Merge bitcoin-core/secp256k1#1129: ElligatorSwift + integrated x-only DH
90e360acc2511f313964e394005bafb377b4f191 Add doc/ellswift.md with ElligatorSwift explanation (Pieter Wuille) 4f091847c20c9e9dd3cece2e8b62549278e5028b Add ellswift testing to CI (Pieter Wuille) 1bcea8c57f3f232c8e91d9eb3aad522766d13026 Add benchmarks for ellswift module (Pieter Wuille) 2d1d41acf85a385be6c436307eb826122c21846f Add ctime tests for ellswift module (Pieter Wuille) df633cdeba133a9468c43f055122b07bf102dd2d Add _prefix and _bip324 ellswift_xdh hash functions (Pieter Wuille) 9695deb351e7742f78dc4ed72dea6655dcf6bb0e Add tests for ellswift module (Pieter Wuille) c47917bbd62c488fb168431169c1ffe780562da1 Add ellswift module implementing ElligatorSwift (Pieter Wuille) 79e5b2a8b80f507e2c9936ff1c4e2fb39bc66a4e Add functions to test if X coordinate is valid (Pieter Wuille) a597a5a9cedc27eb6a1190b1959cb9fe0d26a7dc Add benchmark for key generation (Pieter Wuille) Pull request description: ACKs for top commit: Davidson-Souza: tACK 90e360a. Full testing backlog: real-or-random: ACK 90e360acc2511f313964e394005bafb377b4f191 jonasnick: ACK 90e360acc2511f313964e394005bafb377b4f191 Tree-SHA512: cf59044c1b064f9a3fd57fd1c4c6ab154305ee6ad67a604bc254ddd6b8ee78626250d325174e10d2f2b19264ab0d58013508dc763aa07f5a1e6417e03551a378
This commit is contained in:
commit
705ce7ed8c
16
.cirrus.yml
16
.cirrus.yml
@ -21,6 +21,7 @@ env:
|
||||
ECDH: no
|
||||
RECOVERY: no
|
||||
SCHNORRSIG: no
|
||||
ELLSWIFT: no
|
||||
### test options
|
||||
SECP256K1_TEST_ITERS:
|
||||
BENCH: yes
|
||||
@ -74,12 +75,12 @@ task:
|
||||
<< : *LINUX_CONTAINER
|
||||
matrix: &ENV_MATRIX
|
||||
- env: {WIDEMUL: int64, RECOVERY: yes}
|
||||
- env: {WIDEMUL: int64, ECDH: yes, SCHNORRSIG: yes}
|
||||
- env: {WIDEMUL: int64, ECDH: yes, SCHNORRSIG: yes, ELLSWIFT: yes}
|
||||
- env: {WIDEMUL: int128}
|
||||
- env: {WIDEMUL: int128_struct}
|
||||
- env: {WIDEMUL: int128, RECOVERY: yes, SCHNORRSIG: yes}
|
||||
- env: {WIDEMUL: int128_struct, ELLSWIFT: yes}
|
||||
- env: {WIDEMUL: int128, RECOVERY: yes, SCHNORRSIG: yes, ELLSWIFT: yes}
|
||||
- env: {WIDEMUL: int128, ECDH: yes, SCHNORRSIG: yes}
|
||||
- env: {WIDEMUL: int128, ASM: x86_64}
|
||||
- env: {WIDEMUL: int128, ASM: x86_64 , ELLSWIFT: yes}
|
||||
- env: { RECOVERY: yes, SCHNORRSIG: yes}
|
||||
- env: {CTIMETESTS: no, RECOVERY: yes, ECDH: yes, SCHNORRSIG: yes, CPPFLAGS: -DVERIFY}
|
||||
- env: {BUILD: distcheck, WITH_VALGRIND: no, CTIMETESTS: no, BENCH: no}
|
||||
@ -154,6 +155,7 @@ task:
|
||||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
@ -173,6 +175,7 @@ task:
|
||||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
matrix:
|
||||
- env: {}
|
||||
@ -193,6 +196,7 @@ task:
|
||||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
@ -210,6 +214,7 @@ task:
|
||||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
@ -247,6 +252,7 @@ task:
|
||||
RECOVERY: yes
|
||||
EXPERIMENTAL: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
# Use a MinGW-w64 host to tell ./configure we're building for Windows.
|
||||
# This will detect some MinGW-w64 tools but then make will need only
|
||||
@ -286,6 +292,7 @@ task:
|
||||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
matrix:
|
||||
- name: "Valgrind (memcheck)"
|
||||
@ -361,6 +368,7 @@ task:
|
||||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
- ./ci/cirrus.sh
|
||||
|
@ -71,6 +71,11 @@ if(SECP256K1_ENABLE_MODULE_EXTRAKEYS)
|
||||
add_compile_definitions(ENABLE_MODULE_EXTRAKEYS=1)
|
||||
endif()
|
||||
|
||||
option(SECP256K1_ENABLE_MODULE_ELLSWIFT "Enable ElligatorSwift module." ON)
|
||||
if(SECP256K1_ENABLE_MODULE_ELLSWIFT)
|
||||
add_compile_definitions(ENABLE_MODULE_ELLSWIFT=1)
|
||||
endif()
|
||||
|
||||
option(SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS "Enable external default callback functions." OFF)
|
||||
if(SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS)
|
||||
add_compile_definitions(USE_EXTERNAL_DEFAULT_CALLBACKS=1)
|
||||
@ -270,6 +275,7 @@ message(" ECDH ................................ ${SECP256K1_ENABLE_MODULE_ECDH}
|
||||
message(" ECDSA pubkey recovery ............... ${SECP256K1_ENABLE_MODULE_RECOVERY}")
|
||||
message(" extrakeys ........................... ${SECP256K1_ENABLE_MODULE_EXTRAKEYS}")
|
||||
message(" schnorrsig .......................... ${SECP256K1_ENABLE_MODULE_SCHNORRSIG}")
|
||||
message(" ElligatorSwift ...................... ${SECP256K1_ENABLE_MODULE_ELLSWIFT}")
|
||||
message("Parameters:")
|
||||
message(" ecmult window size .................. ${SECP256K1_ECMULT_WINDOW_SIZE}")
|
||||
message(" ecmult gen precision bits ........... ${SECP256K1_ECMULT_GEN_PREC_BITS}")
|
||||
|
@ -267,3 +267,7 @@ endif
|
||||
if ENABLE_MODULE_SCHNORRSIG
|
||||
include src/modules/schnorrsig/Makefile.am.include
|
||||
endif
|
||||
|
||||
if ENABLE_MODULE_ELLSWIFT
|
||||
include src/modules/ellswift/Makefile.am.include
|
||||
endif
|
||||
|
@ -61,6 +61,7 @@ fi
|
||||
--with-ecmult-window="$ECMULTWINDOW" \
|
||||
--with-ecmult-gen-precision="$ECMULTGENPRECISION" \
|
||||
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
|
||||
--enable-module-ellswift="$ELLSWIFT" \
|
||||
--enable-module-schnorrsig="$SCHNORRSIG" \
|
||||
--enable-examples="$EXAMPLES" \
|
||||
--enable-ctime-tests="$CTIMETESTS" \
|
||||
|
10
configure.ac
10
configure.ac
@ -190,6 +190,10 @@ AC_ARG_ENABLE(module_schnorrsig,
|
||||
AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module [default=yes]]), [],
|
||||
[SECP_SET_DEFAULT([enable_module_schnorrsig], [yes], [yes])])
|
||||
|
||||
AC_ARG_ENABLE(module_ellswift,
|
||||
AS_HELP_STRING([--enable-module-ellswift],[enable ElligatorSwift module [default=yes]]), [],
|
||||
[SECP_SET_DEFAULT([enable_module_ellswift], [yes], [yes])])
|
||||
|
||||
AC_ARG_ENABLE(external_default_callbacks,
|
||||
AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]), [],
|
||||
[SECP_SET_DEFAULT([enable_external_default_callbacks], [no], [no])])
|
||||
@ -402,6 +406,10 @@ if test x"$enable_module_schnorrsig" = x"yes"; then
|
||||
enable_module_extrakeys=yes
|
||||
fi
|
||||
|
||||
if test x"$enable_module_ellswift" = x"yes"; then
|
||||
AC_DEFINE(ENABLE_MODULE_ELLSWIFT, 1, [Define this symbol to enable the ElligatorSwift module])
|
||||
fi
|
||||
|
||||
# Test if extrakeys is set after the schnorrsig module to allow the schnorrsig
|
||||
# module to set enable_module_extrakeys=yes
|
||||
if test x"$enable_module_extrakeys" = x"yes"; then
|
||||
@ -444,6 +452,7 @@ AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
|
||||
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
|
||||
AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"yes"])
|
||||
AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
|
||||
AM_CONDITIONAL([ENABLE_MODULE_ELLSWIFT], [test x"$enable_module_ellswift" = x"yes"])
|
||||
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$enable_external_asm" = x"yes"])
|
||||
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm32"])
|
||||
AM_CONDITIONAL([BUILD_WINDOWS], [test "$build_windows" = "yes"])
|
||||
@ -465,6 +474,7 @@ echo " module ecdh = $enable_module_ecdh"
|
||||
echo " module recovery = $enable_module_recovery"
|
||||
echo " module extrakeys = $enable_module_extrakeys"
|
||||
echo " module schnorrsig = $enable_module_schnorrsig"
|
||||
echo " module ellswift = $enable_module_ellswift"
|
||||
echo
|
||||
echo " asm = $set_asm"
|
||||
echo " ecmult window size = $set_ecmult_window"
|
||||
|
483
doc/ellswift.md
Normal file
483
doc/ellswift.md
Normal file
@ -0,0 +1,483 @@
|
||||
# ElligatorSwift for secp256k1 explained
|
||||
|
||||
In this document we explain how the `ellswift` module implementation is related to the
|
||||
construction in the
|
||||
["SwiftEC: Shallue–van de Woestijne Indifferentiable Function To Elliptic Curves"](https://eprint.iacr.org/2022/759)
|
||||
paper by Jorge Chávez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi.
|
||||
|
||||
* [1. Introduction](#1-introduction)
|
||||
* [2. The decoding function](#2-the-decoding-function)
|
||||
+ [2.1 Decoding for `secp256k1`](#21-decoding-for-secp256k1)
|
||||
* [3. The encoding function](#3-the-encoding-function)
|
||||
+ [3.1 Switching to *v, w* coordinates](#31-switching-to-v-w-coordinates)
|
||||
+ [3.2 Avoiding computing all inverses](#32-avoiding-computing-all-inverses)
|
||||
+ [3.3 Finding the inverse](#33-finding-the-inverse)
|
||||
+ [3.4 Dealing with special cases](#34-dealing-with-special-cases)
|
||||
+ [3.5 Encoding for `secp256k1`](#35-encoding-for-secp256k1)
|
||||
* [4. Encoding and decoding full *(x, y)* coordinates](#4-encoding-and-decoding-full-x-y-coordinates)
|
||||
+ [4.1 Full *(x, y)* coordinates for `secp256k1`](#41-full-x-y-coordinates-for-secp256k1)
|
||||
|
||||
## 1. Introduction
|
||||
|
||||
The `ellswift` module effectively introduces a new 64-byte public key format, with the property
|
||||
that (uniformly random) public keys can be encoded as 64-byte arrays which are computationally
|
||||
indistinguishable from uniform byte arrays. The module provides functions to convert public keys
|
||||
from and to this format, as well as convenience functions for key generation and ECDH that operate
|
||||
directly on ellswift-encoded keys.
|
||||
|
||||
The encoding consists of the concatenation of two (32-byte big endian) encoded field elements $u$
|
||||
and $t.$ Together they encode an x-coordinate on the curve $x$, or (see further) a full point $(x, y)$ on
|
||||
the curve.
|
||||
|
||||
**Decoding** consists of decoding the field elements $u$ and $t$ (values above the field size $p$
|
||||
are taken modulo $p$), and then evaluating $F_u(t)$, which for every $u$ and $t$ results in a valid
|
||||
x-coordinate on the curve. The functions $F_u$ will be defined in [Section 2](#2-the-decoding-function).
|
||||
|
||||
**Encoding** a given $x$ coordinate is conceptually done as follows:
|
||||
* Loop:
|
||||
* Pick a uniformly random field element $u.$
|
||||
* Compute the set $L = F_u^{-1}(x)$ of $t$ values for which $F_u(t) = x$, which may have up to *8* elements.
|
||||
* With probability $1 - \dfrac{\\#L}{8}$, restart the loop.
|
||||
* Select a uniformly random $t \in L$ and return $(u, t).$
|
||||
|
||||
This is the *ElligatorSwift* algorithm, here given for just x-coordinates. An extension to full
|
||||
$(x, y)$ points will be given in [Section 4](#4-encoding-and-decoding-full-x-y-coordinates).
|
||||
The algorithm finds a uniformly random $(u, t)$ among (almost all) those
|
||||
for which $F_u(t) = x.$ Section 3.2 in the paper proves that the number of such encodings for
|
||||
almost all x-coordinates on the curve (all but at most 39) is close to two times the field size
|
||||
(specifically, it lies in the range $2q \pm (22\sqrt{q} + O(1))$, where $q$ is the size of the field).
|
||||
|
||||
## 2. The decoding function
|
||||
|
||||
First some definitions:
|
||||
* $\mathbb{F}$ is the finite field of size $q$, of characteristic 5 or more, and $q \equiv 1 \mod 3.$
|
||||
* For `secp256k1`, $q = 2^{256} - 2^{32} - 977$, which satisfies that requirement.
|
||||
* Let $E$ be the elliptic curve of points $(x, y) \in \mathbb{F}^2$ for which $y^2 = x^3 + ax + b$, with $a$ and $b$
|
||||
public constants, for which $\Delta_E = -16(4a^3 + 27b^2)$ is a square, and at least one of $(-b \pm \sqrt{-3 \Delta_E} / 36)/2$ is a square.
|
||||
This implies that the order of $E$ is either odd, or a multiple of *4*.
|
||||
If $a=0$, this condition is always fulfilled.
|
||||
* For `secp256k1`, $a=0$ and $b=7.$
|
||||
* Let the function $g(x) = x^3 + ax + b$, so the $E$ curve equation is also $y^2 = g(x).$
|
||||
* Let the function $h(x) = 3x^3 + 4a.$
|
||||
* Define $V$ as the set of solutions $(x_1, x_2, x_3, z)$ to $z^2 = g(x_1)g(x_2)g(x_3).$
|
||||
* Define $S_u$ as the set of solutions $(X, Y)$ to $X^2 + h(u)Y^2 = -g(u)$ and $Y \neq 0.$
|
||||
* $P_u$ is a function from $\mathbb{F}$ to $S_u$ that will be defined below.
|
||||
* $\psi_u$ is a function from $S_u$ to $V$ that will be defined below.
|
||||
|
||||
**Note**: In the paper:
|
||||
* $F_u$ corresponds to $F_{0,u}$ there.
|
||||
* $P_u(t)$ is called $P$ there.
|
||||
* All $S_u$ sets together correspond to $S$ there.
|
||||
* All $\psi_u$ functions together (operating on elements of $S$) correspond to $\psi$ there.
|
||||
|
||||
Note that for $V$, the left hand side of the equation $z^2$ is square, and thus the right
|
||||
hand must also be square. As multiplying non-squares results in a square in $\mathbb{F}$,
|
||||
out of the three right-hand side factors an even number must be non-squares.
|
||||
This implies that exactly *1* or exactly *3* out of
|
||||
$\\{g(x_1), g(x_2), g(x_3)\\}$ must be square, and thus that for any $(x_1,x_2,x_3,z) \in V$,
|
||||
at least one of $\\{x_1, x_2, x_3\\}$ must be a valid x-coordinate on $E.$ There is one exception
|
||||
to this, namely when $z=0$, but even then one of the three values is a valid x-coordinate.
|
||||
|
||||
**Define** the decoding function $F_u(t)$ as:
|
||||
* Let $(x_1, x_2, x_3, z) = \psi_u(P_u(t)).$
|
||||
* Return the first element $x$ of $(x_3, x_2, x_1)$ which is a valid x-coordinate on $E$ (i.e., $g(x)$ is square).
|
||||
|
||||
$P_u(t) = (X(u, t), Y(u, t))$, where:
|
||||
|
||||
$$
|
||||
\begin{array}{lcl}
|
||||
X(u, t) & = & \left\\{\begin{array}{ll}
|
||||
\dfrac{g(u) - t^2}{2t} & a = 0 \\
|
||||
\dfrac{g(u) + h(u)(Y_0(u) + X_0(u)t)^2}{X_0(u)(1 + h(u)t^2)} & a \neq 0
|
||||
\end{array}\right. \\
|
||||
Y(u, t) & = & \left\\{\begin{array}{ll}
|
||||
\dfrac{X(u, t) + t}{u \sqrt{-3}} = \dfrac{g(u) + t^2}{2tu\sqrt{-3}} & a = 0 \\
|
||||
Y_0(u) + t(X(u, t) - X_0(u)) & a \neq 0
|
||||
\end{array}\right.
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
$P_u(t)$ is defined:
|
||||
* For $a=0$, unless:
|
||||
* $u = 0$ or $t = 0$ (division by zero)
|
||||
* $g(u) = -t^2$ (would give $Y=0$).
|
||||
* For $a \neq 0$, unless:
|
||||
* $X_0(u) = 0$ or $h(u)t^2 = -1$ (division by zero)
|
||||
* $Y_0(u) (1 - h(u)t^2) = 2X_0(u)t$ (would give $Y=0$).
|
||||
|
||||
The functions $X_0(u)$ and $Y_0(u)$ are defined in Appendix A of the paper, and depend on various properties of $E.$
|
||||
|
||||
The function $\psi_u$ is the same for all curves: $\psi_u(X, Y) = (x_1, x_2, x_3, z)$, where:
|
||||
|
||||
$$
|
||||
\begin{array}{lcl}
|
||||
x_1 & = & \dfrac{X}{2Y} - \dfrac{u}{2} && \\
|
||||
x_2 & = & -\dfrac{X}{2Y} - \dfrac{u}{2} && \\
|
||||
x_3 & = & u + 4Y^2 && \\
|
||||
z & = & \dfrac{g(x_3)}{2Y}(u^2 + ux_1 + x_1^2 + a) = \dfrac{-g(u)g(x_3)}{8Y^3}
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
### 2.1 Decoding for `secp256k1`
|
||||
|
||||
Put together and specialized for $a=0$ curves, decoding $(u, t)$ to an x-coordinate is:
|
||||
|
||||
**Define** $F_u(t)$ as:
|
||||
* Let $X = \dfrac{u^3 + b - t^2}{2t}.$
|
||||
* Let $Y = \dfrac{X + t}{u\sqrt{-3}}.$
|
||||
* Return the first $x$ in $(u + 4Y^2, \dfrac{-X}{2Y} - \dfrac{u}{2}, \dfrac{X}{2Y} - \dfrac{u}{2})$ for which $g(x)$ is square.
|
||||
|
||||
To make sure that every input decodes to a valid x-coordinate, we remap the inputs in case
|
||||
$P_u$ is not defined (when $u=0$, $t=0$, or $g(u) = -t^2$):
|
||||
|
||||
**Define** $F_u(t)$ as:
|
||||
* Let $u'=u$ if $u \neq 0$; $1$ otherwise (guaranteeing $u' \neq 0$).
|
||||
* Let $t'=t$ if $t \neq 0$; $1$ otherwise (guaranteeing $t' \neq 0$).
|
||||
* Let $t''=t'$ if $g(u') \neq -t'^2$; $2t'$ otherwise (guaranteeing $t'' \neq 0$ and $g(u') \neq -t''^2$).
|
||||
* Let $X = \dfrac{u'^3 + b - t''^2}{2t''}.$
|
||||
* Let $Y = \dfrac{X + t''}{u'\sqrt{-3}}.$
|
||||
* Return the first $x$ in $(u' + 4Y^2, \dfrac{-X}{2Y} - \dfrac{u'}{2}, \dfrac{X}{2Y} - \dfrac{u'}{2})$ for which $x^3 + b$ is square.
|
||||
|
||||
The choices here are not strictly necessary. Just returning a fixed constant in any of the undefined cases would suffice,
|
||||
but the approach here is simple enough and gives fairly uniform output even in these cases.
|
||||
|
||||
**Note**: in the paper these conditions result in $\infty$ as output, due to the use of projective coordinates there.
|
||||
We wish to avoid the need for callers to deal with this special case.
|
||||
|
||||
This is implemented in `secp256k1_ellswift_xswiftec_frac_var` (which decodes to an x-coordinate represented as a fraction), and
|
||||
in `secp256k1_ellswift_xswiftec_var` (which outputs the actual x-coordinate).
|
||||
|
||||
## 3. The encoding function
|
||||
|
||||
To implement $F_u^{-1}(x)$, the function to find the set of inverses $t$ for which $F_u(t) = x$, we have to reverse the process:
|
||||
* Find all the $(X, Y) \in S_u$ that could have given rise to $x$, through the $x_1$, $x_2$, or $x_3$ formulas in $\psi_u.$
|
||||
* Map those $(X, Y)$ solutions to $t$ values using $P_u^{-1}(X, Y).$
|
||||
* For each of the found $t$ values, verify that $F_u(t) = x.$
|
||||
* Return the remaining $t$ values.
|
||||
|
||||
The function $P_u^{-1}$, which finds $t$ given $(X, Y) \in S_u$, is significantly simpler than $P_u:$
|
||||
|
||||
$$
|
||||
P_u^{-1}(X, Y) = \left\\{\begin{array}{ll}
|
||||
Yu\sqrt{-3} - X & a = 0 \\
|
||||
\dfrac{Y-Y_0(u)}{X-X_0(u)} & a \neq 0 \land X \neq X_0(u) \\
|
||||
\dfrac{-X_0(u)}{h(u)Y_0(u)} & a \neq 0 \land X = X_0(u) \land Y = Y_0(u)
|
||||
\end{array}\right.
|
||||
$$
|
||||
|
||||
The third step above, verifying that $F_u(t) = x$, is necessary because for the $(X, Y)$ values found through the $x_1$ and $x_2$ expressions,
|
||||
it is possible that decoding through $\psi_u(X, Y)$ yields a valid $x_3$ on the curve, which would take precedence over the
|
||||
$x_1$ or $x_2$ decoding. These $(X, Y)$ solutions must be rejected.
|
||||
|
||||
Since we know that exactly one or exactly three out of $\\{x_1, x_2, x_3\\}$ are valid x-coordinates for any $t$,
|
||||
the case where either $x_1$ or $x_2$ is valid and in addition also $x_3$ is valid must mean that all three are valid.
|
||||
This means that instead of checking whether $x_3$ is on the curve, it is also possible to check whether the other one out of
|
||||
$x_1$ and $x_2$ is on the curve. This is significantly simpler, as it turns out.
|
||||
|
||||
Observe that $\psi_u$ guarantees that $x_1 + x_2 = -u.$ So given either $x = x_1$ or $x = x_2$, the other one of the two can be computed as
|
||||
$-u - x.$ Thus, when encoding $x$ through the $x_1$ or $x_2$ expressions, one can simply check whether $g(-u-x)$ is a square,
|
||||
and if so, not include the corresponding $t$ values in the returned set. As this does not need $X$, $Y$, or $t$, this condition can be determined
|
||||
before those values are computed.
|
||||
|
||||
It is not possible that an encoding found through the $x_1$ expression decodes to a different valid x-coordinate using $x_2$ (which would
|
||||
take precedence), for the same reason: if both $x_1$ and $x_2$ decodings were valid, $x_3$ would be valid as well, and thus take
|
||||
precedence over both. Because of this, the $g(-u-x)$ being square test for $x_1$ and $x_2$ is the only test necessary to guarantee the found $t$
|
||||
values round-trip back to the input $x$ correctly. This is the reason for choosing the $(x_3, x_2, x_1)$ precedence order in the decoder;
|
||||
any order which does not place $x_3$ first requires more complicated round-trip checks in the encoder.
