = group[x];
|
||||||
|
data.pt[1] = group[y];
|
||||||
|
|
||||||
|
secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2);
|
||||||
|
ge_equals_gej(&group[(i * x + j * y + k) % order], &tmp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
secp256k1_scratch_destroy(scratch);
|
||||||
|
}
|
||||||
|
|
||||||
void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k) {
|
void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k) {
|
||||||
secp256k1_fe x;
|
secp256k1_fe x;
|
||||||
unsigned char x_bin[32];
|
unsigned char x_bin[32];
|
||||||
@ -456,6 +496,7 @@ int main(void) {
|
|||||||
#endif
|
#endif
|
||||||
test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER);
|
test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER);
|
||||||
test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER);
|
test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER);
|
||||||
|
test_exhaustive_ecmult_multi(ctx, group, EXHAUSTIVE_TEST_ORDER);
|
||||||
test_exhaustive_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
|
test_exhaustive_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
|
||||||
test_exhaustive_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
|
test_exhaustive_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
|
||||||
|
|
||||||
|
@ -76,6 +76,14 @@ static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_
|
|||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static SECP256K1_INLINE void *checked_realloc(const secp256k1_callback* cb, void *ptr, size_t size) {
|
||||||
|
void *ret = realloc(ptr, size);
|
||||||
|
if (ret == NULL) {
|
||||||
|
secp256k1_callback_call(cb, "Out of memory");
|
||||||
|
}
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
/* Macro for restrict, when available and not in a VERIFY build. */
|
/* Macro for restrict, when available and not in a VERIFY build. */
|
||||||
#if defined(SECP256K1_BUILD) && defined(VERIFY)
|
#if defined(SECP256K1_BUILD) && defined(VERIFY)
|
||||||
# define SECP256K1_RESTRICT
|
# define SECP256K1_RESTRICT
|
||||||
|
Loading…
x
Reference in New Issue
Block a user