diff --git a/src/tests.c b/src/tests.c index 6d46b39d..462407be 100644 --- a/src/tests.c +++ b/src/tests.c @@ -804,78 +804,6 @@ static void run_tagged_sha256_tests(void) { CHECK(secp256k1_memcmp_var(hash32, hash_expected, sizeof(hash32)) == 0); } -/***** RANDOM TESTS *****/ - -static void test_rand_bits(int rand32, int bits) { - /* (1-1/2^B)^rounds[B] < 1/10^9, so rounds is the number of iterations to - * get a false negative chance below once in a billion */ - static const unsigned int rounds[7] = {1, 30, 73, 156, 322, 653, 1316}; - /* We try multiplying the results with various odd numbers, which shouldn't - * influence the uniform distribution modulo a power of 2. */ - static const uint32_t mults[6] = {1, 3, 21, 289, 0x9999, 0x80402011}; - /* We only select up to 6 bits from the output to analyse */ - unsigned int usebits = bits > 6 ? 6 : bits; - unsigned int maxshift = bits - usebits; - /* For each of the maxshift+1 usebits-bit sequences inside a bits-bit - number, track all observed outcomes, one per bit in a uint64_t. */ - uint64_t x[6][27] = {{0}}; - unsigned int i, shift, m; - /* Multiply the output of all rand calls with the odd number m, which - should not change the uniformity of its distribution. */ - for (i = 0; i < rounds[usebits]; i++) { - uint32_t r = (rand32 ? secp256k1_testrand32() : secp256k1_testrand_bits(bits)); - CHECK((((uint64_t)r) >> bits) == 0); - for (m = 0; m < sizeof(mults) / sizeof(mults[0]); m++) { - uint32_t rm = r * mults[m]; - for (shift = 0; shift <= maxshift; shift++) { - x[m][shift] |= (((uint64_t)1) << ((rm >> shift) & ((1 << usebits) - 1))); - } - } - } - for (m = 0; m < sizeof(mults) / sizeof(mults[0]); m++) { - for (shift = 0; shift <= maxshift; shift++) { - /* Test that the lower usebits bits of x[shift] are 1 */ - CHECK(((~x[m][shift]) << (64 - (1 << usebits))) == 0); - } - } -} - -/* Subrange must be a whole divisor of range, and at most 64 */ -static void test_rand_int(uint32_t range, uint32_t subrange) { - /* (1-1/subrange)^rounds < 1/10^9 */ - int rounds = (subrange * 2073) / 100; - int i; - uint64_t x = 0; - CHECK((range % subrange) == 0); - for (i = 0; i < rounds; i++) { - uint32_t r = secp256k1_testrand_int(range); - CHECK(r < range); - r = r % subrange; - x |= (((uint64_t)1) << r); - } - /* Test that the lower subrange bits of x are 1. */ - CHECK(((~x) << (64 - subrange)) == 0); -} - -static void run_rand_bits(void) { - size_t b; - test_rand_bits(1, 32); - for (b = 1; b <= 32; b++) { - test_rand_bits(0, b); - } -} - -static void run_rand_int(void) { - static const uint32_t ms[] = {1, 3, 17, 1000, 13771, 999999, 33554432}; - static const uint32_t ss[] = {1, 3, 6, 9, 13, 31, 64}; - unsigned int m, s; - for (m = 0; m < sizeof(ms) / sizeof(ms[0]); m++) { - for (s = 0; s < sizeof(ss) / sizeof(ss[0]); s++) { - test_rand_int(ms[m] * ss[s], ss[s]); - } - } -} - /***** MODINV TESTS *****/ /* Compute the modular inverse of (odd) x mod 2^64. */ @@ -7730,10 +7658,6 @@ int main(int argc, char **argv) { /* scratch tests */ run_scratch_tests(); - /* randomness tests */ - run_rand_bits(); - run_rand_int(); - /* integer arithmetic tests */ #ifdef SECP256K1_WIDEMUL_INT128 run_int128_tests();