|
||||
|
||||
### 3.1 Switching to *v, w* coordinates
|
||||
|
||||
Before working out the formulas for all this, we switch to different variables for $S_u.$ Let $v = (X/Y - u)/2$, and
|
||||
$w = 2Y.$ Or in the other direction, $X = w(u/2 + v)$ and $Y = w/2:$
|
||||
* $S_u'$ becomes the set of $(v, w)$ for which $w^2 (u^2 + uv + v^2 + a) = -g(u)$ and $w \neq 0.$
|
||||
* For $a=0$ curves, $P_u^{-1}$ can be stated for $(v,w)$ as $P_u^{'-1}(v, w) = w\left(\frac{\sqrt{-3}-1}{2}u - v\right).$
|
||||
* $\psi_u$ can be stated for $(v, w)$ as $\psi_u'(v, w) = (x_1, x_2, x_3, z)$, where
|
||||
|
||||
$$
|
||||
\begin{array}{lcl}
|
||||
x_1 & = & v \\
|
||||
x_2 & = & -u - v \\
|
||||
x_3 & = & u + w^2 \\
|
||||
z & = & \dfrac{g(x_3)}{w}(u^2 + uv + v^2 + a) = \dfrac{-g(u)g(x_3)}{w^3}
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
We can now write the expressions for finding $(v, w)$ given $x$ explicitly, by solving each of the $\\{x_1, x_2, x_3\\}$
|
||||
expressions for $v$ or $w$, and using the $S_u'$ equation to find the other variable:
|
||||
* Assuming $x = x_1$, we find $v = x$ and $w = \pm\sqrt{-g(u)/(u^2 + uv + v^2 + a)}$ (two solutions).
|
||||
* Assuming $x = x_2$, we find $v = -u-x$ and $w = \pm\sqrt{-g(u)/(u^2 + uv + v^2 + a)}$ (two solutions).
|
||||
* Assuming $x = x_3$, we find $w = \pm\sqrt{x-u}$ and $v = -u/2 \pm \sqrt{-w^2(4g(u) + w^2h(u))}/(2w^2)$ (four solutions).
|
||||
|
||||
### 3.2 Avoiding computing all inverses
|
||||
|
||||
The *ElligatorSwift* algorithm as stated in Section 1 requires the computation of $L = F_u^{-1}(x)$ (the
|
||||
set of all $t$ such that $(u, t)$ decode to $x$) in full. This is unnecessary.
|
||||
|
||||
Observe that the procedure of restarting with probability $(1 - \frac{\\#L}{8})$ and otherwise returning a
|
||||
uniformly random element from $L$ is actually equivalent to always padding $L$ with $\bot$ values up to length 8,
|
||||
picking a uniformly random element from that, restarting whenever $\bot$ is picked:
|
||||
|
||||
**Define** *ElligatorSwift(x)* as:
|
||||
* Loop:
|
||||
* Pick a uniformly random field element $u.$
|
||||
* Compute the set $L = F_u^{-1}(x).$
|
||||
* Let $T$ be the 8-element vector consisting of the elements of $L$, plus $8 - \\#L$ times $\\{\bot\\}.$
|
||||
* Select a uniformly random $t \in T.$
|
||||
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
|
||||
|
||||
Now notice that the order of elements in $T$ does not matter, as all we do is pick a uniformly
|
||||
random element in it, so we do not need to have all $\bot$ values at the end.
|
||||
As we have 8 distinct formulas for finding $(v, w)$ (taking the variants due to $\pm$ into account),
|
||||
we can associate every index in $T$ with exactly one of those formulas, making sure that:
|
||||
* Formulas that yield no solutions (due to division by zero or non-existing square roots) or invalid solutions are made to return $\bot.$
|
||||
* For the $x_1$ and $x_2$ cases, if $g(-u-x)$ is a square, $\bot$ is returned instead (the round-trip check).
|
||||
* In case multiple formulas would return the same non- $\bot$ result, all but one of those must be turned into $\bot$ to avoid biasing those.
|
||||
|
||||
The last condition above only occurs with negligible probability for cryptographically-sized curves, but is interesting
|
||||
to take into account as it allows exhaustive testing in small groups. See [Section 3.4](#34-dealing-with-special-cases)
|
||||
for an analysis of all the negligible cases.
|
||||
|
||||
If we define $T = (G_{0,u}(x), G_{1,u}(x), \ldots, G_{7,u}(x))$, with each $G_{i,u}$ matching one of the formulas,
|
||||
the loop can be simplified to only compute one of the inverses instead of all of them:
|
||||
|
||||
**Define** *ElligatorSwift(x)* as:
|
||||
* Loop:
|
||||
* Pick a uniformly random field element $u.$
|
||||
* Pick a uniformly random integer $c$ in $[0,8).$
|
||||
* Let $t = G_{c,u}(x).$
|
||||
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
|
||||
|
||||
This is implemented in `secp256k1_ellswift_xelligatorswift_var`.
|
||||
|
||||
### 3.3 Finding the inverse
|
||||
|
||||
To implement $G_{c,u}$, we map $c=0$ to the $x_1$ formula, $c=1$ to the $x_2$ formula, and $c=2$ and $c=3$ to the $x_3$ formula.
|
||||
Those are then repeated as $c=4$ through $c=7$ for the other sign of $w$ (noting that in each formula, $w$ is a square root of some expression).
|
||||
Ignoring the negligible cases, we get:
|
||||
|
||||
**Define** $G_{c,u}(x)$ as:
|
||||
* If $c \in \\{0, 1, 4, 5\\}$ (for $x_1$ and $x_2$ formulas):
|
||||
* If $g(-u-x)$ is square, return $\bot$ (as $x_3$ would be valid and take precedence).
|
||||
* If $c \in \\{0, 4\\}$ (the $x_1$ formula) let $v = x$, otherwise let $v = -u-x$ (the $x_2$ formula)
|
||||
* Let $s = -g(u)/(u^2 + uv + v^2 + a)$ (using $s = w^2$ in what follows).
|
||||
* Otherwise, when $c \in \\{2, 3, 6, 7\\}$ (for $x_3$ formulas):
|
||||
* Let $s = x-u.$
|
||||
* Let $r = \sqrt{-s(4g(u) + sh(u))}.$
|
||||
* Let $v = (r/s - u)/2$ if $c \in \\{3, 7\\}$; $(-r/s - u)/2$ otherwise.
|
||||
* Let $w = \sqrt{s}.$
|
||||
* Depending on $c:$
|
||||
* If $c \in \\{0, 1, 2, 3\\}:$ return $P_u^{'-1}(v, w).$
|
||||
* If $c \in \\{4, 5, 6, 7\\}:$ return $P_u^{'-1}(v, -w).$
|
||||
|
||||
Whenever a square root of a non-square is taken, $\bot$ is returned; for both square roots this happens with roughly
|
||||
50% on random inputs. Similarly, when a division by 0 would occur, $\bot$ is returned as well; this will only happen
|
||||
with negligible probability. A division by 0 in the first branch in fact cannot occur at all, because $u^2 + uv + v^2 + a = 0$
|
||||
implies $g(-u-x) = g(x)$ which would mean the $g(-u-x)$ is square condition has triggered
|
||||
and $\bot$ would have been returned already.
|
||||
|
||||
**Note**: In the paper, the $case$ variable corresponds roughly to the $c$ above, but only takes on 4 possible values (1 to 4).
|
||||
The conditional negation of $w$ at the end is done randomly, which is equivalent, but makes testing harder. We choose to
|
||||
have the $G_{c,u}$ be deterministic, and capture all choices in $c.$
|
||||
|
||||
Now observe that the $c \in \\{1, 5\\}$ and $c \in \\{3, 7\\}$ conditions effectively perform the same $v \rightarrow -u-v$
|
||||
transformation. Furthermore, that transformation has no effect on $s$ in the first branch
|
||||
as $u^2 + ux + x^2 + a = u^2 + u(-u-x) + (-u-x)^2 + a.$ Thus we can extract it out and move it down:
|
||||
|
||||
**Define** $G_{c,u}(x)$ as:
|
||||
* If $c \in \\{0, 1, 4, 5\\}:$
|
||||
* If $g(-u-x)$ is square, return $\bot.$
|
||||
* Let $s = -g(u)/(u^2 + ux + x^2 + a).$
|
||||
* Let $v = x.$
|
||||
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
|
||||
* Let $s = x-u.$
|
||||
* Let $r = \sqrt{-s(4g(u) + sh(u))}.$
|
||||
* Let $v = (r/s - u)/2.$
|
||||
* Let $w = \sqrt{s}.$
|
||||
* Depending on $c:$
|
||||
* If $c \in \\{0, 2\\}:$ return $P_u^{'-1}(v, w).$
|
||||
* If $c \in \\{1, 3\\}:$ return $P_u^{'-1}(-u-v, w).$
|
||||
* If $c \in \\{4, 6\\}:$ return $P_u^{'-1}(v, -w).$
|
||||
* If $c \in \\{5, 7\\}:$ return $P_u^{'-1}(-u-v, -w).$
|
||||
|
||||
This shows there will always be exactly 0, 4, or 8 $t$ values for a given $(u, x)$ input.
|
||||
There can be 0, 1, or 2 $(v, w)$ pairs before invoking $P_u^{'-1}$, and each results in 4 distinct $t$ values.
|
||||
|
||||
### 3.4 Dealing with special cases
|
||||
|
||||
As mentioned before there are a few cases to deal with which only happen in a negligibly small subset of inputs.
|
||||
For cryptographically sized fields, if only random inputs are going to be considered, it is unnecessary to deal with these. Still, for completeness
|
||||
we analyse them here. They generally fall into two categories: cases in which the encoder would produce $t$ values that
|
||||
do not decode back to $x$ (or at least cannot guarantee that they do), and cases in which the encoder might produce the same
|
||||
$t$ value for multiple $c$ inputs (thereby biasing that encoding):
|
||||
|
||||
* In the branch for $x_1$ and $x_2$ (where $c \in \\{0, 1, 4, 5\\}$):
|
||||
* When $g(u) = 0$, we would have $s=w=Y=0$, which is not on $S_u.$ This is only possible on even-ordered curves.
|
||||
Excluding this also removes the one condition under which the simplified check for $x_3$ on the curve
|
||||
fails (namely when $g(x_1)=g(x_2)=0$ but $g(x_3)$ is not square).
|
||||
This does exclude some valid encodings: when both $g(u)=0$ and $u^2+ux+x^2+a=0$ (also implying $g(x)=0$),
|
||||
the $S_u'$ equation degenerates to $0 = 0$, and many valid $t$ values may exist. Yet, these cannot be targeted uniformly by the
|
||||
encoder anyway as there will generally be more than 8.
|
||||
* When $g(x) = 0$, the same $t$ would be produced as in the $x_3$ branch (where $c \in \\{2, 3, 6, 7\\}$) which we give precedence
|
||||
as it can deal with $g(u)=0$.
|
||||
This is again only possible on even-ordered curves.
|
||||
* In the branch for $x_3$ (where $c \in \\{2, 3, 6, 7\\}$):
|
||||
* When $s=0$, a division by zero would occur.
|
||||
* When $v = -u-v$ and $c \in \\{3, 7\\}$, the same $t$ would be returned as in the $c \in \\{2, 6\\}$ cases.
|
||||
It is equivalent to checking whether $r=0$.
|
||||
This cannot occur in the $x_1$ or $x_2$ branches, as it would trigger the $g(-u-x)$ is square condition.
|
||||
A similar concern for $w = -w$ does not exist, as $w=0$ is already impossible in both branches: in the first
|
||||
it requires $g(u)=0$ which is already outlawed on even-ordered curves and impossible on others; in the second it would trigger division by zero.
|
||||
* Curve-specific special cases also exist that need to be rejected, because they result in $(u,t)$ which is invalid to the decoder, or because of division by zero in the encoder:
|
||||
* For $a=0$ curves, when $u=0$ or when $t=0$. The latter can only be reached by the encoder when $g(u)=0$, which requires an even-ordered curve.
|
||||
* For $a \neq 0$ curves, when $X_0(u)=0$, when $h(u)t^2 = -1$, or when $2w(u + 2v) = 2X_0(u)$ while also either $w \neq 2Y_0(u)$ or $h(u)=0$.
|
||||
|
||||
**Define** a version of $G_{c,u}(x)$ which deals with all these cases:
|
||||
* If $a=0$ and $u=0$, return $\bot.$
|
||||
* If $a \neq 0$ and $X_0(u)=0$, return $\bot.$
|
||||
* If $c \in \\{0, 1, 4, 5\\}:$
|
||||
* If $g(u) = 0$ or $g(x) = 0$, return $\bot$ (even curves only).
|
||||
* If $g(-u-x)$ is square, return $\bot.$
|
||||
* Let $s = -g(u)/(u^2 + ux + x^2 + a)$ (cannot cause division by zero).
|
||||
* Let $v = x.$
|
||||
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
|
||||
* Let $s = x-u.$
|
||||
* Let $r = \sqrt{-s(4g(u) + sh(u))}$; return $\bot$ if not square.
|
||||
* If $c \in \\{3, 7\\}$ and $r=0$, return $\bot.$
|
||||
* If $s = 0$, return $\bot.$
|
||||
* Let $v = (r/s - u)/2.$
|
||||
* Let $w = \sqrt{s}$; return $\bot$ if not square.
|
||||
* If $a \neq 0$ and $w(u+2v) = 2X_0(u)$ and either $w \neq 2Y_0(u)$ or $h(u) = 0$, return $\bot.$
|
||||
* Depending on $c:$
|
||||
* If $c \in \\{0, 2\\}$, let $t = P_u^{'-1}(v, w).$
|
||||
* If $c \in \\{1, 3\\}$, let $t = P_u^{'-1}(-u-v, w).$
|
||||
* If $c \in \\{4, 6\\}$, let $t = P_u^{'-1}(v, -w).$
|
||||
* If $c \in \\{5, 7\\}$, let $t = P_u^{'-1}(-u-v, -w).$
|
||||
* If $a=0$ and $t=0$, return $\bot$ (even curves only).
|
||||
* If $a \neq 0$ and $h(u)t^2 = -1$, return $\bot.$
|
||||
* Return $t.$
|
||||
|
||||
Given any $u$, using this algorithm over all $x$ and $c$ values, every $t$ value will be reached exactly once,
|
||||
for an $x$ for which $F_u(t) = x$ holds, except for these cases that will not be reached:
|
||||
* All cases where $P_u(t)$ is not defined:
|
||||
* For $a=0$ curves, when $u=0$, $t=0$, or $g(u) = -t^2.$
|
||||
* For $a \neq 0$ curves, when $h(u)t^2 = -1$, $X_0(u) = 0$, or $Y_0(u) (1 - h(u) t^2) = 2X_0(u)t.$
|
||||
* When $g(u)=0$, the potentially many $t$ values that decode to an $x$ satisfying $g(x)=0$ using the $x_2$ formula. These were excluded by the $g(u)=0$ condition in the $c \in \\{0, 1, 4, 5\\}$ branch.
|
||||
|
||||
These cases form a negligible subset of all $(u, t)$ for cryptographically sized curves.
|
||||
|
||||
### 3.5 Encoding for `secp256k1`
|
||||
|
||||
Specialized for odd-ordered $a=0$ curves:
|
||||
|
||||
**Define** $G_{c,u}(x)$ as:
|
||||
* If $u=0$, return $\bot.$
|
||||
* If $c \in \\{0, 1, 4, 5\\}:$
|
||||
* If $(-u-x)^3 + b$ is square, return $\bot$
|
||||
* Let $s = -(u^3 + b)/(u^2 + ux + x^2)$ (cannot cause division by 0).
|
||||
* Let $v = x.$
|
||||
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
|
||||
* Let $s = x-u.$
|
||||
* Let $r = \sqrt{-s(4(u^3 + b) + 3su^2)}$; return $\bot$ if not square.
|
||||
* If $c \in \\{3, 7\\}$ and $r=0$, return $\bot.$
|
||||
* If $s = 0$, return $\bot.$
|
||||
* Let $v = (r/s - u)/2.$
|
||||
* Let $w = \sqrt{s}$; return $\bot$ if not square.
|
||||
* Depending on $c:$
|
||||
* If $c \in \\{0, 2\\}:$ return $w(\frac{\sqrt{-3}-1}{2}u - v).$
|
||||
* If $c \in \\{1, 3\\}:$ return $w(\frac{\sqrt{-3}+1}{2}u + v).$
|
||||
* If $c \in \\{4, 6\\}:$ return $w(\frac{-\sqrt{-3}+1}{2}u + v).$
|
||||
* If $c \in \\{5, 7\\}:$ return $w(\frac{-\sqrt{-3}-1}{2}u - v).$
|
||||
|
||||
This is implemented in `secp256k1_ellswift_xswiftec_inv_var`.
|
||||
|
||||
And the x-only ElligatorSwift encoding algorithm is still:
|
||||
|
||||
**Define** *ElligatorSwift(x)* as:
|
||||
* Loop:
|
||||
* Pick a uniformly random field element $u.$
|
||||
* Pick a uniformly random integer $c$ in $[0,8).$
|
||||
* Let $t = G_{c,u}(x).$
|
||||
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
|
||||
|
||||
Note that this logic does not take the remapped $u=0$, $t=0$, and $g(u) = -t^2$ cases into account; it just avoids them.
|
||||
While it is not impossible to make the encoder target them, this would increase the maximum number of $t$ values for a given $(u, x)$
|
||||
combination beyond 8, and thereby slow down the ElligatorSwift loop proportionally, for a negligible gain in uniformity.
|
||||
|
||||
## 4. Encoding and decoding full *(x, y)* coordinates
|
||||
|
||||
So far we have only addressed encoding and decoding x-coordinates, but in some cases an encoding
|
||||
for full points with $(x, y)$ coordinates is desirable. It is possible to encode this information
|
||||
in $t$ as well.
|
||||
|
||||
Note that for any $(X, Y) \in S_u$, $(\pm X, \pm Y)$ are all on $S_u.$ Moreover, all of these are
|
||||
mapped to the same x-coordinate. Negating $X$ or negating $Y$ just results in $x_1$ and $x_2$
|
||||
being swapped, and does not affect $x_3.$ This will not change the outcome x-coordinate as the order
|
||||
of $x_1$ and $x_2$ only matters if both were to be valid, and in that case $x_3$ would be used instead.
|
||||
|
||||
Still, these four $(X, Y)$ combinations all correspond to distinct $t$ values, so we can encode
|
||||
the sign of the y-coordinate in the sign of $X$ or the sign of $Y.$ They correspond to the
|
||||
four distinct $P_u^{'-1}$ calls in the definition of $G_{u,c}.$
|
||||
|
||||
**Note**: In the paper, the sign of the y coordinate is encoded in a separately-coded bit.
|
||||
|
||||
To encode the sign of $y$ in the sign of $Y:$
|
||||
|
||||
**Define** *Decode(u, t)* for full $(x, y)$ as:
|
||||
* Let $(X, Y) = P_u(t).$
|
||||
* Let $x$ be the first value in $(u + 4Y^2, \frac{-X}{2Y} - \frac{u}{2}, \frac{X}{2Y} - \frac{u}{2})$ for which $g(x)$ is square.
|
||||
* Let $y = \sqrt{g(x)}.$
|
||||
* If $sign(y) = sign(Y)$, return $(x, y)$; otherwise return $(x, -y).$
|
||||
|
||||
And encoding would be done using a $G_{c,u}(x, y)$ function defined as:
|
||||
|
||||
**Define** $G_{c,u}(x, y)$ as:
|
||||
* If $c \in \\{0, 1\\}:$
|
||||
* If $g(u) = 0$ or $g(x) = 0$, return $\bot$ (even curves only).
|
||||
* If $g(-u-x)$ is square, return $\bot.$
|
||||
* Let $s = -g(u)/(u^2 + ux + x^2 + a)$ (cannot cause division by zero).
|
||||
* Let $v = x.$
|
||||
* Otherwise, when $c \in \\{2, 3\\}:$
|
||||
* Let $s = x-u.$
|
||||
* Let $r = \sqrt{-s(4g(u) + sh(u))}$; return $\bot$ if not square.
|
||||
* If $c = 3$ and $r = 0$, return $\bot.$
|
||||
* Let $v = (r/s - u)/2.$
|
||||
* Let $w = \sqrt{s}$; return $\bot$ if not square.
|
||||
* Let $w' = w$ if $sign(w/2) = sign(y)$; $-w$ otherwise.
|
||||
* Depending on $c:$
|
||||
* If $c \in \\{0, 2\\}:$ return $P_u^{'-1}(v, w').$
|
||||
* If $c \in \\{1, 3\\}:$ return $P_u^{'-1}(-u-v, w').$
|
||||
|
||||
Note that $c$ now only ranges $[0,4)$, as the sign of $w'$ is decided based on that of $y$, rather than on $c.$
|
||||
This change makes some valid encodings unreachable: when $y = 0$ and $sign(Y) \neq sign(0)$.
|
||||
|
||||
In the above logic, $sign$ can be implemented in several ways, such as parity of the integer representation
|
||||
of the input field element (for prime-sized fields) or the quadratic residuosity (for fields where
|
||||
$-1$ is not square). The choice does not matter, as long as it only takes on two possible values, and for $x \neq 0$ it holds that $sign(x) \neq sign(-x)$.
|
||||
|
||||
### 4.1 Full *(x, y)* coordinates for `secp256k1`
|
||||
|
||||
For $a=0$ curves, there is another option. Note that for those,
|
||||
the $P_u(t)$ function translates negations of $t$ to negations of (both) $X$ and $Y.$ Thus, we can use $sign(t)$ to
|
||||
encode the y-coordinate directly. Combined with the earlier remapping to guarantee all inputs land on the curve, we get
|
||||
as decoder:
|
||||
|
||||
**Define** *Decode(u, t)* as:
|
||||
* Let $u'=u$ if $u \neq 0$; $1$ otherwise.
|
||||
* Let $t'=t$ if $t \neq 0$; $1$ otherwise.
|
||||
* Let $t''=t'$ if $u'^3 + b + t'^2 \neq 0$; $2t'$ otherwise.
|
||||
* Let $X = \dfrac{u'^3 + b - t''^2}{2t''}.$
|
||||
* Let $Y = \dfrac{X + t''}{u'\sqrt{-3}}.$
|
||||
* Let $x$ be the first element of $(u' + 4Y^2, \frac{-X}{2Y} - \frac{u'}{2}, \frac{X}{2Y} - \frac{u'}{2})$ for which $g(x)$ is square.
|
||||
* Let $y = \sqrt{g(x)}.$
|
||||
* Return $(x, y)$ if $sign(y) = sign(t)$; $(x, -y)$ otherwise.
|
||||
|
||||
This is implemented in `secp256k1_ellswift_swiftec_var`. The used $sign(x)$ function is the parity of $x$ when represented as in integer in $[0,q).$
|
||||
|
||||
The corresponding encoder would invoke the x-only one, but negating the output $t$ if $sign(t) \neq sign(y).$
|
||||
|
||||
This is implemented in `secp256k1_ellswift_elligatorswift_var`.
|
||||
|
||||
Note that this is only intended for encoding points where both the x-coordinate and y-coordinate are unpredictable. When encoding x-only points
|
||||
where the y-coordinate is implicitly even (or implicitly square, or implicitly in $[0,q/2]$), the encoder in
|
||||
[Section 3.5](#35-encoding-for-secp256k1) must be used, or a bias is reintroduced that undoes all the benefit of using ElligatorSwift
|
||||
in the first place.
|
198
include/secp256k1_ellswift.h
Normal file
198
include/secp256k1_ellswift.h
Normal file
@ -0,0 +1,198 @@
|
||||
#ifndef SECP256K1_ELLSWIFT_H
|
||||
#define SECP256K1_ELLSWIFT_H
|
||||
|
||||
#include "secp256k1.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* This module provides an implementation of ElligatorSwift as well as a
|
||||
* version of x-only ECDH using it (including compatibility with BIP324).
|
||||
*
|
||||
* ElligatorSwift is described in https://eprint.iacr.org/2022/759 by
|
||||
* Chavez-Saab, Rodriguez-Henriquez, and Tibouchi. It permits encoding
|
||||
* uniformly chosen public keys as 64-byte arrays which are indistinguishable
|
||||
* from uniformly random arrays.
|
||||
*
|
||||
* Let f be the function from pairs of field elements to point X coordinates,
|
||||
* defined as follows (all operations modulo p = 2^256 - 2^32 - 977)
|
||||
* f(u,t):
|
||||
* - Let C = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852,
|
||||
* a square root of -3.
|
||||
* - If u=0, set u=1 instead.
|
||||
* - If t=0, set t=1 instead.
|
||||
* - If u^3 + t^2 + 7 = 0, multiply t by 2.
|
||||
* - Let X = (u^3 + 7 - t^2) / (2 * t)
|
||||
* - Let Y = (X + t) / (C * u)
|
||||
* - Return the first in [u + 4 * Y^2, (-X/Y - u) / 2, (X/Y - u) / 2] that is an
|
||||
* X coordinate on the curve (at least one of them is, for any u and t).
|
||||
*
|
||||
* Then an ElligatorSwift encoding of x consists of the 32-byte big-endian
|
||||
* encodings of field elements u and t concatenated, where f(u,t) = x.
|
||||
* The encoding algorithm is described in the paper, and effectively picks a
|
||||
* uniformly random pair (u,t) among those which encode x.
|
||||
*
|
||||
* If the Y coordinate is relevant, it is given the same parity as t.
|
||||
*
|
||||
* Changes w.r.t. the the paper:
|
||||
* - The u=0, t=0, and u^3+t^2+7=0 conditions result in decoding to the point
|
||||
* at infinity in the paper. Here they are remapped to finite points.
|
||||
* - The paper uses an additional encoding bit for the parity of y. Here the
|
||||
* parity of t is used (negating t does not affect the decoded x coordinate,
|
||||
* so this is possible).
|
||||
*/
|
||||
|
||||
/** A pointer to a function used by secp256k1_ellswift_xdh to hash the shared X
|
||||
* coordinate along with the encoded public keys to a uniform shared secret.
|
||||
*
|
||||
* Returns: 1 if a shared secret was successfully computed.
|
||||
* 0 will cause secp256k1_ellswift_xdh to fail and return 0.
|
||||
* Other return values are not allowed, and the behaviour of
|
||||
* secp256k1_ellswift_xdh is undefined for other return values.
|
||||
* Out: output: pointer to an array to be filled by the function
|
||||
* In: x32: pointer to the 32-byte serialized X coordinate
|
||||
* of the resulting shared point (will not be NULL)
|
||||
* ell_a64: pointer to the 64-byte encoded public key of party A
|
||||
* (will not be NULL)
|
||||
* ell_b64: pointer to the 64-byte encoded public key of party B
|
||||
* (will not be NULL)
|
||||
* data: arbitrary data pointer that is passed through
|
||||
*/
|
||||
typedef int (*secp256k1_ellswift_xdh_hash_function)(
|
||||
unsigned char *output,
|
||||
const unsigned char *x32,
|
||||
const unsigned char *ell_a64,
|
||||
const unsigned char *ell_b64,
|
||||
void *data
|
||||
);
|
||||
|
||||
/** An implementation of an secp256k1_ellswift_xdh_hash_function which uses
|
||||
* SHA256(prefix64 || ell_a64 || ell_b64 || x32), where prefix64 is the 64-byte
|
||||
* array pointed to by data. */
|
||||
SECP256K1_API_VAR const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix;
|
||||
|
||||
/** An implementation of an secp256k1_ellswift_xdh_hash_function compatible with
|
||||
* BIP324. It returns H_tag(ell_a64 || ell_b64 || x32), where H_tag is the
|
||||
* BIP340 tagged hash function with tag "bip324_ellswift_xonly_ecdh". Equivalent
|
||||
* to secp256k1_ellswift_xdh_hash_function_prefix with prefix64 set to
|
||||
* SHA256("bip324_ellswift_xonly_ecdh")||SHA256("bip324_ellswift_xonly_ecdh").
|
||||
* The data argument is ignored. */
|
||||
SECP256K1_API_VAR const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324;
|
||||
|
||||
/** Construct a 64-byte ElligatorSwift encoding of a given pubkey.
|
||||
*
|
||||
* Returns: 1 always.
|
||||
* Args: ctx: pointer to a context object
|
||||
* Out: ell64: pointer to a 64-byte array to be filled
|
||||
* In: pubkey: a pointer to a secp256k1_pubkey containing an
|
||||
* initialized public key
|
||||
* rnd32: pointer to 32 bytes of randomness
|
||||
*
|
||||
* It is recommended that rnd32 consists of 32 uniformly random bytes, not
|
||||
* known to any adversary trying to detect whether public keys are being
|
||||
* encoded, though 16 bytes of randomness (padded to an array of 32 bytes,
|
||||
* e.g., with zeros) suffice to make the result indistinguishable from
|
||||
* uniform. The randomness in rnd32 must not be a deterministic function of
|
||||
* the pubkey (it can be derived from the private key, though).
|
||||
*
|
||||
* It is not guaranteed that the computed encoding is stable across versions
|
||||
* of the library, even if all arguments to this function (including rnd32)
|
||||
* are the same.
|
||||
*
|
||||
* This function runs in variable time.
|
||||
*/
|
||||
SECP256K1_API int secp256k1_ellswift_encode(
|
||||
const secp256k1_context *ctx,
|
||||
unsigned char *ell64,
|
||||
const secp256k1_pubkey *pubkey,
|
||||
const unsigned char *rnd32
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
/** Decode a 64-bytes ElligatorSwift encoded public key.
|
||||
*
|
||||
* Returns: always 1
|
||||
* Args: ctx: pointer to a context object
|
||||
* Out: pubkey: pointer to a secp256k1_pubkey that will be filled
|
||||
* In: ell64: pointer to a 64-byte array to decode
|
||||
*
|
||||
* This function runs in variable time.
|
||||
*/
|
||||
SECP256K1_API int secp256k1_ellswift_decode(
|
||||
const secp256k1_context *ctx,
|
||||
secp256k1_pubkey *pubkey,
|
||||
const unsigned char *ell64
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
/** Compute an ElligatorSwift public key for a secret key.
|
||||
*
|
||||
* Returns: 1: secret was valid, public key was stored.
|
||||
* 0: secret was invalid, try again.
|
||||
* Args: ctx: pointer to a context object
|
||||
* Out: ell64: pointer to a 64-byte array to receive the ElligatorSwift
|
||||
* public key
|
||||
* In: seckey32: pointer to a 32-byte secret key
|
||||
* auxrnd32: (optional) pointer to 32 bytes of randomness
|
||||
*
|
||||
* Constant time in seckey and auxrnd32, but not in the resulting public key.
|
||||
*
|
||||
* It is recommended that auxrnd32 contains 32 uniformly random bytes, though
|
||||
* it is optional (and does result in encodings that are indistinguishable from
|
||||
* uniform even without any auxrnd32). It differs from the (mandatory) rnd32
|
||||
* argument to secp256k1_ellswift_encode in this regard.
|
||||
*
|
||||
* This function can be used instead of calling secp256k1_ec_pubkey_create
|
||||
* followed by secp256k1_ellswift_encode. It is safer, as it uses the secret
|
||||
* key as entropy for the encoding (supplemented with auxrnd32, if provided).
|
||||
*
|
||||
* Like secp256k1_ellswift_encode, this function does not guarantee that the
|
||||
* computed encoding is stable across versions of the library, even if all
|
||||
* arguments (including auxrnd32) are the same.
|
||||
*/
|
||||
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_create(
|
||||
const secp256k1_context *ctx,
|
||||
unsigned char *ell64,
|
||||
const unsigned char *seckey32,
|
||||
const unsigned char *auxrnd32
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
/** Given a private key, and ElligatorSwift public keys sent in both directions,
|
||||
* compute a shared secret using x-only Elliptic Curve Diffie-Hellman (ECDH).
|
||||
*
|
||||
* Returns: 1: shared secret was succesfully computed
|
||||
* 0: secret was invalid or hashfp returned 0
|
||||
* Args: ctx: pointer to a context object.
|
||||
* Out: output: pointer to an array to be filled by hashfp.
|
||||
* In: ell_a64: pointer to the 64-byte encoded public key of party A
|
||||
* (will not be NULL)
|
||||
* ell_b64: pointer to the 64-byte encoded public key of party B
|
||||
* (will not be NULL)
|
||||
* seckey32: a pointer to our 32-byte secret key
|
||||
* party: boolean indicating which party we are: zero if we are
|
||||
* party A, non-zero if we are party B. seckey32 must be
|
||||
* the private key corresponding to that party's ell_?64.
|
||||
* This correspondence is not checked.
|
||||
* hashfp: pointer to a hash function.
|
||||
* data: arbitrary data pointer passed through to hashfp.
|
||||
*
|
||||
* Constant time in seckey32.
|
||||
*
|
||||
* This function is more efficient than decoding the public keys, and performing
|
||||
* ECDH on them.
|
||||
*/
|
||||
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_xdh(
|
||||
const secp256k1_context *ctx,
|
||||
unsigned char *output,
|
||||
const unsigned char *ell_a64,
|
||||
const unsigned char *ell_b64,
|
||||
const unsigned char *seckey32,
|
||||
int party,
|
||||
secp256k1_ellswift_xdh_hash_function hashfp,
|
||||
void *data
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(7);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* SECP256K1_ELLSWIFT_H */
|
@ -132,6 +132,9 @@ if(SECP256K1_INSTALL)
|
||||
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_schnorrsig.h")
|
||||
endif()
|
||||
if(SECP256K1_ENABLE_MODULE_ELLSWIFT)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_ellswift.h")
|
||||
endif()
|
||||
install(FILES ${${PROJECT_NAME}_headers}
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
)
|
||||
|
58
src/bench.c
58
src/bench.c
@ -38,6 +38,8 @@ static void help(int default_iters) {
|
||||
printf(" ecdsa : all ECDSA algorithms--sign, verify, recovery (if enabled)\n");
|
||||
printf(" ecdsa_sign : ECDSA siging algorithm\n");
|
||||
printf(" ecdsa_verify : ECDSA verification algorithm\n");
|
||||
printf(" ec : all EC public key algorithms (keygen)\n");
|
||||
printf(" ec_keygen : EC public key generation\n");
|
||||
|
||||
#ifdef ENABLE_MODULE_RECOVERY
|
||||
printf(" ecdsa_recover : ECDSA public key recovery algorithm\n");
|
||||
@ -53,6 +55,14 @@ static void help(int default_iters) {
|
||||
printf(" schnorrsig_verify : Schnorr verification algorithm\n");
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
printf(" ellswift : all ElligatorSwift benchmarks (encode, decode, keygen, ecdh)\n");
|
||||
printf(" ellswift_encode : ElligatorSwift encoding\n");
|
||||
printf(" ellswift_decode : ElligatorSwift decoding\n");
|
||||
printf(" ellswift_keygen : ElligatorSwift key generation\n");
|
||||
printf(" ellswift_ecdh : ECDH on ElligatorSwift keys\n");
|
||||
#endif
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
@ -115,6 +125,30 @@ static void bench_sign_run(void* arg, int iters) {
|
||||
}
|
||||
}
|
||||
|
||||
static void bench_keygen_setup(void* arg) {
|
||||
int i;
|
||||
bench_data *data = (bench_data*)arg;
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
data->key[i] = i + 65;
|
||||
}
|
||||
}
|
||||
|
||||
static void bench_keygen_run(void *arg, int iters) {
|
||||
int i;
|
||||
bench_data *data = (bench_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
unsigned char pub33[33];
|
||||
size_t len = 33;
|
||||
secp256k1_pubkey pubkey;
|
||||
CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->key));
|
||||
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pub33, &len, &pubkey, SECP256K1_EC_COMPRESSED));
|
||||
memcpy(data->key, pub33 + 1, 32);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef ENABLE_MODULE_ECDH
|
||||
# include "modules/ecdh/bench_impl.h"
|
||||
#endif
|
||||
@ -127,6 +161,10 @@ static void bench_sign_run(void* arg, int iters) {
|
||||
# include "modules/schnorrsig/bench_impl.h"
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
# include "modules/ellswift/bench_impl.h"
|
||||
#endif
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
int i;
|
||||
secp256k1_pubkey pubkey;
|
||||
@ -139,7 +177,9 @@ int main(int argc, char** argv) {
|
||||
|
||||
/* Check for invalid user arguments */
|
||||
char* valid_args[] = {"ecdsa", "verify", "ecdsa_verify", "sign", "ecdsa_sign", "ecdh", "recover",
|
||||
"ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign"};
|
||||
"ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign", "ec",
|
||||
"keygen", "ec_keygen", "ellswift", "encode", "ellswift_encode", "decode",
|
||||
"ellswift_decode", "ellswift_keygen", "ellswift_ecdh"};
|
||||
size_t valid_args_size = sizeof(valid_args)/sizeof(valid_args[0]);
|
||||
int invalid_args = have_invalid_args(argc, argv, valid_args, valid_args_size);
|
||||
|
||||
@ -181,6 +221,16 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef ENABLE_MODULE_ELLSWIFT
|
||||
if (have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "ellswift_encode") || have_flag(argc, argv, "ellswift_decode") ||
|
||||
have_flag(argc, argv, "encode") || have_flag(argc, argv, "decode") || have_flag(argc, argv, "ellswift_keygen") ||
|
||||
have_flag(argc, argv, "ellswift_ecdh")) {
|
||||
fprintf(stderr, "./bench: ElligatorSwift module not enabled.\n");
|
||||
fprintf(stderr, "Use ./configure --enable-module-ellswift.\n\n");
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ECDSA benchmark */
|
||||
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
||||
|
||||
@ -201,6 +251,7 @@ int main(int argc, char** argv) {
|
||||
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "verify") || have_flag(argc, argv, "ecdsa_verify")) run_benchmark("ecdsa_verify", bench_verify, NULL, NULL, &data, 10, iters);
|
||||
|
||||
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "sign") || have_flag(argc, argv, "ecdsa_sign")) run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "ec") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ec_keygen")) run_benchmark("ec_keygen", bench_keygen_run, bench_keygen_setup, NULL, &data, 10, iters);
|
||||
|
||||
secp256k1_context_destroy(data.ctx);
|
||||
|
||||
@ -219,5 +270,10 @@ int main(int argc, char** argv) {
|
||||
run_schnorrsig_bench(iters, argc, argv);
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
/* ElligatorSwift benchmarks */
|
||||
run_ellswift_bench(iters, argc, argv);
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -30,6 +30,10 @@
|
||||
#include "../include/secp256k1_schnorrsig.h"
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
#include "../include/secp256k1_ellswift.h"
|
||||
#endif
|
||||
|
||||
static void run_tests(secp256k1_context *ctx, unsigned char *key);
|
||||
|
||||
int main(void) {
|
||||
@ -80,6 +84,10 @@ static void run_tests(secp256k1_context *ctx, unsigned char *key) {
|
||||
#ifdef ENABLE_MODULE_EXTRAKEYS
|
||||
secp256k1_keypair keypair;
|
||||
#endif
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
unsigned char ellswift[64];
|
||||
static const unsigned char prefix[64] = {'t', 'e', 's', 't'};
|
||||
#endif
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
msg[i] = i + 1;
|
||||
@ -171,4 +179,31 @@ static void run_tests(secp256k1_context *ctx, unsigned char *key) {
|
||||
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
|
||||
CHECK(ret == 1);
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
ret = secp256k1_ellswift_create(ctx, ellswift, key, NULL);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
|
||||
CHECK(ret == 1);
|
||||
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
ret = secp256k1_ellswift_create(ctx, ellswift, key, ellswift);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
|
||||
CHECK(ret == 1);
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ellswift, sizeof(ellswift));
|
||||
ret = secp256k1_ellswift_xdh(ctx, msg, ellswift, ellswift, key, i, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
|
||||
CHECK(ret == 1);
|
||||
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ellswift, sizeof(ellswift));
|
||||
ret = secp256k1_ellswift_xdh(ctx, msg, ellswift, ellswift, key, i, secp256k1_ellswift_xdh_hash_function_prefix, (void *)prefix);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
|
||||
CHECK(ret == 1);
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
@ -51,6 +51,12 @@ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const se
|
||||
* for Y. Return value indicates whether the result is valid. */
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
|
||||
|
||||
/** Determine whether x is a valid X coordinate on the curve. */
|
||||
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x);
|
||||
|
||||
/** Determine whether fraction xn/xd is a valid X coordinate on the curve (xd != 0). */
|
||||
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd);
|
||||
|
||||
/** Check whether a group element is the point at infinity. */
|
||||
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
|
||||
|
||||
|
@ -823,4 +823,32 @@ static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
|
||||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x) {
|
||||
secp256k1_fe c;
|
||||
secp256k1_fe_sqr(&c, x);
|
||||
secp256k1_fe_mul(&c, &c, x);
|
||||
secp256k1_fe_add_int(&c, SECP256K1_B);
|
||||
return secp256k1_fe_is_square_var(&c);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd) {
|
||||
/* We want to determine whether (xn/xd) is on the curve.
|
||||
*
|
||||
* (xn/xd)^3 + 7 is square <=> xd*xn^3 + 7*xd^4 is square (multiplying by xd^4, a square).
|
||||
*/
|
||||
secp256k1_fe r, t;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(xd));
|
||||
#endif
|
||||
secp256k1_fe_mul(&r, xd, xn); /* r = xd*xn */
|
||||
secp256k1_fe_sqr(&t, xn); /* t = xn^2 */
|
||||
secp256k1_fe_mul(&r, &r, &t); /* r = xd*xn^3 */
|
||||
secp256k1_fe_sqr(&t, xd); /* t = xd^2 */
|
||||
secp256k1_fe_sqr(&t, &t); /* t = xd^4 */
|
||||
VERIFY_CHECK(SECP256K1_B <= 31);
|
||||
secp256k1_fe_mul_int(&t, SECP256K1_B); /* t = 7*xd^4 */
|
||||
secp256k1_fe_add(&r, &t); /* r = xd*xn^3 + 7*xd^4 */
|
||||
return secp256k1_fe_is_square_var(&r);
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_GROUP_IMPL_H */
|
||||
|
4
src/modules/ellswift/Makefile.am.include
Normal file
4
src/modules/ellswift/Makefile.am.include
Normal file
@ -0,0 +1,4 @@
|
||||
include_HEADERS += include/secp256k1_ellswift.h
|
||||
noinst_HEADERS += src/modules/ellswift/bench_impl.h
|
||||
noinst_HEADERS += src/modules/ellswift/main_impl.h
|
||||
noinst_HEADERS += src/modules/ellswift/tests_impl.h
|
106
src/modules/ellswift/bench_impl.h
Normal file
106
src/modules/ellswift/bench_impl.h
Normal file
@ -0,0 +1,106 @@
|
||||
/***********************************************************************
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
***********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODULE_ELLSWIFT_BENCH_H
|
||||
#define SECP256K1_MODULE_ELLSWIFT_BENCH_H
|
||||
|
||||
#include "../../../include/secp256k1_ellswift.h"
|
||||
|
||||
typedef struct {
|
||||
secp256k1_context *ctx;
|
||||
secp256k1_pubkey point[256];
|
||||
unsigned char rnd64[64];
|
||||
} bench_ellswift_data;
|
||||
|
||||
static void bench_ellswift_setup(void *arg) {
|
||||
int i;
|
||||
bench_ellswift_data *data = (bench_ellswift_data*)arg;
|
||||
static const unsigned char init[64] = {
|
||||
0x78, 0x1f, 0xb7, 0xd4, 0x67, 0x7f, 0x08, 0x68,
|
||||
0xdb, 0xe3, 0x1d, 0x7f, 0x1b, 0xb0, 0xf6, 0x9e,
|
||||
0x0a, 0x64, 0xca, 0x32, 0x9e, 0xc6, 0x20, 0x79,
|
||||
0x03, 0xf3, 0xd0, 0x46, 0x7a, 0x0f, 0xd2, 0x21,
|
||||
0xb0, 0x2c, 0x46, 0xd8, 0xba, 0xca, 0x26, 0x4f,
|
||||
0x8f, 0x8c, 0xd4, 0xdd, 0x2d, 0x04, 0xbe, 0x30,
|
||||
0x48, 0x51, 0x1e, 0xd4, 0x16, 0xfd, 0x42, 0x85,
|
||||
0x62, 0xc9, 0x02, 0xf9, 0x89, 0x84, 0xff, 0xdc
|
||||
};
|
||||
memcpy(data->rnd64, init, 64);
|
||||
for (i = 0; i < 256; ++i) {
|
||||
int j;
|
||||
CHECK(secp256k1_ellswift_decode(data->ctx, &data->point[i], data->rnd64));
|
||||
for (j = 0; j < 64; ++j) {
|
||||
data->rnd64[j] += 1;
|
||||
}
|
||||
}
|
||||
CHECK(secp256k1_ellswift_encode(data->ctx, data->rnd64, &data->point[255], init + 16));
|
||||
}
|
||||
|
||||
static void bench_ellswift_encode(void *arg, int iters) {
|
||||
int i;
|
||||
bench_ellswift_data *data = (bench_ellswift_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
CHECK(secp256k1_ellswift_encode(data->ctx, data->rnd64, &data->point[i & 255], data->rnd64 + 16));
|
||||
}
|
||||
}
|
||||
|
||||
static void bench_ellswift_create(void *arg, int iters) {
|
||||
int i;
|
||||
bench_ellswift_data *data = (bench_ellswift_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
unsigned char buf[64];
|
||||
CHECK(secp256k1_ellswift_create(data->ctx, buf, data->rnd64, data->rnd64 + 32));
|
||||
memcpy(data->rnd64, buf, 64);
|
||||
}
|
||||
}
|
||||
|
||||
static void bench_ellswift_decode(void *arg, int iters) {
|
||||
int i;
|
||||
secp256k1_pubkey out;
|
||||
size_t len;
|
||||
bench_ellswift_data *data = (bench_ellswift_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
CHECK(secp256k1_ellswift_decode(data->ctx, &out, data->rnd64) == 1);
|
||||
len = 33;
|
||||
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, data->rnd64 + (i % 32), &len, &out, SECP256K1_EC_COMPRESSED));
|
||||
}
|
||||
}
|
||||
|
||||
static void bench_ellswift_xdh(void *arg, int iters) {
|
||||
int i;
|
||||
bench_ellswift_data *data = (bench_ellswift_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
int party = i & 1;
|
||||
CHECK(secp256k1_ellswift_xdh(data->ctx,
|
||||
data->rnd64 + (i % 33),
|
||||
data->rnd64,
|
||||
data->rnd64,
|
||||
data->rnd64 + ((i + 16) % 33),
|
||||
party,
|
||||
secp256k1_ellswift_xdh_hash_function_bip324,
|
||||
NULL) == 1);
|
||||
}
|
||||
}
|
||||
|
||||
void run_ellswift_bench(int iters, int argc, char **argv) {
|
||||
bench_ellswift_data data;
|
||||
int d = argc == 1;
|
||||
|
||||
/* create a context with signing capabilities */
|
||||
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
||||
|
||||
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "encode") || have_flag(argc, argv, "ellswift_encode")) run_benchmark("ellswift_encode", bench_ellswift_encode, bench_ellswift_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "decode") || have_flag(argc, argv, "ellswift_decode")) run_benchmark("ellswift_decode", bench_ellswift_decode, bench_ellswift_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ellswift_keygen")) run_benchmark("ellswift_keygen", bench_ellswift_create, bench_ellswift_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "ecdh") || have_flag(argc, argv, "ellswift_ecdh")) run_benchmark("ellswift_ecdh", bench_ellswift_xdh, bench_ellswift_setup, NULL, &data, 10, iters);
|
||||
|
||||
secp256k1_context_destroy(data.ctx);
|
||||
}
|
||||
|
||||
#endif
|
589
src/modules/ellswift/main_impl.h
Normal file
589
src/modules/ellswift/main_impl.h
Normal file
@ -0,0 +1,589 @@
|
||||
/***********************************************************************
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
***********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODULE_ELLSWIFT_MAIN_H
|
||||
#define SECP256K1_MODULE_ELLSWIFT_MAIN_H
|
||||
|
||||
#include "../../../include/secp256k1.h"
|
||||
#include "../../../include/secp256k1_ellswift.h"
|
||||
#include "../../eckey.h"
|
||||
#include "../../hash.h"
|
||||
|
||||
/** c1 = (sqrt(-3)-1)/2 */
|
||||
static const secp256k1_fe secp256k1_ellswift_c1 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40);
|
||||
/** c2 = (-sqrt(-3)-1)/2 = -(c1+1) */
|
||||
static const secp256k1_fe secp256k1_ellswift_c2 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ee);
|
||||
/** c3 = (-sqrt(-3)+1)/2 = -c1 = c2+1 */
|
||||
static const secp256k1_fe secp256k1_ellswift_c3 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ef);
|
||||
/** c4 = (sqrt(-3)+1)/2 = -c2 = c1+1 */
|
||||
static const secp256k1_fe secp256k1_ellswift_c4 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa41);
|
||||
|
||||
/** Decode ElligatorSwift encoding (u, t) to a fraction xn/xd representing a curve X coordinate. */
|
||||
static void secp256k1_ellswift_xswiftec_frac_var(secp256k1_fe *xn, secp256k1_fe *xd, const secp256k1_fe *u, const secp256k1_fe *t) {
|
||||
/* The implemented algorithm is the following (all operations in GF(p)):
|
||||
*
|
||||
* - Let c0 = sqrt(-3) = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852.
|
||||
* - If u = 0, set u = 1.
|
||||
* - If t = 0, set t = 1.
|
||||
* - If u^3+7+t^2 = 0, set t = 2*t.
|
||||
* - Let X = (u^3+7-t^2)/(2*t).
|
||||
* - Let Y = (X+t)/(c0*u).
|
||||
* - If x3 = u+4*Y^2 is a valid x coordinate, return it.
|
||||
* - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
|
||||
* - Return x1 = (X/Y-u)/2 (which is now guaranteed to be a valid x coordinate).
|
||||
*
|
||||
* Introducing s=t^2, g=u^3+7, and simplifying x1=-(x2+u) we get:
|
||||
*
|
||||
* - Let c0 = ...
|
||||
* - If u = 0, set u = 1.
|
||||
* - If t = 0, set t = 1.
|
||||
* - Let s = t^2
|
||||
* - Let g = u^3+7
|
||||
* - If g+s = 0, set t = 2*t, s = 4*s
|
||||
* - Let X = (g-s)/(2*t).
|
||||
* - Let Y = (X+t)/(c0*u) = (g+s)/(2*c0*t*u).
|
||||
* - If x3 = u+4*Y^2 is a valid x coordinate, return it.
|
||||
* - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
|
||||
* - Return x1 = -(x2+u).
|
||||
*
|
||||
* Now substitute Y^2 = -(g+s)^2/(12*s*u^2) and X/Y = c0*u*(g-s)/(g+s). This
|
||||
* means X and Y do not need to be evaluated explicitly anymore.
|
||||
*
|
||||
* - ...
|
||||
* - If g+s = 0, set s = 4*s.
|
||||
* - If x3 = u-(g+s)^2/(3*s*u^2) is a valid x coordinate, return it.
|
||||
* - If x2 = (-c0*u*(g-s)/(g+s)-u)/2 is a valid x coordinate, return it.
|
||||
* - Return x1 = -(x2+u).
|
||||
*
|
||||
* Simplifying x2 using 2 additional constants:
|
||||
*
|
||||
* - Let c1 = (c0-1)/2 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
|
||||
* - Let c2 = (-c0-1)/2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
|
||||
* - ...
|
||||
* - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
|
||||
* - ...
|
||||
*
|
||||
* Writing x3 as a fraction:
|
||||
*
|
||||
* - ...
|
||||
* - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) ...
|
||||
* - ...
|
||||
|
||||
* Overall, we get:
|
||||
*
|
||||
* - Let c1 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
|
||||
* - Let c2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
|
||||
* - If u = 0, set u = 1.
|
||||
* - If t = 0, set s = 1, else set s = t^2.
|
||||
* - Let g = u^3+7.
|
||||
* - If g+s = 0, set s = 4*s.
|
||||
* - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) is a valid x coordinate, return it.
|
||||
* - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
|
||||
* - Return x1 = -(x2+u).
|
||||
*/
|
||||
secp256k1_fe u1, s, g, p, d, n, l;
|
||||
u1 = *u;
|
||||
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&u1), 0)) u1 = secp256k1_fe_one;
|
||||
secp256k1_fe_sqr(&s, t);
|
||||
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(t), 0)) s = secp256k1_fe_one;
|
||||
secp256k1_fe_sqr(&l, &u1); /* l = u^2 */
|
||||
secp256k1_fe_mul(&g, &l, &u1); /* g = u^3 */
|
||||
secp256k1_fe_add_int(&g, SECP256K1_B); /* g = u^3 + 7 */
|
||||
p = g; /* p = g */
|
||||
secp256k1_fe_add(&p, &s); /* p = g+s */
|
||||
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&p), 0)) {
|
||||
secp256k1_fe_mul_int(&s, 4);
|
||||
/* Recompute p = g+s */
|
||||
p = g; /* p = g */
|
||||
secp256k1_fe_add(&p, &s); /* p = g+s */
|
||||
}
|
||||
secp256k1_fe_mul(&d, &s, &l); /* d = s*u^2 */
|
||||
secp256k1_fe_mul_int(&d, 3); /* d = 3*s*u^2 */
|
||||
secp256k1_fe_sqr(&l, &p); /* l = (g+s)^2 */
|
||||
secp256k1_fe_negate(&l, &l, 1); /* l = -(g+s)^2 */
|
||||
secp256k1_fe_mul(&n, &d, &u1); /* n = 3*s*u^3 */
|
||||
secp256k1_fe_add(&n, &l); /* n = 3*s*u^3-(g+s)^2 */
|
||||
if (secp256k1_ge_x_frac_on_curve_var(&n, &d)) {
|
||||
/* Return x3 = n/d = (3*s*u^3-(g+s)^2)/(3*s*u^2) */
|
||||
*xn = n;
|
||||
*xd = d;
|
||||
return;
|
||||
}
|
||||
*xd = p;
|
||||
secp256k1_fe_mul(&l, &secp256k1_ellswift_c1, &s); /* l = c1*s */
|
||||
secp256k1_fe_mul(&n, &secp256k1_ellswift_c2, &g); /* n = c2*g */
|
||||
secp256k1_fe_add(&n, &l); /* n = c1*s+c2*g */
|
||||
secp256k1_fe_mul(&n, &n, &u1); /* n = u*(c1*s+c2*g) */
|
||||
/* Possible optimization: in the invocation below, p^2 = (g+s)^2 is computed,
|
||||
* which we already have computed above. This could be deduplicated. */
|
||||
if (secp256k1_ge_x_frac_on_curve_var(&n, &p)) {
|
||||
/* Return x2 = n/p = u*(c1*s+c2*g)/(g+s) */
|
||||
*xn = n;
|
||||
return;
|
||||
}
|
||||
secp256k1_fe_mul(&l, &p, &u1); /* l = u*(g+s) */
|
||||
secp256k1_fe_add(&n, &l); /* n = u*(c1*s+c2*g)+u*(g+s) */
|
||||
secp256k1_fe_negate(xn, &n, 2); /* n = -u*(c1*s+c2*g)-u*(g+s) */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_ge_x_frac_on_curve_var(xn, &p));
|
||||
#endif
|
||||
/* Return x3 = n/p = -(u*(c1*s+c2*g)/(g+s)+u) */
|
||||
}
|
||||
|
||||
/** Decode ElligatorSwift encoding (u, t) to X coordinate. */
|
||||
static void secp256k1_ellswift_xswiftec_var(secp256k1_fe *x, const secp256k1_fe *u, const secp256k1_fe *t) {
|
||||
secp256k1_fe xn, xd;
|
||||
secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, u, t);
|
||||
secp256k1_fe_inv_var(&xd, &xd);
|
||||
secp256k1_fe_mul(x, &xn, &xd);
|
||||
}
|
||||
|
||||
/** Decode ElligatorSwift encoding (u, t) to point P. */
|
||||
static void secp256k1_ellswift_swiftec_var(secp256k1_ge *p, const secp256k1_fe *u, const secp256k1_fe *t) {
|
||||
secp256k1_fe x;
|
||||
secp256k1_ellswift_xswiftec_var(&x, u, t);
|
||||
secp256k1_ge_set_xo_var(p, &x, secp256k1_fe_is_odd(t));
|
||||
}
|
||||
|
||||
/* Try to complete an ElligatorSwift encoding (u, t) for X coordinate x, given u and x.
|
||||
*
|
||||
* There may be up to 8 distinct t values such that (u, t) decodes back to x, but also
|
||||
* fewer, or none at all. Each such partial inverse can be accessed individually using a
|
||||
* distinct input argument c (in range 0-7), and some or all of these may return failure.
|
||||
* The following guarantees exist:
|
||||
* - Given (x, u), no two distinct c values give the same successful result t.
|
||||
* - Every successful result maps back to x through secp256k1_ellswift_xswiftec_var.
|
||||
* - Given (x, u), all t values that map back to x can be reached by combining the
|
||||
* successful results from this function over all c values, with the exception of:
|
||||
* - this function cannot be called with u=0
|
||||
* - no result with t=0 will be returned
|
||||
* - no result for which u^3 + t^2 + 7 = 0 will be returned.
|
||||
*
|
||||
* The rather unusual encoding of bits in c (a large "if" based on the middle bit, and then
|
||||
* using the low and high bits to pick signs of square roots) is to match the paper's
|
||||
* encoding more closely: c=0 through c=3 match branches 1..4 in the paper, while c=4 through
|
||||
* c=7 are copies of those with an additional negation of sqrt(w).
|
||||
*/
|
||||
static int secp256k1_ellswift_xswiftec_inv_var(secp256k1_fe *t, const secp256k1_fe *x_in, const secp256k1_fe *u_in, int c) {
|
||||
/* The implemented algorithm is this (all arithmetic, except involving c, is mod p):
|
||||
*
|
||||
* - If (c & 2) = 0:
|
||||
* - If (-x-u) is a valid X coordinate, fail.
|
||||
* - Let s=-(u^3+7)/(u^2+u*x+x^2).
|
||||
* - If s is not square, fail.
|
||||
* - Let v=x.
|
||||
* - If (c & 2) = 2:
|
||||
* - Let s=x-u.
|
||||
* - If s is not square, fail.
|
||||
* - Let r=sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist.
|
||||
* - If (c & 1) = 1 and r = 0, fail.
|
||||
* - If s=0, fail.
|
||||
* - Let v=(r/s-u)/2.
|
||||
* - Let w=sqrt(s).
|
||||
* - If (c & 5) = 0: return -w*(c3*u + v).
|
||||
* - If (c & 5) = 1: return w*(c4*u + v).
|
||||
* - If (c & 5) = 4: return w*(c3*u + v).
|
||||
* - If (c & 5) = 5: return -w*(c4*u + v).
|
||||
*/
|
||||
secp256k1_fe x = *x_in, u = *u_in, g, v, s, m, r, q;
|
||||
int ret;
|
||||
|
||||
secp256k1_fe_normalize_weak(&x);
|
||||
secp256k1_fe_normalize_weak(&u);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(c >= 0 && c < 8);
|
||||
VERIFY_CHECK(secp256k1_ge_x_on_curve_var(&x));
|
||||
#endif
|
||||
|
||||
if (!(c & 2)) {
|
||||
/* c is in {0, 1, 4, 5}. In this case we look for an inverse under the x1 (if c=0 or
|
||||
* c=4) formula, or x2 (if c=1 or c=5) formula. */
|
||||
|
||||
/* If -u-x is a valid X coordinate, fail. This would yield an encoding that roundtrips
|
||||
* back under the x3 formula instead (which has priority over x1 and x2, so the decoding
|
||||
* would not match x). */
|
||||
m = x; /* m = x */
|
||||
secp256k1_fe_add(&m, &u); /* m = u+x */
|
||||
secp256k1_fe_negate(&m, &m, 2); /* m = -u-x */
|
||||
/* Test if (-u-x) is a valid X coordinate. If so, fail. */
|
||||
if (secp256k1_ge_x_on_curve_var(&m)) return 0;
|
||||
|
||||
/* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [first part] */
|
||||
secp256k1_fe_sqr(&s, &m); /* s = (u+x)^2 */
|
||||
secp256k1_fe_negate(&s, &s, 1); /* s = -(u+x)^2 */
|
||||
secp256k1_fe_mul(&m, &u, &x); /* m = u*x */
|
||||
secp256k1_fe_add(&s, &m); /* s = -(u^2 + u*x + x^2) */
|
||||
|
||||
/* Note that at this point, s = 0 is impossible. If it were the case:
|
||||
* s = -(u^2 + u*x + x^2) = 0
|
||||
* => u^2 + u*x + x^2 = 0
|
||||
* => (u + 2*x) * (u^2 + u*x + x^2) = 0
|
||||
* => 2*x^3 + 3*x^2*u + 3*x*u^2 + u^3 = 0
|
||||
* => (x + u)^3 + x^3 = 0
|
||||
* => x^3 = -(x + u)^3
|
||||
* => x^3 + B = (-u - x)^3 + B
|
||||
*
|
||||
* However, we know x^3 + B is square (because x is on the curve) and
|
||||
* that (-u-x)^3 + B is not square (the secp256k1_ge_x_on_curve_var(&m)
|
||||
* test above would have failed). This is a contradiction, and thus the
|
||||
* assumption s=0 is false. */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&s));
|
||||
#endif
|
||||
|
||||
/* If s is not square, fail. We have not fully computed s yet, but s is square iff
|
||||
* -(u^3+7)*(u^2+u*x+x^2) is square (because a/b is square iff a*b is square and b is
|
||||
* nonzero). */
|
||||
secp256k1_fe_sqr(&g, &u); /* g = u^2 */
|
||||
secp256k1_fe_mul(&g, &g, &u); /* g = u^3 */
|
||||
secp256k1_fe_add_int(&g, SECP256K1_B); /* g = u^3+7 */
|
||||
secp256k1_fe_mul(&m, &s, &g); /* m = -(u^3 + 7)*(u^2 + u*x + x^2) */
|
||||
if (!secp256k1_fe_is_square_var(&m)) return 0;
|
||||
|
||||
/* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [second part] */
|
||||
secp256k1_fe_inv_var(&s, &s); /* s = -1/(u^2 + u*x + x^2) [no div by 0] */
|
||||
secp256k1_fe_mul(&s, &s, &g); /* s = -(u^3 + 7)/(u^2 + u*x + x^2) */
|
||||
|
||||
/* Let v = x. */
|
||||
v = x;
|
||||
} else {
|
||||
/* c is in {2, 3, 6, 7}. In this case we look for an inverse under the x3 formula. */
|
||||
|
||||
/* Let s = x-u. */
|
||||
secp256k1_fe_negate(&m, &u, 1); /* m = -u */
|
||||
s = m; /* s = -u */
|
||||
secp256k1_fe_add(&s, &x); /* s = x-u */
|
||||
|
||||
/* If s is not square, fail. */
|
||||
if (!secp256k1_fe_is_square_var(&s)) return 0;
|
||||
|
||||
/* Let r = sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist. */
|
||||
secp256k1_fe_sqr(&g, &u); /* g = u^2 */
|
||||
secp256k1_fe_mul(&q, &s, &g); /* q = s*u^2 */
|
||||
secp256k1_fe_mul_int(&q, 3); /* q = 3*s*u^2 */
|
||||
secp256k1_fe_mul(&g, &g, &u); /* g = u^3 */
|
||||
secp256k1_fe_mul_int(&g, 4); /* g = 4*u^3 */
|
||||
secp256k1_fe_add_int(&g, 4 * SECP256K1_B); /* g = 4*(u^3+7) */
|
||||
secp256k1_fe_add(&q, &g); /* q = 4*(u^3+7)+3*s*u^2 */
|
||||
secp256k1_fe_mul(&q, &q, &s); /* q = s*(4*(u^3+7)+3*u^2*s) */
|
||||
secp256k1_fe_negate(&q, &q, 1); /* q = -s*(4*(u^3+7)+3*u^2*s) */
|
||||
if (!secp256k1_fe_is_square_var(&q)) return 0;
|
||||
ret = secp256k1_fe_sqrt(&r, &q); /* r = sqrt(-s*(4*(u^3+7)+3*u^2*s)) */
|
||||
VERIFY_CHECK(ret);
|
||||
|
||||
/* If (c & 1) = 1 and r = 0, fail. */
|
||||
if (EXPECT((c & 1) && secp256k1_fe_normalizes_to_zero_var(&r), 0)) return 0;
|
||||
|
||||
/* If s = 0, fail. */
|
||||
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&s), 0)) return 0;
|
||||
|
||||
/* Let v = (r/s-u)/2. */
|
||||
secp256k1_fe_inv_var(&v, &s); /* v = 1/s [no div by 0] */
|
||||
secp256k1_fe_mul(&v, &v, &r); /* v = r/s */
|
||||
secp256k1_fe_add(&v, &m); /* v = r/s-u */
|
||||
secp256k1_fe_half(&v); /* v = (r/s-u)/2 */
|
||||
}
|
||||
|
||||
/* Let w = sqrt(s). */
|
||||
ret = secp256k1_fe_sqrt(&m, &s); /* m = sqrt(s) = w */
|
||||
VERIFY_CHECK(ret);
|
||||
|
||||
/* Return logic. */
|
||||
if ((c & 5) == 0 || (c & 5) == 5) {
|
||||
secp256k1_fe_negate(&m, &m, 1); /* m = -w */
|
||||
}
|
||||
/* Now m = {-w if c&5=0 or c&5=5; w otherwise}. */
|
||||
secp256k1_fe_mul(&u, &u, c&1 ? &secp256k1_ellswift_c4 : &secp256k1_ellswift_c3);
|
||||
/* u = {c4 if c&1=1; c3 otherwise}*u */
|
||||
secp256k1_fe_add(&u, &v); /* u = {c4 if c&1=1; c3 otherwise}*u + v */
|
||||
secp256k1_fe_mul(t, &m, &u);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** Use SHA256 as a PRNG, returning SHA256(hasher || cnt).
|
||||
*
|
||||
* hasher is a SHA256 object to which an incrementing 4-byte counter is written to generate randomness.
|
||||
* Writing 13 bytes (4 bytes for counter, plus 9 bytes for the SHA256 padding) cannot cross a
|
||||
* 64-byte block size boundary (to make sure it only triggers a single SHA256 compression). */
|
||||
static void secp256k1_ellswift_prng(unsigned char* out32, const secp256k1_sha256 *hasher, uint32_t cnt) {
|
||||
secp256k1_sha256 hash = *hasher;
|
||||
unsigned char buf4[4];
|
||||
#ifdef VERIFY
|
||||
size_t blocks = hash.bytes >> 6;
|
||||
#endif
|
||||
buf4[0] = cnt;
|
||||
buf4[1] = cnt >> 8;
|
||||
buf4[2] = cnt >> 16;
|
||||
buf4[3] = cnt >> 24;
|
||||
secp256k1_sha256_write(&hash, buf4, 4);
|
||||
secp256k1_sha256_finalize(&hash, out32);
|
||||
#ifdef VERIFY
|
||||
/* Writing and finalizing together should trigger exactly one SHA256 compression. */
|
||||
VERIFY_CHECK(((hash.bytes) >> 6) == (blocks + 1));
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Find an ElligatorSwift encoding (u, t) for X coordinate x, and random Y coordinate.
|
||||
*
|
||||
* u32 is the 32-byte big endian encoding of u; t is the output field element t that still
|
||||
* needs encoding.
|
||||
*
|
||||
* hasher is a hasher in the secp256k1_ellswift_prng sense, with the same restrictions. */
|
||||
static void secp256k1_ellswift_xelligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_fe *x, const secp256k1_sha256 *hasher) {
|
||||
/* Pool of 3-bit branch values. */
|
||||
unsigned char branch_hash[32];
|
||||
/* Number of 3-bit values in branch_hash left. */
|
||||
int branches_left = 0;
|
||||
/* Field elements u and branch values are extracted from RNG based on hasher for consecutive
|
||||
* values of cnt. cnt==0 is first used to populate a pool of 64 4-bit branch values. The 64
|
||||
* cnt values that follow are used to generate field elements u. cnt==65 (and multiples
|
||||
* thereof) are used to repopulate the pool and start over, if that were ever necessary.
|
||||
* On average, 4 iterations are needed. */
|
||||
uint32_t cnt = 0;
|
||||
while (1) {
|
||||
int branch;
|
||||
secp256k1_fe u;
|
||||
/* If the pool of branch values is empty, populate it. */
|
||||
if (branches_left == 0) {
|
||||
secp256k1_ellswift_prng(branch_hash, hasher, cnt++);
|
||||
branches_left = 64;
|
||||
}
|
||||
/* Take a 3-bit branch value from the branch pool (top bit is discarded). */
|
||||
--branches_left;
|
||||
branch = (branch_hash[branches_left >> 1] >> ((branches_left & 1) << 2)) & 7;
|
||||
/* Compute a new u value by hashing. */
|
||||
secp256k1_ellswift_prng(u32, hasher, cnt++);
|
||||
/* overflow is not a problem (we prefer uniform u32 over uniform u). */
|
||||
secp256k1_fe_set_b32_mod(&u, u32);
|
||||
/* Since u is the output of a hash, it should practically never be 0. We could apply the
|
||||
* u=0 to u=1 correction here too to deal with that case still, but it's such a low
|
||||
* probability event that we do not bother. */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&u));
|
||||
#endif
|
||||
/* Find a remainder t, and return it if found. */
|
||||
if (EXPECT(secp256k1_ellswift_xswiftec_inv_var(t, x, &u, branch), 0)) break;
|
||||
}
|
||||
}
|
||||
|
||||
/** Find an ElligatorSwift encoding (u, t) for point P.
|
||||
*
|
||||
* This is similar secp256k1_ellswift_xelligatorswift_var, except it takes a full group element p
|
||||
* as input, and returns an encoding that matches the provided Y coordinate rather than a random
|
||||
* one.
|
||||
*/
|
||||
static void secp256k1_ellswift_elligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_ge *p, const secp256k1_sha256 *hasher) {
|
||||
secp256k1_ellswift_xelligatorswift_var(u32, t, &p->x, hasher);
|
||||
secp256k1_fe_normalize_var(t);
|
||||
if (secp256k1_fe_is_odd(t) != secp256k1_fe_is_odd(&p->y)) {
|
||||
secp256k1_fe_negate(t, t, 1);
|
||||
secp256k1_fe_normalize_var(t);
|
||||
}
|
||||
}
|
||||
|
||||
/** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_encode". */
|
||||
static void secp256k1_ellswift_sha256_init_encode(secp256k1_sha256* hash) {
|
||||
secp256k1_sha256_initialize(hash);
|
||||
hash->s[0] = 0xd1a6524bul;
|
||||
hash->s[1] = 0x028594b3ul;
|
||||
hash->s[2] = 0x96e42f4eul;
|
||||
hash->s[3] = 0x1037a177ul;
|
||||
hash->s[4] = 0x1b8fcb8bul;
|
||||
hash->s[5] = 0x56023885ul;
|
||||
hash->s[6] = 0x2560ede1ul;
|
||||
hash->s[7] = 0xd626b715ul;
|
||||
|
||||
hash->bytes = 64;
|
||||
}
|
||||
|
||||
int secp256k1_ellswift_encode(const secp256k1_context *ctx, unsigned char *ell64, const secp256k1_pubkey *pubkey, const unsigned char *rnd32) {
|
||||
secp256k1_ge p;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(ell64 != NULL);
|
||||
ARG_CHECK(pubkey != NULL);
|
||||
ARG_CHECK(rnd32 != NULL);
|
||||
|
||||
if (secp256k1_pubkey_load(ctx, &p, pubkey)) {
|
||||
secp256k1_fe t;
|
||||
unsigned char p64[64] = {0};
|
||||
size_t ser_size;
|
||||
int ser_ret;
|
||||
secp256k1_sha256 hash;
|
||||
|
||||
/* Set up hasher state; the used RNG is H(pubkey || "\x00"*31 || rnd32 || cnt++), using
|
||||
* BIP340 tagged hash with tag "secp256k1_ellswift_encode". */
|
||||
secp256k1_ellswift_sha256_init_encode(&hash);
|
||||
ser_ret = secp256k1_eckey_pubkey_serialize(&p, p64, &ser_size, 1);
|
||||
VERIFY_CHECK(ser_ret && ser_size == 33);
|
||||
secp256k1_sha256_write(&hash, p64, sizeof(p64));
|
||||
secp256k1_sha256_write(&hash, rnd32, 32);
|
||||
|
||||
/* Compute ElligatorSwift encoding and construct output. */
|
||||
secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
|
||||
secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
|
||||
return 1;
|
||||
}
|
||||
/* Only reached in case the provided pubkey is invalid. */
|
||||
memset(ell64, 0, 64);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_create". */
|
||||
static void secp256k1_ellswift_sha256_init_create(secp256k1_sha256* hash) {
|
||||
secp256k1_sha256_initialize(hash);
|
||||
hash->s[0] = 0xd29e1bf5ul;
|
||||
hash->s[1] = 0xf7025f42ul;
|
||||
hash->s[2] = 0x9b024773ul;
|
||||
hash->s[3] = 0x094cb7d5ul;
|
||||
hash->s[4] = 0xe59ed789ul;
|
||||
hash->s[5] = 0x03bc9786ul;
|
||||
hash->s[6] = 0x68335b35ul;
|
||||
hash->s[7] = 0x4e363b53ul;
|
||||
|
||||
hash->bytes = 64;
|
||||
}
|
||||
|
||||
int secp256k1_ellswift_create(const secp256k1_context *ctx, unsigned char *ell64, const unsigned char *seckey32, const unsigned char *auxrnd32) {
|
||||
secp256k1_ge p;
|
||||
secp256k1_fe t;
|
||||
secp256k1_sha256 hash;
|
||||
secp256k1_scalar seckey_scalar;
|
||||
int ret;
|
||||
static const unsigned char zero32[32] = {0};
|
||||
|
||||
/* Sanity check inputs. */
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(ell64 != NULL);
|
||||
memset(ell64, 0, 64);
|
||||
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
|
||||
ARG_CHECK(seckey32 != NULL);
|
||||
|
||||
/* Compute (affine) public key */
|
||||
ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey32);
|
||||
secp256k1_declassify(ctx, &p, sizeof(p)); /* not constant time in produced pubkey */
|
||||
secp256k1_fe_normalize_var(&p.x);
|
||||
secp256k1_fe_normalize_var(&p.y);
|
||||
|
||||
/* Set up hasher state. The used RNG is H(privkey || "\x00"*32 [|| auxrnd32] || cnt++),
|
||||
* using BIP340 tagged hash with tag "secp256k1_ellswift_create". */
|
||||
secp256k1_ellswift_sha256_init_create(&hash);
|
||||
secp256k1_sha256_write(&hash, seckey32, 32);
|
||||
secp256k1_sha256_write(&hash, zero32, sizeof(zero32));
|
||||
secp256k1_declassify(ctx, &hash, sizeof(hash)); /* private key is hashed now */
|
||||
if (auxrnd32) secp256k1_sha256_write(&hash, auxrnd32, 32);
|
||||
|
||||
/* Compute ElligatorSwift encoding and construct output. */
|
||||
secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
|
||||
secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
|
||||
|
||||
secp256k1_memczero(ell64, 64, !ret);
|
||||
secp256k1_scalar_clear(&seckey_scalar);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ellswift_decode(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *ell64) {
|
||||
secp256k1_fe u, t;
|
||||
secp256k1_ge p;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(pubkey != NULL);
|
||||
ARG_CHECK(ell64 != NULL);
|
||||
|
||||
secp256k1_fe_set_b32_mod(&u, ell64);
|
||||
secp256k1_fe_set_b32_mod(&t, ell64 + 32);
|
||||
secp256k1_fe_normalize_var(&t);
|
||||
secp256k1_ellswift_swiftec_var(&p, &u, &t);
|
||||
secp256k1_pubkey_save(pubkey, &p);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int ellswift_xdh_hash_function_prefix(unsigned char *output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
|
||||
secp256k1_sha256 sha;
|
||||
|
||||
secp256k1_sha256_initialize(&sha);
|
||||
secp256k1_sha256_write(&sha, data, 64);
|
||||
secp256k1_sha256_write(&sha, ell_a64, 64);
|
||||
secp256k1_sha256_write(&sha, ell_b64, 64);
|
||||
secp256k1_sha256_write(&sha, x32, 32);
|
||||
secp256k1_sha256_finalize(&sha, output);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** Set hash state to the BIP340 tagged hash midstate for "bip324_ellswift_xonly_ecdh". */
|
||||
static void secp256k1_ellswift_sha256_init_bip324(secp256k1_sha256* hash) {
|
||||
secp256k1_sha256_initialize(hash);
|
||||
hash->s[0] = 0x8c12d730ul;
|
||||
hash->s[1] = 0x827bd392ul;
|
||||
hash->s[2] = 0x9e4fb2eeul;
|
||||
hash->s[3] = 0x207b373eul;
|
||||
hash->s[4] = 0x2292bd7aul;
|
||||
hash->s[5] = 0xaa5441bcul;
|
||||
hash->s[6] = 0x15c3779ful;
|
||||
hash->s[7] = 0xcfb52549ul;
|
||||
|
||||
hash->bytes = 64;
|
||||
}
|
||||
|
||||
static int ellswift_xdh_hash_function_bip324(unsigned char* output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
|
||||
secp256k1_sha256 sha;
|
||||
|
||||
(void)data;
|
||||
|
||||
secp256k1_ellswift_sha256_init_bip324(&sha);
|
||||
secp256k1_sha256_write(&sha, ell_a64, 64);
|
||||
secp256k1_sha256_write(&sha, ell_b64, 64);
|
||||
secp256k1_sha256_write(&sha, x32, 32);
|
||||
secp256k1_sha256_finalize(&sha, output);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix = ellswift_xdh_hash_function_prefix;
|
||||
const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324 = ellswift_xdh_hash_function_bip324;
|
||||
|
||||
int secp256k1_ellswift_xdh(const secp256k1_context *ctx, unsigned char *output, const unsigned char *ell_a64, const unsigned char *ell_b64, const unsigned char *seckey32, int party, secp256k1_ellswift_xdh_hash_function hashfp, void *data) {
|
||||
int ret = 0;
|
||||
int overflow;
|
||||
secp256k1_scalar s;
|
||||
secp256k1_fe xn, xd, px, u, t;
|
||||
unsigned char sx[32];
|
||||
const unsigned char* theirs64;
|
||||
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(output != NULL);
|
||||
ARG_CHECK(ell_a64 != NULL);
|
||||
ARG_CHECK(ell_b64 != NULL);
|
||||
ARG_CHECK(seckey32 != NULL);
|
||||
ARG_CHECK(hashfp != NULL);
|
||||
|
||||
/* Load remote public key (as fraction). */
|
||||
theirs64 = party ? ell_a64 : ell_b64;
|
||||
secp256k1_fe_set_b32_mod(&u, theirs64);
|
||||
secp256k1_fe_set_b32_mod(&t, theirs64 + 32);
|
||||
secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, &u, &t);
|
||||
|
||||
/* Load private key (using one if invalid). */
|
||||
secp256k1_scalar_set_b32(&s, seckey32, &overflow);
|
||||
overflow = secp256k1_scalar_is_zero(&s);
|
||||
secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow);
|
||||
|
||||
/* Compute shared X coordinate. */
|
||||
secp256k1_ecmult_const_xonly(&px, &xn, &xd, &s, 1);
|
||||
secp256k1_fe_normalize(&px);
|
||||
secp256k1_fe_get_b32(sx, &px);
|
||||
|
||||
/* Invoke hasher */
|
||||
ret = hashfp(output, sx, ell_a64, ell_b64, data);
|
||||
|
||||
memset(sx, 0, 32);
|
||||
secp256k1_fe_clear(&px);
|
||||
secp256k1_scalar_clear(&s);
|
||||
|
||||
return !!ret & !overflow;
|
||||
}
|
||||
|
||||
#endif
|
434
src/modules/ellswift/tests_impl.h
Normal file
434
src/modules/ellswift/tests_impl.h
Normal file
@ -0,0 +1,434 @@
|
||||
/***********************************************************************
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
***********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODULE_ELLSWIFT_TESTS_H
|
||||
#define SECP256K1_MODULE_ELLSWIFT_TESTS_H
|
||||
|
||||
#include "../../../include/secp256k1_ellswift.h"
|
||||
|
||||
struct ellswift_xswiftec_inv_test {
|
||||
int enc_bitmap;
|
||||
secp256k1_fe u;
|
||||
secp256k1_fe x;
|
||||
secp256k1_fe encs[8];
|
||||
};
|
||||
|
||||
struct ellswift_decode_test {
|
||||
unsigned char enc[64];
|
||||
secp256k1_fe x;
|
||||
int odd_y;
|
||||
};
|
||||
|
||||
struct ellswift_xdh_test {
|
||||
unsigned char priv_ours[32];
|
||||
unsigned char ellswift_ours[64];
|
||||
unsigned char ellswift_theirs[64];
|
||||
int initiating;
|
||||
unsigned char shared_secret[32];
|
||||
};
|
||||
|
||||
/* Set of (point, encodings) test vectors, selected to maximize branch coverage, part of the BIP324
|
||||
* test vectors. Created using an independent implementation, and tested decoding against paper
|
||||
* authors' code. */
|
||||
static const struct ellswift_xswiftec_inv_test ellswift_xswiftec_inv_tests[] = {
|
||||
{0xcc, SECP256K1_FE_CONST(0x05ff6bda, 0xd900fc32, 0x61bc7fe3, 0x4e2fb0f5, 0x69f06e09, 0x1ae437d3, 0xa52e9da0, 0xcbfb9590), SECP256K1_FE_CONST(0x80cdf637, 0x74ec7022, 0xc89a5a85, 0x58e373a2, 0x79170285, 0xe0ab2741, 0x2dbce510, 0xbdfe23fc), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x45654798, 0xece071ba, 0x79286d04, 0xf7f3eb1c, 0x3f1d17dd, 0x883610f2, 0xad2efd82, 0xa287466b), SECP256K1_FE_CONST(0x0aeaa886, 0xf6b76c71, 0x58452418, 0xcbf5033a, 0xdc5747e9, 0xe9b5d3b2, 0x303db969, 0x36528557), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xba9ab867, 0x131f8e45, 0x86d792fb, 0x080c14e3, 0xc0e2e822, 0x77c9ef0d, 0x52d1027c, 0x5d78b5c4), SECP256K1_FE_CONST(0xf5155779, 0x0948938e, 0xa7badbe7, 0x340afcc5, 0x23a8b816, 0x164a2c4d, 0xcfc24695, 0xc9ad76d8)}},
|
||||
{0x33, SECP256K1_FE_CONST(0x1737a85f, 0x4c8d146c, 0xec96e3ff, 0xdca76d99, 0x03dcf3bd, 0x53061868, 0xd478c78c, 0x63c2aa9e), SECP256K1_FE_CONST(0x39e48dd1, 0x50d2f429, 0xbe088dfd, 0x5b61882e, 0x7e840748, 0x3702ae9a, 0x5ab35927, 0xb15f85ea), {SECP256K1_FE_CONST(0x1be8cc0b, 0x04be0c68, 0x1d0c6a68, 0xf733f82c, 0x6c896e0c, 0x8a262fcd, 0x392918e3, 0x03a7abf4), SECP256K1_FE_CONST(0x605b5814, 0xbf9b8cb0, 0x66667c9e, 0x5480d22d, 0xc5b6c92f, 0x14b4af3e, 0xe0a9eb83, 0xb03685e3), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xe41733f4, 0xfb41f397, 0xe2f39597, 0x08cc07d3, 0x937691f3, 0x75d9d032, 0xc6d6e71b, 0xfc58503b), SECP256K1_FE_CONST(0x9fa4a7eb, 0x4064734f, 0x99998361, 0xab7f2dd2, 0x3a4936d0, 0xeb4b50c1, 0x1f56147b, 0x4fc9764c), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0x1aaa1cce, 0xbf9c7241, 0x91033df3, 0x66b36f69, 0x1c4d902c, 0x228033ff, 0x4516d122, 0xb2564f68), SECP256K1_FE_CONST(0xc7554125, 0x9d3ba98f, 0x207eaa30, 0xc69634d1, 0x87d0b6da, 0x594e719e, 0x420f4898, 0x638fc5b0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x33, SECP256K1_FE_CONST(0x2323a1d0, 0x79b0fd72, 0xfc8bb62e, 0xc34230a8, 0x15cb0596, 0xc2bfac99, 0x8bd6b842, 0x60f5dc26), SECP256K1_FE_CONST(0x239342df, 0xb675500a, 0x34a19631, 0x0b8d87d5, 0x4f49dcac, 0x9da50c17, 0x43ceab41, 0xa7b249ff), {SECP256K1_FE_CONST(0xf63580b8, 0xaa49c484, 0x6de56e39, 0xe1b3e73f, 0x171e881e, 0xba8c66f6, 0x14e67e5c, 0x975dfc07), SECP256K1_FE_CONST(0xb6307b33, 0x2e699f1c, 0xf77841d9, 0x0af25365, 0x404deb7f, 0xed5edb30, 0x90db49e6, 0x42a156b6), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x09ca7f47, 0x55b63b7b, 0x921a91c6, 0x1e4c18c0, 0xe8e177e1, 0x45739909, 0xeb1981a2, 0x68a20028), SECP256K1_FE_CONST(0x49cf84cc, 0xd19660e3, 0x0887be26, 0xf50dac9a, 0xbfb21480, 0x12a124cf, 0x6f24b618, 0xbd5ea579), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x33, SECP256K1_FE_CONST(0x2dc90e64, 0x0cb646ae, 0x9164c0b5, 0xa9ef0169, 0xfebe34dc, 0x4437d6e4, 0x6acb0e27, 0xe219d1e8), SECP256K1_FE_CONST(0xd236f19b, 0xf349b951, 0x6e9b3f4a, 0x5610fe96, 0x0141cb23, 0xbbc8291b, 0x9534f1d7, 0x1de62a47), {SECP256K1_FE_CONST(0xe69df7d9, 0xc026c366, 0x00ebdf58, 0x80726758, 0x47c0c431, 0xc8eb7306, 0x82533e96, 0x4b6252c9), SECP256K1_FE_CONST(0x4f18bbdf, 0x7c2d6c5f, 0x818c1880, 0x2fa35cd0, 0x69eaa79f, 0xff74e4fc, 0x837c80d9, 0x3fece2f8), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x19620826, 0x3fd93c99, 0xff1420a7, 0x7f8d98a7, 0xb83f3bce, 0x37148cf9, 0x7dacc168, 0xb49da966), SECP256K1_FE_CONST(0xb0e74420, 0x83d293a0, 0x7e73e77f, 0xd05ca32f, 0x96155860, 0x008b1b03, 0x7c837f25, 0xc0131937), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0x3edd7b39, 0x80e2f2f3, 0x4d1409a2, 0x07069f88, 0x1fda5f96, 0xf08027ac, 0x4465b63d, 0xc278d672), SECP256K1_FE_CONST(0x053a98de, 0x4a27b196, 0x1155822b, 0x3a3121f0, 0x3b2a1445, 0x8bd80eb4, 0xa560c4c7, 0xa85c149c), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb3dae4b7, 0xdcf858e4, 0xc6968057, 0xcef2b156, 0x46543152, 0x6538199c, 0xf52dc1b2, 0xd62fda30), SECP256K1_FE_CONST(0x4aa77dd5, 0x5d6b6d3c, 0xfa10cc9d, 0x0fe42f79, 0x232e4575, 0x661049ae, 0x36779c1d, 0x0c666d88), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x4c251b48, 0x2307a71b, 0x39697fa8, 0x310d4ea9, 0xb9abcead, 0x9ac7e663, 0x0ad23e4c, 0x29d021ff), SECP256K1_FE_CONST(0xb558822a, 0xa29492c3, 0x05ef3362, 0xf01bd086, 0xdcd1ba8a, 0x99efb651, 0xc98863e1, 0xf3998ea7)}},
|
||||
{0x00, SECP256K1_FE_CONST(0x4295737e, 0xfcb1da6f, 0xb1d96b9c, 0xa7dcd1e3, 0x20024b37, 0xa736c494, 0x8b625981, 0x73069f70), SECP256K1_FE_CONST(0xfa7ffe4f, 0x25f88362, 0x831c087a, 0xfe2e8a9b, 0x0713e2ca, 0xc1ddca6a, 0x383205a2, 0x66f14307), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xff, SECP256K1_FE_CONST(0x587c1a0c, 0xee91939e, 0x7f784d23, 0xb963004a, 0x3bf44f5d, 0x4e32a008, 0x1995ba20, 0xb0fca59e), SECP256K1_FE_CONST(0x2ea98853, 0x0715e8d1, 0x0363907f, 0xf2512452, 0x4d471ba2, 0x454d5ce3, 0xbe3f0419, 0x4dfd3a3c), {SECP256K1_FE_CONST(0xcfd5a094, 0xaa0b9b88, 0x91b76c6a, 0xb9438f66, 0xaa1c095a, 0x65f9f701, 0x35e81712, 0x92245e74), SECP256K1_FE_CONST(0xa89057d7, 0xc6563f0d, 0x6efa19ae, 0x84412b8a, 0x7b47e791, 0xa191ecdf, 0xdf2af84f, 0xd97bc339), SECP256K1_FE_CONST(0x475d0ae9, 0xef46920d, 0xf07b3411, 0x7be5a081, 0x7de1023e, 0x3cc32689, 0xe9be145b, 0x406b0aef), SECP256K1_FE_CONST(0xa0759178, 0xad802324, 0x54f827ef, 0x05ea3e72, 0xad8d7541, 0x8e6d4cc1, 0xcd4f5306, 0xc5e7c453), SECP256K1_FE_CONST(0x302a5f6b, 0x55f46477, 0x6e489395, 0x46bc7099, 0x55e3f6a5, 0x9a0608fe, 0xca17e8ec, 0x6ddb9dbb), SECP256K1_FE_CONST(0x576fa828, 0x39a9c0f2, 0x9105e651, 0x7bbed475, 0x84b8186e, 0x5e6e1320, 0x20d507af, 0x268438f6), SECP256K1_FE_CONST(0xb8a2f516, 0x10b96df2, 0x0f84cbee, 0x841a5f7e, 0x821efdc1, 0xc33cd976, 0x1641eba3, 0xbf94f140), SECP256K1_FE_CONST(0x5f8a6e87, 0x527fdcdb, 0xab07d810, 0xfa15c18d, 0x52728abe, 0x7192b33e, 0x32b0acf8, 0x3a1837dc)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0x5fa88b33, 0x65a635cb, 0xbcee003c, 0xce9ef51d, 0xd1a310de, 0x277e441a, 0xbccdb7be, 0x1e4ba249), SECP256K1_FE_CONST(0x79461ff6, 0x2bfcbcac, 0x4249ba84, 0xdd040f2c, 0xec3c63f7, 0x25204dc7, 0xf464c16b, 0xf0ff3170), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x6bb700e1, 0xf4d7e236, 0xe8d193ff, 0x4a76c1b3, 0xbcd4e2b2, 0x5acac3d5, 0x1c8dac65, 0x3fe909a0), SECP256K1_FE_CONST(0xf4c73410, 0x633da7f6, 0x3a4f1d55, 0xaec6dd32, 0xc4c6d89e, 0xe74075ed, 0xb5515ed9, 0x0da9e683), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x9448ff1e, 0x0b281dc9, 0x172e6c00, 0xb5893e4c, 0x432b1d4d, 0xa5353c2a, 0xe3725399, 0xc016f28f), SECP256K1_FE_CONST(0x0b38cbef, 0x9cc25809, 0xc5b0e2aa, 0x513922cd, 0x3b392761, 0x18bf8a12, 0x4aaea125, 0xf25615ac)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0x6fb31c75, 0x31f03130, 0xb42b155b, 0x952779ef, 0xbb46087d, 0xd9807d24, 0x1a48eac6, 0x3c3d96d6), SECP256K1_FE_CONST(0x56f81be7, 0x53e8d4ae, 0x4940ea6f, 0x46f6ec9f, 0xda66a6f9, 0x6cc95f50, 0x6cb2b574, 0x90e94260), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x59059774, 0x795bdb7a, 0x837fbe11, 0x40a5fa59, 0x984f48af, 0x8df95d57, 0xdd6d1c05, 0x437dcec1), SECP256K1_FE_CONST(0x22a644db, 0x79376ad4, 0xe7b3a009, 0xe58b3f13, 0x137c54fd, 0xf911122c, 0xc93667c4, 0x7077d784), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xa6fa688b, 0x86a42485, 0x7c8041ee, 0xbf5a05a6, 0x67b0b750, 0x7206a2a8, 0x2292e3f9, 0xbc822d6e), SECP256K1_FE_CONST(0xdd59bb24, 0x86c8952b, 0x184c5ff6, 0x1a74c0ec, 0xec83ab02, 0x06eeedd3, 0x36c9983a, 0x8f8824ab)}},
|
||||
{0x00, SECP256K1_FE_CONST(0x704cd226, 0xe71cb682, 0x6a590e80, 0xdac90f2d, 0x2f5830f0, 0xfdf135a3, 0xeae3965b, 0xff25ff12), SECP256K1_FE_CONST(0x138e0afa, 0x68936ee6, 0x70bd2b8d, 0xb53aedbb, 0x7bea2a85, 0x97388b24, 0xd0518edd, 0x22ad66ec), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x33, SECP256K1_FE_CONST(0x725e9147, 0x92cb8c89, 0x49e7e116, 0x8b7cdd8a, 0x8094c91c, 0x6ec2202c, 0xcd53a6a1, 0x8771edeb), SECP256K1_FE_CONST(0x8da16eb8, 0x6d347376, 0xb6181ee9, 0x74832275, 0x7f6b36e3, 0x913ddfd3, 0x32ac595d, 0x788e0e44), {SECP256K1_FE_CONST(0xdd357786, 0xb9f68733, 0x30391aa5, 0x62580965, 0x4e43116e, 0x82a5a5d8, 0x2ffd1d66, 0x24101fc4), SECP256K1_FE_CONST(0xa0b7efca, 0x01814594, 0xc59c9aae, 0x8e497001, 0x86ca5d95, 0xe88bcc80, 0x399044d9, 0xc2d8613d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x22ca8879, 0x460978cc, 0xcfc6e55a, 0x9da7f69a, 0xb1bcee91, 0x7d5a5a27, 0xd002e298, 0xdbefdc6b), SECP256K1_FE_CONST(0x5f481035, 0xfe7eba6b, 0x3a636551, 0x71b68ffe, 0x7935a26a, 0x1774337f, 0xc66fbb25, 0x3d279af2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0x78fe6b71, 0x7f2ea4a3, 0x2708d79c, 0x151bf503, 0xa5312a18, 0xc0963437, 0xe865cc6e, 0xd3f6ae97), SECP256K1_FE_CONST(0x8701948e, 0x80d15b5c, 0xd8f72863, 0xeae40afc, 0x5aced5e7, 0x3f69cbc8, 0x179a3390, 0x2c094d98), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x44, SECP256K1_FE_CONST(0x7c37bb9c, 0x5061dc07, 0x413f11ac, 0xd5a34006, 0xe64c5c45, 0x7fdb9a43, 0x8f217255, 0xa961f50d), SECP256K1_FE_CONST(0x5c1a76b4, 0x4568eb59, 0xd6789a74, 0x42d9ed7c, 0xdc6226b7, 0x752b4ff8, 0xeaf8e1a9, 0x5736e507), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb94d30cd, 0x7dbff60b, 0x64620c17, 0xca0fafaa, 0x40b3d1f5, 0x2d077a60, 0xa2e0cafd, 0x145086c2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x46b2cf32, 0x824009f4, 0x9b9df3e8, 0x35f05055, 0xbf4c2e0a, 0xd2f8859f, 0x5d1f3501, 0xebaf756d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0x82388888, 0x967f82a6, 0xb444438a, 0x7d44838e, 0x13c0d478, 0xb9ca060d, 0xa95a41fb, 0x94303de6), SECP256K1_FE_CONST(0x29e96541, 0x70628fec, 0x8b497289, 0x8b113cf9, 0x8807f460, 0x9274f4f3, 0x140d0674, 0x157c90a0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x33, SECP256K1_FE_CONST(0x91298f57, 0x70af7a27, 0xf0a47188, 0xd24c3b7b, 0xf98ab299, 0x0d84b0b8, 0x98507e3c, 0x561d6472), SECP256K1_FE_CONST(0x144f4ccb, 0xd9a74698, 0xa88cbf6f, 0xd00ad886, 0xd339d29e, 0xa19448f2, 0xc572cac0, 0xa07d5562), {SECP256K1_FE_CONST(0xe6a0ffa3, 0x807f09da, 0xdbe71e0f, 0x4be4725f, 0x2832e76c, 0xad8dc1d9, 0x43ce8393, 0x75eff248), SECP256K1_FE_CONST(0x837b8e68, 0xd4917544, 0x764ad090, 0x3cb11f86, 0x15d2823c, 0xefbb06d8, 0x9049dbab, 0xc69befda), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x195f005c, 0x7f80f625, 0x2418e1f0, 0xb41b8da0, 0xd7cd1893, 0x52723e26, 0xbc317c6b, 0x8a1009e7), SECP256K1_FE_CONST(0x7c847197, 0x2b6e8abb, 0x89b52f6f, 0xc34ee079, 0xea2d7dc3, 0x1044f927, 0x6fb62453, 0x39640c55), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xb682f3d0, 0x3bbb5dee, 0x4f54b5eb, 0xfba931b4, 0xf52f6a19, 0x1e5c2f48, 0x3c73c66e, 0x9ace97e1), SECP256K1_FE_CONST(0x904717bf, 0x0bc0cb78, 0x73fcdc38, 0xaa97f19e, 0x3a626309, 0x72acff92, 0xb24cc6dd, 0xa197cb96), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x77, SECP256K1_FE_CONST(0xc17ec69e, 0x665f0fb0, 0xdbab48d9, 0xc2f94d12, 0xec8a9d7e, 0xacb58084, 0x83309180, 0x1eb0b80b), SECP256K1_FE_CONST(0x147756e6, 0x6d96e31c, 0x426d3cc8, 0x5ed0c4cf, 0xbef6341d, 0xd8b28558, 0x5aa574ea, 0x0204b55e), {SECP256K1_FE_CONST(0x6f4aea43, 0x1a0043bd, 0xd03134d6, 0xd9159119, 0xce034b88, 0xc32e50e8, 0xe36c4ee4, 0x5eac7ae9), SECP256K1_FE_CONST(0xfd5be16d, 0x4ffa2690, 0x126c67c3, 0xef7cb9d2, 0x9b74d397, 0xc78b06b3, 0x605fda34, 0xdc9696a6), SECP256K1_FE_CONST(0x5e9c6079, 0x2a2f000e, 0x45c6250f, 0x296f875e, 0x174efc0e, 0x9703e628, 0x706103a9, 0xdd2d82c7), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x90b515bc, 0xe5ffbc42, 0x2fcecb29, 0x26ea6ee6, 0x31fcb477, 0x3cd1af17, 0x1c93b11a, 0xa1538146), SECP256K1_FE_CONST(0x02a41e92, 0xb005d96f, 0xed93983c, 0x1083462d, 0x648b2c68, 0x3874f94c, 0x9fa025ca, 0x23696589), SECP256K1_FE_CONST(0xa1639f86, 0xd5d0fff1, 0xba39daf0, 0xd69078a1, 0xe8b103f1, 0x68fc19d7, 0x8f9efc55, 0x22d27968), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0xc25172fc, 0x3f29b6fc, 0x4a1155b8, 0x57523315, 0x5486b274, 0x64b74b8b, 0x260b499a, 0x3f53cb14), SECP256K1_FE_CONST(0x1ea9cbdb, 0x35cf6e03, 0x29aa31b0, 0xbb0a702a, 0x65123ed0, 0x08655a93, 0xb7dcd528, 0x0e52e1ab), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x7422edc7, 0x843136af, 0x0053bb88, 0x54448a82, 0x99994f9d, 0xdcefd3a9, 0xa92d4546, 0x2c59298a), SECP256K1_FE_CONST(0x78c7774a, 0x266f8b97, 0xea23d05d, 0x064f033c, 0x77319f92, 0x3f6b78bc, 0xe4e20bf0, 0x5fa5398d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x8bdd1238, 0x7bcec950, 0xffac4477, 0xabbb757d, 0x6666b062, 0x23102c56, 0x56d2bab8, 0xd3a6d2a5), SECP256K1_FE_CONST(0x873888b5, 0xd9907468, 0x15dc2fa2, 0xf9b0fcc3, 0x88ce606d, 0xc0948743, 0x1b1df40e, 0xa05ac2a2)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xcab6626f, 0x832a4b12, 0x80ba7add, 0x2fc5322f, 0xf011caed, 0xedf7ff4d, 0xb6735d50, 0x26dc0367), SECP256K1_FE_CONST(0x2b2bef08, 0x52c6f7c9, 0x5d72ac99, 0xa23802b8, 0x75029cd5, 0x73b248d1, 0xf1b3fc80, 0x33788eb6), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x33, SECP256K1_FE_CONST(0xd8621b4f, 0xfc85b9ed, 0x56e99d8d, 0xd1dd24ae, 0xdcecb147, 0x63b861a1, 0x7112dc77, 0x1a104fd2), SECP256K1_FE_CONST(0x812cabe9, 0x72a22aa6, 0x7c7da0c9, 0x4d8a9362, 0x96eb9949, 0xd70c37cb, 0x2b248757, 0x4cb3ce58), {SECP256K1_FE_CONST(0xfbc5febc, 0x6fdbc9ae, 0x3eb88a93, 0xb982196e, 0x8b6275a6, 0xd5a73c17, 0x387e000c, 0x711bd0e3), SECP256K1_FE_CONST(0x8724c96b, 0xd4e5527f, 0x2dd195a5, 0x1c468d2d, 0x211ba2fa, 0xc7cbe0b4, 0xb3434253, 0x409fb42d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x043a0143, 0x90243651, 0xc147756c, 0x467de691, 0x749d8a59, 0x2a58c3e8, 0xc781fff2, 0x8ee42b4c), SECP256K1_FE_CONST(0x78db3694, 0x2b1aad80, 0xd22e6a5a, 0xe3b972d2, 0xdee45d05, 0x38341f4b, 0x4cbcbdab, 0xbf604802), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xda463164, 0xc6f4bf71, 0x29ee5f0e, 0xc00f65a6, 0x75a8adf1, 0xbd931b39, 0xb64806af, 0xdcda9a22), SECP256K1_FE_CONST(0x25b9ce9b, 0x390b408e, 0xd611a0f1, 0x3ff09a59, 0x8a57520e, 0x426ce4c6, 0x49b7f94f, 0x2325620d), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0xdafc971e, 0x4a3a7b6d, 0xcfb42a08, 0xd9692d82, 0xad9e7838, 0x523fcbda, 0x1d4827e1, 0x4481ae2d), SECP256K1_FE_CONST(0x250368e1, 0xb5c58492, 0x304bd5f7, 0x2696d27d, 0x526187c7, 0xadc03425, 0xe2b7d81d, 0xbb7e4e02), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x370c28f1, 0xbe665efa, 0xcde6aa43, 0x6bf86fe2, 0x1e6e314c, 0x1e53dd04, 0x0e6c73a4, 0x6b4c8c49), SECP256K1_FE_CONST(0xcd8acee9, 0x8ffe5653, 0x1a84d7eb, 0x3e48fa40, 0x34206ce8, 0x25ace907, 0xd0edf0ea, 0xeb5e9ca2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xc8f3d70e, 0x4199a105, 0x321955bc, 0x9407901d, 0xe191ceb3, 0xe1ac22fb, 0xf1938c5a, 0x94b36fe6), SECP256K1_FE_CONST(0x32753116, 0x7001a9ac, 0xe57b2814, 0xc1b705bf, 0xcbdf9317, 0xda5316f8, 0x2f120f14, 0x14a15f8d)}},
|
||||
{0x44, SECP256K1_FE_CONST(0xe0294c8b, 0xc1a36b41, 0x66ee92bf, 0xa70a5c34, 0x976fa982, 0x9405efea, 0x8f9cd54d, 0xcb29b99e), SECP256K1_FE_CONST(0xae9690d1, 0x3b8d20a0, 0xfbbf37be, 0xd8474f67, 0xa04e142f, 0x56efd787, 0x70a76b35, 0x9165d8a1), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xdcd45d93, 0x5613916a, 0xf167b029, 0x058ba3a7, 0x00d37150, 0xb9df3472, 0x8cb05412, 0xc16d4182), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x232ba26c, 0xa9ec6e95, 0x0e984fd6, 0xfa745c58, 0xff2c8eaf, 0x4620cb8d, 0x734fabec, 0x3e92baad), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xe148441c, 0xd7b92b8b, 0x0e4fa3bd, 0x68712cfd, 0x0d709ad1, 0x98cace61, 0x1493c10e, 0x97f5394e), SECP256K1_FE_CONST(0x164a6397, 0x94d74c53, 0xafc4d329, 0x4e79cdb3, 0xcd25f99f, 0x6df45c00, 0x0f758aba, 0x54d699c0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xff, SECP256K1_FE_CONST(0xe4b00ec9, 0x7aadcca9, 0x7644d3b0, 0xc8a931b1, 0x4ce7bcf7, 0xbc877954, 0x6d6e35aa, 0x5937381c), SECP256K1_FE_CONST(0x94e9588d, 0x41647b3f, 0xcc772dc8, 0xd83c67ce, 0x3be00353, 0x8517c834, 0x103d2cd4, 0x9d62ef4d), {SECP256K1_FE_CONST(0xc88d25f4, 0x1407376b, 0xb2c03a7f, 0xffeb3ec7, 0x811cc434, 0x91a0c3aa, 0xc0378cdc, 0x78357bee), SECP256K1_FE_CONST(0x51c02636, 0xce00c234, 0x5ecd89ad, 0xb6089fe4, 0xd5e18ac9, 0x24e3145e, 0x6669501c, 0xd37a00d4), SECP256K1_FE_CONST(0x205b3512, 0xdb40521c, 0xb200952e, 0x67b46f67, 0xe09e7839, 0xe0de4400, 0x4138329e, 0xbd9138c5), SECP256K1_FE_CONST(0x58aab390, 0xab6fb55c, 0x1d1b8089, 0x7a207ce9, 0x4a78fa5b, 0x4aa61a33, 0x398bcae9, 0xadb20d3e), SECP256K1_FE_CONST(0x3772da0b, 0xebf8c894, 0x4d3fc580, 0x0014c138, 0x7ee33bcb, 0x6e5f3c55, 0x3fc87322, 0x87ca8041), SECP256K1_FE_CONST(0xae3fd9c9, 0x31ff3dcb, 0xa1327652, 0x49f7601b, 0x2a1e7536, 0xdb1ceba1, 0x9996afe2, 0x2c85fb5b), SECP256K1_FE_CONST(0xdfa4caed, 0x24bfade3, 0x4dff6ad1, 0x984b9098, 0x1f6187c6, 0x1f21bbff, 0xbec7cd60, 0x426ec36a), SECP256K1_FE_CONST(0xa7554c6f, 0x54904aa3, 0xe2e47f76, 0x85df8316, 0xb58705a4, 0xb559e5cc, 0xc6743515, 0x524deef1)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xff, SECP256K1_FE_CONST(0xe6bcb5c3, 0xd63467d4, 0x90bfa54f, 0xbbc6092a, 0x7248c25e, 0x11b248dc, 0x2964a6e1, 0x5edb1457), SECP256K1_FE_CONST(0x19434a3c, 0x29cb982b, 0x6f405ab0, 0x4439f6d5, 0x8db73da1, 0xee4db723, 0xd69b591d, 0xa124e7d8), {SECP256K1_FE_CONST(0x67119877, 0x832ab8f4, 0x59a82165, 0x6d8261f5, 0x44a553b8, 0x9ae4f25c, 0x52a97134, 0xb70f3426), SECP256K1_FE_CONST(0xffee02f5, 0xe649c07f, 0x0560eff1, 0x867ec7b3, 0x2d0e595e, 0x9b1c0ea6, 0xe2a4fc70, 0xc97cd71f), SECP256K1_FE_CONST(0xb5e0c189, 0xeb5b4bac, 0xd025b744, 0x4d74178b, 0xe8d5246c, 0xfa4a9a20, 0x7964a057, 0xee969992), SECP256K1_FE_CONST(0x5746e459, 0x1bf7f4c3, 0x044609ea, 0x372e9086, 0x03975d27, 0x9fdef834, 0x9f0b08d3, 0x2f07619d), SECP256K1_FE_CONST(0x98ee6788, 0x7cd5470b, 0xa657de9a, 0x927d9e0a, 0xbb5aac47, 0x651b0da3, 0xad568eca, 0x48f0c809), SECP256K1_FE_CONST(0x0011fd0a, 0x19b63f80, 0xfa9f100e, 0x7981384c, 0xd2f1a6a1, 0x64e3f159, 0x1d5b038e, 0x36832510), SECP256K1_FE_CONST(0x4a1f3e76, 0x14a4b453, 0x2fda48bb, 0xb28be874, 0x172adb93, 0x05b565df, 0x869b5fa7, 0x1169629d), SECP256K1_FE_CONST(0xa8b91ba6, 0xe4080b3c, 0xfbb9f615, 0xc8d16f79, 0xfc68a2d8, 0x602107cb, 0x60f4f72b, 0xd0f89a92)}},
|
||||
{0x33, SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), {SECP256K1_FE_CONST(0x4f867ad8, 0xbb3d8404, 0x09d26b67, 0x307e6210, 0x0153273f, 0x72fa4b74, 0x84becfa1, 0x4ebe7408), SECP256K1_FE_CONST(0x5bbc4f59, 0xe452cc5f, 0x22a99144, 0xb10ce898, 0x9a89a995, 0xec3cea1c, 0x91ae10e8, 0xf721bb5d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb0798527, 0x44c27bfb, 0xf62d9498, 0xcf819def, 0xfeacd8c0, 0x8d05b48b, 0x7b41305d, 0xb1418827), SECP256K1_FE_CONST(0xa443b0a6, 0x1bad33a0, 0xdd566ebb, 0x4ef31767, 0x6576566a, 0x13c315e3, 0x6e51ef16, 0x08de40d2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0xf455605b, 0xc85bf48e, 0x3a908c31, 0x023faf98, 0x381504c6, 0xc6d3aeb9, 0xede55f8d, 0xd528924d), SECP256K1_FE_CONST(0xd31fbcd5, 0xcdb798f6, 0xc00db669, 0x2f8fe896, 0x7fa9c79d, 0xd10958f4, 0xa194f013, 0x74905e99), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x0c00c571, 0x5b56fe63, 0x2d814ad8, 0xa77f8e66, 0x628ea47a, 0x6116834f, 0x8c1218f3, 0xa03cbd50), SECP256K1_FE_CONST(0xdf88e44f, 0xac84fa52, 0xdf4d59f4, 0x8819f18f, 0x6a8cd415, 0x1d162afa, 0xf773166f, 0x57c7ff46), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xf3ff3a8e, 0xa4a9019c, 0xd27eb527, 0x58807199, 0x9d715b85, 0x9ee97cb0, 0x73ede70b, 0x5fc33edf), SECP256K1_FE_CONST(0x20771bb0, 0x537b05ad, 0x20b2a60b, 0x77e60e70, 0x95732bea, 0xe2e9d505, 0x088ce98f, 0xa837fce9)}},
|
||||
{0xff, SECP256K1_FE_CONST(0xf58cd4d9, 0x830bad32, 0x2699035e, 0x8246007d, 0x4be27e19, 0xb6f53621, 0x317b4f30, 0x9b3daa9d), SECP256K1_FE_CONST(0x78ec2b3d, 0xc0948de5, 0x60148bbc, 0x7c6dc963, 0x3ad5df70, 0xa5a5750c, 0xbed72180, 0x4f082a3b), {SECP256K1_FE_CONST(0x6c4c580b, 0x76c75940, 0x43569f9d, 0xae16dc28, 0x01c16a1f, 0xbe128608, 0x81b75f8e, 0xf929bce5), SECP256K1_FE_CONST(0x94231355, 0xe7385c5f, 0x25ca436a, 0xa6419147, 0x1aea4393, 0xd6e86ab7, 0xa35fe2af, 0xacaefd0d), SECP256K1_FE_CONST(0xdff2a195, 0x1ada6db5, 0x74df8340, 0x48149da3, 0x397a75b8, 0x29abf58c, 0x7e69db1b, 0x41ac0989), SECP256K1_FE_CONST(0xa52b66d3, 0xc9070355, 0x48028bf8, 0x04711bf4, 0x22aba95f, 0x1a666fc8, 0x6f4648e0, 0x5f29caae), SECP256K1_FE_CONST(0x93b3a7f4, 0x8938a6bf, 0xbca96062, 0x51e923d7, 0xfe3e95e0, 0x41ed79f7, 0x7e48a070, 0x06d63f4a), SECP256K1_FE_CONST(0x6bdcecaa, 0x18c7a3a0, 0xda35bc95, 0x59be6eb8, 0xe515bc6c, 0x29179548, 0x5ca01d4f, 0x5350ff22), SECP256K1_FE_CONST(0x200d5e6a, 0xe525924a, 0x8b207cbf, 0xb7eb625c, 0xc6858a47, 0xd6540a73, 0x819624e3, 0xbe53f2a6), SECP256K1_FE_CONST(0x5ad4992c, 0x36f8fcaa, 0xb7fd7407, 0xfb8ee40b, 0xdd5456a0, 0xe5999037, 0x90b9b71e, 0xa0d63181)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xfd7d912a, 0x40f182a3, 0x588800d6, 0x9ebfb504, 0x8766da20, 0x6fd7ebc8, 0xd2436c81, 0xcbef6421), SECP256K1_FE_CONST(0x8d37c862, 0x054debe7, 0x31694536, 0xff46b273, 0xec122b35, 0xa9bf1445, 0xac3c4ff9, 0xf262c952), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
};
|
||||
|
||||
/* Set of (encoding, xcoord) test vectors, selected to maximize branch coverage, part of the BIP324
|
||||
* test vectors. Created using an independent implementation, and tested decoding against the paper
|
||||
* authors' code. */
|
||||
static const struct ellswift_decode_test ellswift_decode_tests[] = {
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2, 0xd8, 0x52, 0x92, 0x10, 0x35, 0xb2, 0xef, 0x60, 0x7f, 0x49, 0x06, 0x9b, 0x97, 0x45, 0x4e, 0x67, 0x95, 0x25, 0x10, 0x62, 0x74, 0x17, 0x71}, SECP256K1_FE_CONST(0xb5da00b7, 0x3cd65605, 0x20e7c364, 0x086e7cd2, 0x3a34bf60, 0xd0e707be, 0x9fc34d4c, 0xd5fdfa2c), 1},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66, 0xec, 0xe5, 0x23, 0xf8, 0xfa, 0x08, 0x74, 0x1a, 0x7c, 0x09, 0x12, 0xc6, 0x6a, 0x69, 0xce, 0x68, 0x51, 0x4b, 0xfd, 0x35, 0x15, 0xb4, 0x9f}, SECP256K1_FE_CONST(0xf482f2e2, 0x41753ad0, 0xfb89150d, 0x8491dc1e, 0x34ff0b8a, 0xcfbb442c, 0xfe999e2e, 0x5e6fd1d2), 1},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14, 0xb6, 0x91, 0x5c, 0x3d, 0xbe, 0x2a, 0x94, 0xc6, 0xd8, 0xf6, 0x90, 0xb5, 0xb7, 0x39, 0x86, 0x4b, 0xa6, 0x78, 0x9f, 0xb8, 0xa5, 0x5d, 0xd0}, SECP256K1_FE_CONST(0x9f59c402, 0x75f5085a, 0x006f05da, 0xe77eb98c, 0x6fd0db1a, 0xb4a72ac4, 0x7eae90a4, 0xfc9e57e0), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb, 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41}, SECP256K1_FE_CONST(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaa9, 0xfffffd6b), 1},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82, 0x42, 0x28, 0xd9, 0x47, 0x99, 0xf8, 0xc6, 0x55, 0x7c, 0x38, 0xa1, 0xc0, 0xd6, 0x77, 0x9b, 0x9d, 0x4b, 0x72, 0x9c, 0x6f, 0x1c, 0xcc, 0x42}, SECP256K1_FE_CONST(0x70720db7, 0xe238d041, 0x21f5b1af, 0xd8cc5ad9, 0xd18944c6, 0xbdc94881, 0xf502b7a3, 0xaf3aecff), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x64, 0xbb, 0xd5}, SECP256K1_FE_CONST(0x50873db3, 0x1badcc71, 0x890e4f67, 0x753a6575, 0x7f97aaa7, 0xdd5f1e82, 0xb753ace3, 0x2219064b), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x28, 0xde, 0x7d}, SECP256K1_FE_CONST(0x1eea9cc5, 0x9cfcf2fa, 0x151ac6c2, 0x74eea411, 0x0feb4f7b, 0x68c59657, 0x32e9992e, 0x976ef68e), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcb, 0xcf, 0xb7, 0xe7}, SECP256K1_FE_CONST(0x12303941, 0xaedc2088, 0x80735b1f, 0x1795c8e5, 0x5be520ea, 0x93e10335, 0x7b5d2adb, 0x7ed59b8e), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x11, 0x3a, 0xd9}, SECP256K1_FE_CONST(0x7eed6b70, 0xe7b0767c, 0x7d7feac0, 0x4e57aa2a, 0x12fef5e0, 0xf48f878f, 0xcbb88b3b, 0x6b5e0783), 0},
|
||||
{{0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x532167c1, 0x1200b08c, 0x0e84a354, 0xe74dcc40, 0xf8b25f4f, 0xe686e308, 0x69526366, 0x278a0688), 0},
|
||||
{{0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x532167c1, 0x1200b08c, 0x0e84a354, 0xe74dcc40, 0xf8b25f4f, 0xe686e308, 0x69526366, 0x278a0688), 0},
|
||||
{{0x0f, 0xfd, 0xe9, 0xca, 0x81, 0xd7, 0x51, 0xe9, 0xcd, 0xaf, 0xfc, 0x1a, 0x50, 0x77, 0x92, 0x45, 0x32, 0x0b, 0x28, 0x99, 0x6d, 0xba, 0xf3, 0x2f, 0x82, 0x2f, 0x20, 0x11, 0x7c, 0x22, 0xfb, 0xd6, 0xc7, 0x4d, 0x99, 0xef, 0xce, 0xaa, 0x55, 0x0f, 0x1a, 0xd1, 0xc0, 0xf4, 0x3f, 0x46, 0xe7, 0xff, 0x1e, 0xe3, 0xbd, 0x01, 0x62, 0xb7, 0xbf, 0x55, 0xf2, 0x96, 0x5d, 0xa9, 0xc3, 0x45, 0x06, 0x46}, SECP256K1_FE_CONST(0x74e880b3, 0xffd18fe3, 0xcddf7902, 0x522551dd, 0xf97fa4a3, 0x5a3cfda8, 0x197f9470, 0x81a57b8f), 0},
|
||||
{{0x0f, 0xfd, 0xe9, 0xca, 0x81, 0xd7, 0x51, 0xe9, 0xcd, 0xaf, 0xfc, 0x1a, 0x50, 0x77, 0x92, 0x45, 0x32, 0x0b, 0x28, 0x99, 0x6d, 0xba, 0xf3, 0x2f, 0x82, 0x2f, 0x20, 0x11, 0x7c, 0x22, 0xfb, 0xd6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x6c, 0xa8, 0x96}, SECP256K1_FE_CONST(0x377b643f, 0xce2271f6, 0x4e5c8101, 0x566107c1, 0xbe498074, 0x50917838, 0x04f65478, 0x1ac9217c), 1},
|
||||
{{0x12, 0x36, 0x58, 0x44, 0x4f, 0x32, 0xbe, 0x8f, 0x02, 0xea, 0x20, 0x34, 0xaf, 0xa7, 0xef, 0x4b, 0xbe, 0x8a, 0xdc, 0x91, 0x8c, 0xeb, 0x49, 0xb1, 0x27, 0x73, 0xb6, 0x25, 0xf4, 0x90, 0xb3, 0x68, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8d, 0xc5, 0xfe, 0x11}, SECP256K1_FE_CONST(0xed16d65c, 0xf3a9538f, 0xcb2c139f, 0x1ecbc143, 0xee148271, 0x20cbc265, 0x9e667256, 0x800b8142), 0},
|
||||
{{0x14, 0x6f, 0x92, 0x46, 0x4d, 0x15, 0xd3, 0x6e, 0x35, 0x38, 0x2b, 0xd3, 0xca, 0x5b, 0x0f, 0x97, 0x6c, 0x95, 0xcb, 0x08, 0xac, 0xdc, 0xf2, 0xd5, 0xb3, 0x57, 0x06, 0x17, 0x99, 0x08, 0x39, 0xd7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x31, 0x45, 0xe9, 0x3b}, SECP256K1_FE_CONST(0x0d5cd840, 0x427f941f, 0x65193079, 0xab8e2e83, 0x024ef2ee, 0x7ca558d8, 0x8879ffd8, 0x79fb6657), 0},
|
||||
{{0x15, 0xfd, 0xf5, 0xcf, 0x09, 0xc9, 0x07, 0x59, 0xad, 0xd2, 0x27, 0x2d, 0x57, 0x4d, 0x2b, 0xb5, 0xfe, 0x14, 0x29, 0xf9, 0xf3, 0xc1, 0x4c, 0x65, 0xe3, 0x19, 0x4b, 0xf6, 0x1b, 0x82, 0xaa, 0x73, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x04, 0xcf, 0xd9, 0x06}, SECP256K1_FE_CONST(0x16d0e439, 0x46aec93f, 0x62d57eb8, 0xcde68951, 0xaf136cf4, 0xb307938d, 0xd1447411, 0xe07bffe1), 1},
|
||||
{{0x1f, 0x67, 0xed, 0xf7, 0x79, 0xa8, 0xa6, 0x49, 0xd6, 0xde, 0xf6, 0x00, 0x35, 0xf2, 0xfa, 0x22, 0xd0, 0x22, 0xdd, 0x35, 0x90, 0x79, 0xa1, 0xa1, 0x44, 0x07, 0x3d, 0x84, 0xf1, 0x9b, 0x92, 0xd5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x025661f9, 0xaba9d15c, 0x3118456b, 0xbe980e3e, 0x1b8ba2e0, 0x47c737a4, 0xeb48a040, 0xbb566f6c), 0},
|
||||
{{0x1f, 0x67, 0xed, 0xf7, 0x79, 0xa8, 0xa6, 0x49, 0xd6, 0xde, 0xf6, 0x00, 0x35, 0xf2, 0xfa, 0x22, 0xd0, 0x22, 0xdd, 0x35, 0x90, 0x79, 0xa1, 0xa1, 0x44, 0x07, 0x3d, 0x84, 0xf1, 0x9b, 0x92, 0xd5, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x025661f9, 0xaba9d15c, 0x3118456b, 0xbe980e3e, 0x1b8ba2e0, 0x47c737a4, 0xeb48a040, 0xbb566f6c), 0},
|
||||
{{0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x98bec3b2, 0xa351fa96, 0xcfd191c1, 0x77835193, 0x1b9e9ba9, 0xad1149f6, 0xd9eadca8, 0x0981b801), 0},
|
||||
{{0x40, 0x56, 0xa3, 0x4a, 0x21, 0x0e, 0xec, 0x78, 0x92, 0xe8, 0x82, 0x06, 0x75, 0xc8, 0x60, 0x09, 0x9f, 0x85, 0x7b, 0x26, 0xaa, 0xd8, 0x54, 0x70, 0xee, 0x6d, 0x3c, 0xf1, 0x30, 0x4a, 0x9d, 0xcf, 0x37, 0x5e, 0x70, 0x37, 0x42, 0x71, 0xf2, 0x0b, 0x13, 0xc9, 0x98, 0x6e, 0xd7, 0xd3, 0xc1, 0x77, 0x99, 0x69, 0x8c, 0xfc, 0x43, 0x5d, 0xbe, 0xd3, 0xa9, 0xf3, 0x4b, 0x38, 0xc8, 0x23, 0xc2, 0xb4}, SECP256K1_FE_CONST(0x868aac20, 0x03b29dbc, 0xad1a3e80, 0x3855e078, 0xa89d1654, 0x3ac64392, 0xd1224172, 0x98cec76e), 0},
|
||||
{{0x41, 0x97, 0xec, 0x37, 0x23, 0xc6, 0x54, 0xcf, 0xdd, 0x32, 0xab, 0x07, 0x55, 0x06, 0x64, 0x8b, 0x2f, 0xf5, 0x07, 0x03, 0x62, 0xd0, 0x1a, 0x4f, 0xff, 0x14, 0xb3, 0x36, 0xb7, 0x8f, 0x96, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb3, 0xab, 0x1e, 0x95}, SECP256K1_FE_CONST(0xba5a6314, 0x502a8952, 0xb8f456e0, 0x85928105, 0xf665377a, 0x8ce27726, 0xa5b0eb7e, 0xc1ac0286), 0},
|
||||
{{0x47, 0xeb, 0x3e, 0x20, 0x8f, 0xed, 0xcd, 0xf8, 0x23, 0x4c, 0x94, 0x21, 0xe9, 0xcd, 0x9a, 0x7a, 0xe8, 0x73, 0xbf, 0xbd, 0xbc, 0x39, 0x37, 0x23, 0xd1, 0xba, 0x1e, 0x1e, 0x6a, 0x8e, 0x6b, 0x24, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7c, 0xd1, 0x2c, 0xb1}, SECP256K1_FE_CONST(0xd192d520, 0x07e541c9, 0x807006ed, 0x0468df77, 0xfd214af0, 0xa795fe11, 0x9359666f, 0xdcf08f7c), 0},
|
||||
{{0x5e, 0xb9, 0x69, 0x6a, 0x23, 0x36, 0xfe, 0x2c, 0x3c, 0x66, 0x6b, 0x02, 0xc7, 0x55, 0xdb, 0x4c, 0x0c, 0xfd, 0x62, 0x82, 0x5c, 0x7b, 0x58, 0x9a, 0x7b, 0x7b, 0xb4, 0x42, 0xe1, 0x41, 0xc1, 0xd6, 0x93, 0x41, 0x3f, 0x00, 0x52, 0xd4, 0x9e, 0x64, 0xab, 0xec, 0x6d, 0x58, 0x31, 0xd6, 0x6c, 0x43, 0x61, 0x28, 0x30, 0xa1, 0x7d, 0xf1, 0xfe, 0x43, 0x83, 0xdb, 0x89, 0x64, 0x68, 0x10, 0x02, 0x21}, SECP256K1_FE_CONST(0xef6e1da6, 0xd6c7627e, 0x80f7a723, 0x4cb08a02, 0x2c1ee1cf, 0x29e4d0f9, 0x642ae924, 0xcef9eb38), 1},
|
||||
{{0x7b, 0xf9, 0x6b, 0x7b, 0x6d, 0xa1, 0x5d, 0x34, 0x76, 0xa2, 0xb1, 0x95, 0x93, 0x4b, 0x69, 0x0a, 0x3a, 0x3d, 0xe3, 0xe8, 0xab, 0x84, 0x74, 0x85, 0x68, 0x63, 0xb0, 0xde, 0x3a, 0xf9, 0x0b, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x50851dfc, 0x9f418c31, 0x4a437295, 0xb24feeea, 0x27af3d0c, 0xd2308348, 0xfda6e21c, 0x463e46ff), 0},
|
||||
{{0x7b, 0xf9, 0x6b, 0x7b, 0x6d, 0xa1, 0x5d, 0x34, 0x76, 0xa2, 0xb1, 0x95, 0x93, 0x4b, 0x69, 0x0a, 0x3a, 0x3d, 0xe3, 0xe8, 0xab, 0x84, 0x74, 0x85, 0x68, 0x63, 0xb0, 0xde, 0x3a, 0xf9, 0x0b, 0x0e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x50851dfc, 0x9f418c31, 0x4a437295, 0xb24feeea, 0x27af3d0c, 0xd2308348, 0xfda6e21c, 0x463e46ff), 0},
|
||||
{{0x85, 0x1b, 0x1c, 0xa9, 0x45, 0x49, 0x37, 0x1c, 0x4f, 0x1f, 0x71, 0x87, 0x32, 0x1d, 0x39, 0xbf, 0x51, 0xc6, 0xb7, 0xfb, 0x61, 0xf7, 0xcb, 0xf0, 0x27, 0xc9, 0xda, 0x62, 0x02, 0x1b, 0x7a, 0x65, 0xfc, 0x54, 0xc9, 0x68, 0x37, 0xfb, 0x22, 0xb3, 0x62, 0xed, 0xa6, 0x3e, 0xc5, 0x2e, 0xc8, 0x3d, 0x81, 0xbe, 0xdd, 0x16, 0x0c, 0x11, 0xb2, 0x2d, 0x96, 0x5d, 0x9f, 0x4a, 0x6d, 0x64, 0xd2, 0x51}, SECP256K1_FE_CONST(0x3e731051, 0xe12d3323, 0x7eb324f2, 0xaa5b16bb, 0x868eb49a, 0x1aa1fadc, 0x19b6e876, 0x1b5a5f7b), 1},
|
||||
{{0x94, 0x3c, 0x2f, 0x77, 0x51, 0x08, 0xb7, 0x37, 0xfe, 0x65, 0xa9, 0x53, 0x1e, 0x19, 0xf2, 0xfc, 0x2a, 0x19, 0x7f, 0x56, 0x03, 0xe3, 0xa2, 0x88, 0x1d, 0x1d, 0x83, 0xe4, 0x00, 0x8f, 0x91, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x311c61f0, 0xab2f32b7, 0xb1f0223f, 0xa72f0a78, 0x752b8146, 0xe46107f8, 0x876dd9c4, 0xf92b2942), 0},
|
||||
{{0x94, 0x3c, 0x2f, 0x77, 0x51, 0x08, 0xb7, 0x37, 0xfe, 0x65, 0xa9, 0x53, 0x1e, 0x19, 0xf2, 0xfc, 0x2a, 0x19, 0x7f, 0x56, 0x03, 0xe3, 0xa2, 0x88, 0x1d, 0x1d, 0x83, 0xe4, 0x00, 0x8f, 0x91, 0x25, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x311c61f0, 0xab2f32b7, 0xb1f0223f, 0xa72f0a78, 0x752b8146, 0xe46107f8, 0x876dd9c4, 0xf92b2942), 0},
|
||||
{{0xa0, 0xf1, 0x84, 0x92, 0x18, 0x3e, 0x61, 0xe8, 0x06, 0x3e, 0x57, 0x36, 0x06, 0x59, 0x14, 0x21, 0xb0, 0x6b, 0xc3, 0x51, 0x36, 0x31, 0x57, 0x8a, 0x73, 0xa3, 0x9c, 0x1c, 0x33, 0x06, 0x23, 0x9f, 0x2f, 0x32, 0x90, 0x4f, 0x0d, 0x2a, 0x33, 0xec, 0xca, 0x8a, 0x54, 0x51, 0x70, 0x5b, 0xb5, 0x37, 0xd3, 0xbf, 0x44, 0xe0, 0x71, 0x22, 0x60, 0x25, 0xcd, 0xbf, 0xd2, 0x49, 0xfe, 0x0f, 0x7a, 0xd6}, SECP256K1_FE_CONST(0x97a09cf1, 0xa2eae7c4, 0x94df3c6f, 0x8a9445bf, 0xb8c09d60, 0x832f9b0b, 0x9d5eabe2, 0x5fbd14b9), 0},
|
||||
{{0xa1, 0xed, 0x0a, 0x0b, 0xd7, 0x9d, 0x8a, 0x23, 0xcf, 0xe4, 0xec, 0x5f, 0xef, 0x5b, 0xa5, 0xcc, 0xcf, 0xd8, 0x44, 0xe4, 0xff, 0x5c, 0xb4, 0xb0, 0xf2, 0xe7, 0x16, 0x27, 0x34, 0x1f, 0x1c, 0x5b, 0x17, 0xc4, 0x99, 0x24, 0x9e, 0x0a, 0xc0, 0x8d, 0x5d, 0x11, 0xea, 0x1c, 0x2c, 0x8c, 0xa7, 0x00, 0x16, 0x16, 0x55, 0x9a, 0x79, 0x94, 0xea, 0xde, 0xc9, 0xca, 0x10, 0xfb, 0x4b, 0x85, 0x16, 0xdc}, SECP256K1_FE_CONST(0x65a89640, 0x744192cd, 0xac64b2d2, 0x1ddf989c, 0xdac75007, 0x25b645be, 0xf8e2200a, 0xe39691f2), 0},
|
||||
{{0xba, 0x94, 0x59, 0x4a, 0x43, 0x27, 0x21, 0xaa, 0x35, 0x80, 0xb8, 0x4c, 0x16, 0x1d, 0x0d, 0x13, 0x4b, 0xc3, 0x54, 0xb6, 0x90, 0x40, 0x4d, 0x7c, 0xd4, 0xec, 0x57, 0xc1, 0x6d, 0x3f, 0xbe, 0x98, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xea, 0x50, 0x7d, 0xd7}, SECP256K1_FE_CONST(0x5e0d7656, 0x4aae92cb, 0x347e01a6, 0x2afd389a, 0x9aa401c7, 0x6c8dd227, 0x543dc9cd, 0x0efe685a), 0},
|
||||
{{0xbc, 0xaf, 0x72, 0x19, 0xf2, 0xf6, 0xfb, 0xf5, 0x5f, 0xe5, 0xe0, 0x62, 0xdc, 0xe0, 0xe4, 0x8c, 0x18, 0xf6, 0x81, 0x03, 0xf1, 0x0b, 0x81, 0x98, 0xe9, 0x74, 0xc1, 0x84, 0x75, 0x0e, 0x1b, 0xe3, 0x93, 0x20, 0x16, 0xcb, 0xf6, 0x9c, 0x44, 0x71, 0xbd, 0x1f, 0x65, 0x6c, 0x6a, 0x10, 0x7f, 0x19, 0x73, 0xde, 0x4a, 0xf7, 0x08, 0x6d, 0xb8, 0x97, 0x27, 0x70, 0x60, 0xe2, 0x56, 0x77, 0xf1, 0x9a}, SECP256K1_FE_CONST(0x2d97f96c, 0xac882dfe, 0x73dc44db, 0x6ce0f1d3, 0x1d624135, 0x8dd5d74e, 0xb3d3b500, 0x03d24c2b), 0},
|
||||
{{0xbc, 0xaf, 0x72, 0x19, 0xf2, 0xf6, 0xfb, 0xf5, 0x5f, 0xe5, 0xe0, 0x62, 0xdc, 0xe0, 0xe4, 0x8c, 0x18, 0xf6, 0x81, 0x03, 0xf1, 0x0b, 0x81, 0x98, 0xe9, 0x74, 0xc1, 0x84, 0x75, 0x0e, 0x1b, 0xe3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x65, 0x07, 0xd0, 0x9a}, SECP256K1_FE_CONST(0xe7008afe, 0x6e8cbd50, 0x55df120b, 0xd748757c, 0x686dadb4, 0x1cce75e4, 0xaddcc5e0, 0x2ec02b44), 1},
|
||||
{{0xc5, 0x98, 0x1b, 0xae, 0x27, 0xfd, 0x84, 0x40, 0x1c, 0x72, 0xa1, 0x55, 0xe5, 0x70, 0x7f, 0xbb, 0x81, 0x1b, 0x2b, 0x62, 0x06, 0x45, 0xd1, 0x02, 0x8e, 0xa2, 0x70, 0xcb, 0xe0, 0xee, 0x22, 0x5d, 0x4b, 0x62, 0xaa, 0x4d, 0xca, 0x65, 0x06, 0xc1, 0xac, 0xdb, 0xec, 0xc0, 0x55, 0x25, 0x69, 0xb4, 0xb2, 0x14, 0x36, 0xa5, 0x69, 0x2e, 0x25, 0xd9, 0x0d, 0x3b, 0xc2, 0xeb, 0x7c, 0xe2, 0x40, 0x78}, SECP256K1_FE_CONST(0x948b40e7, 0x181713bc, 0x018ec170, 0x2d3d054d, 0x15746c59, 0xa7020730, 0xdd13ecf9, 0x85a010d7), 0},
|
||||
{{0xc8, 0x94, 0xce, 0x48, 0xbf, 0xec, 0x43, 0x30, 0x14, 0xb9, 0x31, 0xa6, 0xad, 0x42, 0x26, 0xd7, 0xdb, 0xd8, 0xea, 0xa7, 0xb6, 0xe3, 0xfa, 0xa8, 0xd0, 0xef, 0x94, 0x05, 0x2b, 0xcf, 0x8c, 0xff, 0x33, 0x6e, 0xeb, 0x39, 0x19, 0xe2, 0xb4, 0xef, 0xb7, 0x46, 0xc7, 0xf7, 0x1b, 0xbc, 0xa7, 0xe9, 0x38, 0x32, 0x30, 0xfb, 0xbc, 0x48, 0xff, 0xaf, 0xe7, 0x7e, 0x8b, 0xcc, 0x69, 0x54, 0x24, 0x71}, SECP256K1_FE_CONST(0xf1c91acd, 0xc2525330, 0xf9b53158, 0x434a4d43, 0xa1c547cf, 0xf29f1550, 0x6f5da4eb, 0x4fe8fa5a), 1},
|
||||
{{0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x872d81ed, 0x8831d999, 0x8b67cb71, 0x05243edb, 0xf86c10ed, 0xfebb786c, 0x110b02d0, 0x7b2e67cd), 0},
|
||||
{{0xd9, 0x17, 0xb7, 0x86, 0xda, 0xc3, 0x56, 0x70, 0xc3, 0x30, 0xc9, 0xc5, 0xae, 0x59, 0x71, 0xdf, 0xb4, 0x95, 0xc8, 0xae, 0x52, 0x3e, 0xd9, 0x7e, 0xe2, 0x42, 0x01, 0x17, 0xb1, 0x71, 0xf4, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x20, 0x01, 0xf6, 0xf6}, SECP256K1_FE_CONST(0xe45b71e1, 0x10b831f2, 0xbdad8651, 0x994526e5, 0x8393fde4, 0x328b1ec0, 0x4d598971, 0x42584691), 1},
|
||||
{{0xe2, 0x8b, 0xd8, 0xf5, 0x92, 0x9b, 0x46, 0x7e, 0xb7, 0x0e, 0x04, 0x33, 0x23, 0x74, 0xff, 0xb7, 0xe7, 0x18, 0x02, 0x18, 0xad, 0x16, 0xea, 0xa4, 0x6b, 0x71, 0x61, 0xaa, 0x67, 0x9e, 0xb4, 0x26, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x66b8c980, 0xa75c72e5, 0x98d383a3, 0x5a62879f, 0x844242ad, 0x1e73ff12, 0xedaa59f4, 0xe58632b5), 0},
|
||||
{{0xe2, 0x8b, 0xd8, 0xf5, 0x92, 0x9b, 0x46, 0x7e, 0xb7, 0x0e, 0x04, 0x33, 0x23, 0x74, 0xff, 0xb7, 0xe7, 0x18, 0x02, 0x18, 0xad, 0x16, 0xea, 0xa4, 0x6b, 0x71, 0x61, 0xaa, 0x67, 0x9e, 0xb4, 0x26, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x66b8c980, 0xa75c72e5, 0x98d383a3, 0x5a62879f, 0x844242ad, 0x1e73ff12, 0xedaa59f4, 0xe58632b5), 0},
|
||||
{{0xe7, 0xee, 0x58, 0x14, 0xc1, 0x70, 0x6b, 0xf8, 0xa8, 0x93, 0x96, 0xa9, 0xb0, 0x32, 0xbc, 0x01, 0x4c, 0x2c, 0xac, 0x9c, 0x12, 0x11, 0x27, 0xdb, 0xf6, 0xc9, 0x92, 0x78, 0xf8, 0xbb, 0x53, 0xd1, 0xdf, 0xd0, 0x4d, 0xbc, 0xda, 0x8e, 0x35, 0x24, 0x66, 0xb6, 0xfc, 0xd5, 0xf2, 0xde, 0xa3, 0xe1, 0x7d, 0x5e, 0x13, 0x31, 0x15, 0x88, 0x6e, 0xda, 0x20, 0xdb, 0x8a, 0x12, 0xb5, 0x4d, 0xe7, 0x1b}, SECP256K1_FE_CONST(0xe842c6e3, 0x529b2342, 0x70a5e977, 0x44edc34a, 0x04d7ba94, 0xe44b6d25, 0x23c9cf01, 0x95730a50), 1},
|
||||
{{0xf2, 0x92, 0xe4, 0x68, 0x25, 0xf9, 0x22, 0x5a, 0xd2, 0x3d, 0xc0, 0x57, 0xc1, 0xd9, 0x1c, 0x4f, 0x57, 0xfc, 0xb1, 0x38, 0x6f, 0x29, 0xef, 0x10, 0x48, 0x1c, 0xb1, 0xd2, 0x25, 0x18, 0x59, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x11, 0xc9, 0x89}, SECP256K1_FE_CONST(0x3cea2c53, 0xb8b01701, 0x66ac7da6, 0x7194694a, 0xdacc84d5, 0x6389225e, 0x330134da, 0xb85a4d55), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2, 0xd8, 0x52, 0x92, 0x10, 0x35, 0xb2, 0xef, 0x60, 0x7f, 0x49, 0x06, 0x9b, 0x97, 0x45, 0x4e, 0x67, 0x95, 0x25, 0x10, 0x62, 0x74, 0x17, 0x71}, SECP256K1_FE_CONST(0xb5da00b7, 0x3cd65605, 0x20e7c364, 0x086e7cd2, 0x3a34bf60, 0xd0e707be, 0x9fc34d4c, 0xd5fdfa2c), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee}, SECP256K1_FE_CONST(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaa9, 0xfffffd6b), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66, 0xec, 0xe5, 0x23, 0xf8, 0xfa, 0x08, 0x74, 0x1a, 0x7c, 0x09, 0x12, 0xc6, 0x6a, 0x69, 0xce, 0x68, 0x51, 0x4b, 0xfd, 0x35, 0x15, 0xb4, 0x9f}, SECP256K1_FE_CONST(0xf482f2e2, 0x41753ad0, 0xfb89150d, 0x8491dc1e, 0x34ff0b8a, 0xcfbb442c, 0xfe999e2e, 0x5e6fd1d2), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14, 0xb6, 0x91, 0x5c, 0x3d, 0xbe, 0x2a, 0x94, 0xc6, 0xd8, 0xf6, 0x90, 0xb5, 0xb7, 0x39, 0x86, 0x4b, 0xa6, 0x78, 0x9f, 0xb8, 0xa5, 0x5d, 0xd0}, SECP256K1_FE_CONST(0x9f59c402, 0x75f5085a, 0x006f05da, 0xe77eb98c, 0x6fd0db1a, 0xb4a72ac4, 0x7eae90a4, 0xfc9e57e0), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82, 0x42, 0x28, 0xd9, 0x47, 0x99, 0xf8, 0xc6, 0x55, 0x7c, 0x38, 0xa1, 0xc0, 0xd6, 0x77, 0x9b, 0x9d, 0x4b, 0x72, 0x9c, 0x6f, 0x1c, 0xcc, 0x42}, SECP256K1_FE_CONST(0x70720db7, 0xe238d041, 0x21f5b1af, 0xd8cc5ad9, 0xd18944c6, 0xbdc94881, 0xf502b7a3, 0xaf3aecff), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x64, 0xbb, 0xd5}, SECP256K1_FE_CONST(0x50873db3, 0x1badcc71, 0x890e4f67, 0x753a6575, 0x7f97aaa7, 0xdd5f1e82, 0xb753ace3, 0x2219064b), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x28, 0xde, 0x7d}, SECP256K1_FE_CONST(0x1eea9cc5, 0x9cfcf2fa, 0x151ac6c2, 0x74eea411, 0x0feb4f7b, 0x68c59657, 0x32e9992e, 0x976ef68e), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcb, 0xcf, 0xb7, 0xe7}, SECP256K1_FE_CONST(0x12303941, 0xaedc2088, 0x80735b1f, 0x1795c8e5, 0x5be520ea, 0x93e10335, 0x7b5d2adb, 0x7ed59b8e), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x11, 0x3a, 0xd9}, SECP256K1_FE_CONST(0x7eed6b70, 0xe7b0767c, 0x7d7feac0, 0x4e57aa2a, 0x12fef5e0, 0xf48f878f, 0xcbb88b3b, 0x6b5e0783), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x13, 0xce, 0xa4, 0xa7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x64998443, 0x5b62b4a2, 0x5d40c613, 0x3e8d9ab8, 0xc53d4b05, 0x9ee8a154, 0xa3be0fcf, 0x4e892edb), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x13, 0xce, 0xa4, 0xa7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x64998443, 0x5b62b4a2, 0x5d40c613, 0x3e8d9ab8, 0xc53d4b05, 0x9ee8a154, 0xa3be0fcf, 0x4e892edb), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x02, 0x8c, 0x59, 0x00, 0x63, 0xf6, 0x4d, 0x5a, 0x7f, 0x1c, 0x14, 0x91, 0x5c, 0xd6, 0x1e, 0xac, 0x88, 0x6a, 0xb2, 0x95, 0xbe, 0xbd, 0x91, 0x99, 0x25, 0x04, 0xcf, 0x77, 0xed, 0xb0, 0x28, 0xbd, 0xd6, 0x26, 0x7f}, SECP256K1_FE_CONST(0x3fde5713, 0xf8282eea, 0xd7d39d42, 0x01f44a7c, 0x85a5ac8a, 0x0681f35e, 0x54085c6b, 0x69543374), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x27, 0x15, 0xde, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x3524f77f, 0xa3a6eb43, 0x89c3cb5d, 0x27f1f914, 0x62086429, 0xcd6c0cb0, 0xdf43ea8f, 0x1e7b3fb4), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x27, 0x15, 0xde, 0x86, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x3524f77f, 0xa3a6eb43, 0x89c3cb5d, 0x27f1f914, 0x62086429, 0xcd6c0cb0, 0xdf43ea8f, 0x1e7b3fb4), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x2c, 0x2c, 0x57, 0x09, 0xe7, 0x15, 0x6c, 0x41, 0x77, 0x17, 0xf2, 0xfe, 0xab, 0x14, 0x71, 0x41, 0xec, 0x3d, 0xa1, 0x9f, 0xb7, 0x59, 0x57, 0x5c, 0xc6, 0xe3, 0x7b, 0x2e, 0xa5, 0xac, 0x93, 0x09, 0xf2, 0x6f, 0x0f, 0x66}, SECP256K1_FE_CONST(0xd2469ab3, 0xe04acbb2, 0x1c65a180, 0x9f39caaf, 0xe7a77c13, 0xd10f9dd3, 0x8f391c01, 0xdc499c52), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3a, 0x08, 0xcc, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf7, 0x60, 0xe9, 0xf0}, SECP256K1_FE_CONST(0x38e2a5ce, 0x6a93e795, 0xe16d2c39, 0x8bc99f03, 0x69202ce2, 0x1e8f09d5, 0x6777b40f, 0xc512bccc), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3e, 0x91, 0x25, 0x7d, 0x93, 0x20, 0x16, 0xcb, 0xf6, 0x9c, 0x44, 0x71, 0xbd, 0x1f, 0x65, 0x6c, 0x6a, 0x10, 0x7f, 0x19, 0x73, 0xde, 0x4a, 0xf7, 0x08, 0x6d, 0xb8, 0x97, 0x27, 0x70, 0x60, 0xe2, 0x56, 0x77, 0xf1, 0x9a}, SECP256K1_FE_CONST(0x864b3dc9, 0x02c37670, 0x9c10a93a, 0xd4bbe29f, 0xce0012f3, 0xdc8672c6, 0x286bba28, 0xd7d6d6fc), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x79, 0x5d, 0x6c, 0x1c, 0x32, 0x2c, 0xad, 0xf5, 0x99, 0xdb, 0xb8, 0x64, 0x81, 0x52, 0x2b, 0x3c, 0xc5, 0x5f, 0x15, 0xa6, 0x79, 0x32, 0xdb, 0x2a, 0xfa, 0x01, 0x11, 0xd9, 0xed, 0x69, 0x81, 0xbc, 0xd1, 0x24, 0xbf, 0x44}, SECP256K1_FE_CONST(0x766dfe4a, 0x700d9bee, 0x288b903a, 0xd58870e3, 0xd4fe2f0e, 0xf780bcac, 0x5c823f32, 0x0d9a9bef), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8e, 0x42, 0x6f, 0x03, 0x92, 0x38, 0x90, 0x78, 0xc1, 0x2b, 0x1a, 0x89, 0xe9, 0x54, 0x2f, 0x05, 0x93, 0xbc, 0x96, 0xb6, 0xbf, 0xde, 0x82, 0x24, 0xf8, 0x65, 0x4e, 0xf5, 0xd5, 0xcd, 0xa9, 0x35, 0xa3, 0x58, 0x21, 0x94}, SECP256K1_FE_CONST(0xfaec7bc1, 0x987b6323, 0x3fbc5f95, 0x6edbf37d, 0x54404e74, 0x61c58ab8, 0x631bc68e, 0x451a0478), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x91, 0x19, 0x21, 0x39, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x45, 0xf0, 0xf1, 0xeb}, SECP256K1_FE_CONST(0xec29a50b, 0xae138dbf, 0x7d8e2482, 0x5006bb5f, 0xc1a2cc12, 0x43ba335b, 0xc6116fb9, 0xe498ec1f), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x98, 0xeb, 0x9a, 0xb7, 0x6e, 0x84, 0x49, 0x9c, 0x48, 0x3b, 0x3b, 0xf0, 0x62, 0x14, 0xab, 0xfe, 0x06, 0x5d, 0xdd, 0xf4, 0x3b, 0x86, 0x01, 0xde, 0x59, 0x6d, 0x63, 0xb9, 0xe4, 0x5a, 0x16, 0x6a, 0x58, 0x05, 0x41, 0xfe}, SECP256K1_FE_CONST(0x1e0ff2de, 0xe9b09b13, 0x6292a9e9, 0x10f0d6ac, 0x3e552a64, 0x4bba39e6, 0x4e9dd3e3, 0xbbd3d4d4), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9b, 0x77, 0xb7, 0xf2, 0xc7, 0x4d, 0x99, 0xef, 0xce, 0xaa, 0x55, 0x0f, 0x1a, 0xd1, 0xc0, 0xf4, 0x3f, 0x46, 0xe7, 0xff, 0x1e, 0xe3, 0xbd, 0x01, 0x62, 0xb7, 0xbf, 0x55, 0xf2, 0x96, 0x5d, 0xa9, 0xc3, 0x45, 0x06, 0x46}, SECP256K1_FE_CONST(0x8b7dd5c3, 0xedba9ee9, 0x7b70eff4, 0x38f22dca, 0x9849c825, 0x4a2f3345, 0xa0a572ff, 0xeaae0928), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9b, 0x77, 0xb7, 0xf2, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x6c, 0xa8, 0x96}, SECP256K1_FE_CONST(0x0881950c, 0x8f51d6b9, 0xa6387465, 0xd5f12609, 0xef1bb254, 0x12a08a74, 0xcb2dfb20, 0x0c74bfbf), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa2, 0xf5, 0xcd, 0x83, 0x88, 0x16, 0xc1, 0x6c, 0x4f, 0xe8, 0xa1, 0x66, 0x1d, 0x60, 0x6f, 0xdb, 0x13, 0xcf, 0x9a, 0xf0, 0x4b, 0x97, 0x9a, 0x2e, 0x15, 0x9a, 0x09, 0x40, 0x9e, 0xbc, 0x86, 0x45, 0xd5, 0x8f, 0xde, 0x02}, SECP256K1_FE_CONST(0x2f083207, 0xb9fd9b55, 0x0063c31c, 0xd62b8746, 0xbd543bdc, 0x5bbf10e3, 0xa35563e9, 0x27f440c8), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb1, 0x3f, 0x75, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x4f51e0be, 0x078e0cdd, 0xab274215, 0x6adba7e7, 0xa148e731, 0x57072fd6, 0x18cd6094, 0x2b146bd0), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb1, 0x3f, 0x75, 0xc0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x4f51e0be, 0x078e0cdd, 0xab274215, 0x6adba7e7, 0xa148e731, 0x57072fd6, 0x18cd6094, 0x2b146bd0), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xbc, 0x1f, 0x8d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x16c2ccb5, 0x4352ff4b, 0xd794f6ef, 0xd613c721, 0x97ab7082, 0xda5b563b, 0xdf9cb3ed, 0xaafe74c2), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xbc, 0x1f, 0x8d, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x16c2ccb5, 0x4352ff4b, 0xd794f6ef, 0xd613c721, 0x97ab7082, 0xda5b563b, 0xdf9cb3ed, 0xaafe74c2), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xef, 0x64, 0xd1, 0x62, 0x75, 0x05, 0x46, 0xce, 0x42, 0xb0, 0x43, 0x13, 0x61, 0xe5, 0x2d, 0x4f, 0x52, 0x42, 0xd8, 0xf2, 0x4f, 0x33, 0xe6, 0xb1, 0xf9, 0x9b, 0x59, 0x16, 0x47, 0xcb, 0xc8, 0x08, 0xf4, 0x62, 0xaf, 0x51}, SECP256K1_FE_CONST(0xd41244d1, 0x1ca4f652, 0x40687759, 0xf95ca9ef, 0xbab767ed, 0xedb38fd1, 0x8c36e18c, 0xd3b6f6a9), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf0, 0xe5, 0xbe, 0x52, 0x37, 0x2d, 0xd6, 0xe8, 0x94, 0xb2, 0xa3, 0x26, 0xfc, 0x36, 0x05, 0xa6, 0xe8, 0xf3, 0xc6, 0x9c, 0x71, 0x0b, 0xf2, 0x7d, 0x63, 0x0d, 0xfe, 0x20, 0x04, 0x98, 0x8b, 0x78, 0xeb, 0x6e, 0xab, 0x36}, SECP256K1_FE_CONST(0x64bf84dd, 0x5e03670f, 0xdb24c0f5, 0xd3c2c365, 0x736f51db, 0x6c92d950, 0x10716ad2, 0xd36134c8), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfb, 0xb9, 0x82, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf6, 0xd6, 0xdb, 0x1f}, SECP256K1_FE_CONST(0x1c92ccdf, 0xcf4ac550, 0xc28db57c, 0xff0c8515, 0xcb26936c, 0x786584a7, 0x0114008d, 0x6c33a34b), 0},
|
||||
};
|
||||
|
||||
/* Set of expected ellswift_xdh BIP324 shared secrets, given private key, encodings, initiating,
|
||||
* taken from the BIP324 test vectors. Created using an independent implementation, and tested
|
||||
* against the paper authors' decoding code. */
|
||||
static const struct ellswift_xdh_test ellswift_xdh_tests_bip324[] = {
|
||||
{{0x61, 0x06, 0x2e, 0xa5, 0x07, 0x1d, 0x80, 0x0b, 0xbf, 0xd5, 0x9e, 0x2e, 0x8b, 0x53, 0xd4, 0x7d, 0x19, 0x4b, 0x09, 0x5a, 0xe5, 0xa4, 0xdf, 0x04, 0x93, 0x6b, 0x49, 0x77, 0x2e, 0xf0, 0xd4, 0xd7}, {0xec, 0x0a, 0xdf, 0xf2, 0x57, 0xbb, 0xfe, 0x50, 0x0c, 0x18, 0x8c, 0x80, 0xb4, 0xfd, 0xd6, 0x40, 0xf6, 0xb4, 0x5a, 0x48, 0x2b, 0xbc, 0x15, 0xfc, 0x7c, 0xef, 0x59, 0x31, 0xde, 0xff, 0x0a, 0xa1, 0x86, 0xf6, 0xeb, 0x9b, 0xba, 0x7b, 0x85, 0xdc, 0x4d, 0xcc, 0x28, 0xb2, 0x87, 0x22, 0xde, 0x1e, 0x3d, 0x91, 0x08, 0xb9, 0x85, 0xe2, 0x96, 0x70, 0x45, 0x66, 0x8f, 0x66, 0x09, 0x8e, 0x47, 0x5b}, {0xa4, 0xa9, 0x4d, 0xfc, 0xe6, 0x9b, 0x4a, 0x2a, 0x0a, 0x09, 0x93, 0x13, 0xd1, 0x0f, 0x9f, 0x7e, 0x7d, 0x64, 0x9d, 0x60, 0x50, 0x1c, 0x9e, 0x1d, 0x27, 0x4c, 0x30, 0x0e, 0x0d, 0x89, 0xaa, 0xfa, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8f, 0xaf, 0x88, 0xd5}, 1, {0xc6, 0x99, 0x2a, 0x11, 0x7f, 0x5e, 0xdb, 0xea, 0x70, 0xc3, 0xf5, 0x11, 0xd3, 0x2d, 0x26, 0xb9, 0x79, 0x8b, 0xe4, 0xb8, 0x1a, 0x62, 0xea, 0xee, 0x1a, 0x5a, 0xca, 0xa8, 0x45, 0x9a, 0x35, 0x92}},
|
||||
{{0x1f, 0x9c, 0x58, 0x1b, 0x35, 0x23, 0x18, 0x38, 0xf0, 0xf1, 0x7c, 0xf0, 0xc9, 0x79, 0x83, 0x5b, 0xac, 0xcb, 0x7f, 0x3a, 0xbb, 0xbb, 0x96, 0xff, 0xcc, 0x31, 0x8a, 0xb7, 0x1e, 0x6e, 0x12, 0x6f}, {0xa1, 0x85, 0x5e, 0x10, 0xe9, 0x4e, 0x00, 0xba, 0xa2, 0x30, 0x41, 0xd9, 0x16, 0xe2, 0x59, 0xf7, 0x04, 0x4e, 0x49, 0x1d, 0xa6, 0x17, 0x12, 0x69, 0x69, 0x47, 0x63, 0xf0, 0x18, 0xc7, 0xe6, 0x36, 0x93, 0xd2, 0x95, 0x75, 0xdc, 0xb4, 0x64, 0xac, 0x81, 0x6b, 0xaa, 0x1b, 0xe3, 0x53, 0xba, 0x12, 0xe3, 0x87, 0x6c, 0xba, 0x76, 0x28, 0xbd, 0x0b, 0xd8, 0xe7, 0x55, 0xe7, 0x21, 0xeb, 0x01, 0x40}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 0, {0xa0, 0x13, 0x8f, 0x56, 0x4f, 0x74, 0xd0, 0xad, 0x70, 0xbc, 0x33, 0x7d, 0xac, 0xc9, 0xd0, 0xbf, 0x1d, 0x23, 0x49, 0x36, 0x4c, 0xaf, 0x11, 0x88, 0xa1, 0xe6, 0xe8, 0xdd, 0xb3, 0xb7, 0xb1, 0x84}},
|
||||
{{0x02, 0x86, 0xc4, 0x1c, 0xd3, 0x09, 0x13, 0xdb, 0x0f, 0xdf, 0xf7, 0xa6, 0x4e, 0xbd, 0xa5, 0xc8, 0xe3, 0xe7, 0xce, 0xf1, 0x0f, 0x2a, 0xeb, 0xc0, 0x0a, 0x76, 0x50, 0x44, 0x3c, 0xf4, 0xc6, 0x0d}, {0xd1, 0xee, 0x8a, 0x93, 0xa0, 0x11, 0x30, 0xcb, 0xf2, 0x99, 0x24, 0x9a, 0x25, 0x8f, 0x94, 0xfe, 0xb5, 0xf4, 0x69, 0xe7, 0xd0, 0xf2, 0xf2, 0x8f, 0x69, 0xee, 0x5e, 0x9a, 0xa8, 0xf9, 0xb5, 0x4a, 0x60, 0xf2, 0xc3, 0xff, 0x2d, 0x02, 0x36, 0x34, 0xec, 0x7f, 0x41, 0x27, 0xa9, 0x6c, 0xc1, 0x16, 0x62, 0xe4, 0x02, 0x89, 0x4c, 0xf1, 0xf6, 0x94, 0xfb, 0x9a, 0x7e, 0xaa, 0x5f, 0x1d, 0x92, 0x44}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x22, 0xd5, 0xe4, 0x41, 0x52, 0x4d, 0x57, 0x1a, 0x52, 0xb3, 0xde, 0xf1, 0x26, 0x18, 0x9d, 0x3f, 0x41, 0x68, 0x90, 0xa9, 0x9d, 0x4d, 0xa6, 0xed, 0xe2, 0xb0, 0xcd, 0xe1, 0x76, 0x0c, 0xe2, 0xc3, 0xf9, 0x84, 0x57, 0xae}, 1, {0x25, 0x0b, 0x93, 0x57, 0x0d, 0x41, 0x11, 0x49, 0x10, 0x5a, 0xb8, 0xcb, 0x0b, 0xc5, 0x07, 0x99, 0x14, 0x90, 0x63, 0x06, 0x36, 0x8c, 0x23, 0xe9, 0xd7, 0x7c, 0x2a, 0x33, 0x26, 0x5b, 0x99, 0x4c}},
|
||||
{{0x6c, 0x77, 0x43, 0x2d, 0x1f, 0xda, 0x31, 0xe9, 0xf9, 0x42, 0xf8, 0xaf, 0x44, 0x60, 0x7e, 0x10, 0xf3, 0xad, 0x38, 0xa6, 0x5f, 0x8a, 0x4b, 0xdd, 0xae, 0x82, 0x3e, 0x5e, 0xff, 0x90, 0xdc, 0x38}, {0xd2, 0x68, 0x50, 0x70, 0xc1, 0xe6, 0x37, 0x6e, 0x63, 0x3e, 0x82, 0x52, 0x96, 0x63, 0x4f, 0xd4, 0x61, 0xfa, 0x9e, 0x5b, 0xdf, 0x21, 0x09, 0xbc, 0xeb, 0xd7, 0x35, 0xe5, 0xa9, 0x1f, 0x3e, 0x58, 0x7c, 0x5c, 0xb7, 0x82, 0xab, 0xb7, 0x97, 0xfb, 0xf6, 0xbb, 0x50, 0x74, 0xfd, 0x15, 0x42, 0xa4, 0x74, 0xf2, 0xa4, 0x5b, 0x67, 0x37, 0x63, 0xec, 0x2d, 0xb7, 0xfb, 0x99, 0xb7, 0x37, 0xbb, 0xb9}, {0x56, 0xbd, 0x0c, 0x06, 0xf1, 0x03, 0x52, 0xc3, 0xa1, 0xa9, 0xf4, 0xb4, 0xc9, 0x2f, 0x6f, 0xa2, 0xb2, 0x6d, 0xf1, 0x24, 0xb5, 0x78, 0x78, 0x35, 0x3c, 0x1f, 0xc6, 0x91, 0xc5, 0x1a, 0xbe, 0xa7, 0x7c, 0x88, 0x17, 0xda, 0xee, 0xb9, 0xfa, 0x54, 0x6b, 0x77, 0xc8, 0xda, 0xf7, 0x9d, 0x89, 0xb2, 0x2b, 0x0e, 0x1b, 0x87, 0x57, 0x4e, 0xce, 0x42, 0x37, 0x1f, 0x00, 0x23, 0x7a, 0xa9, 0xd8, 0x3a}, 0, {0x19, 0x18, 0xb7, 0x41, 0xef, 0x5f, 0x9d, 0x1d, 0x76, 0x70, 0xb0, 0x50, 0xc1, 0x52, 0xb4, 0xa4, 0xea, 0xd2, 0xc3, 0x1b, 0xe9, 0xae, 0xcb, 0x06, 0x81, 0xc0, 0xcd, 0x43, 0x24, 0x15, 0x08, 0x53}},
|
||||
{{0xa6, 0xec, 0x25, 0x12, 0x7c, 0xa1, 0xaa, 0x4c, 0xf1, 0x6b, 0x20, 0x08, 0x4b, 0xa1, 0xe6, 0x51, 0x6b, 0xaa, 0xe4, 0xd3, 0x24, 0x22, 0x28, 0x8e, 0x9b, 0x36, 0xd8, 0xbd, 0xdd, 0x2d, 0xe3, 0x5a}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x05, 0x3d, 0x7e, 0xcc, 0xa5, 0x3e, 0x33, 0xe1, 0x85, 0xa8, 0xb9, 0xbe, 0x4e, 0x76, 0x99, 0xa9, 0x7c, 0x6f, 0xf4, 0xc7, 0x95, 0x52, 0x2e, 0x59, 0x18, 0xab, 0x7c, 0xd6, 0xb6, 0x88, 0x4f, 0x67, 0xe6, 0x83, 0xf3, 0xdc}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa7, 0x73, 0x0b, 0xe3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 1, {0xdd, 0x21, 0x0a, 0xa6, 0x62, 0x9f, 0x20, 0xbb, 0x32, 0x8e, 0x5d, 0x89, 0xda, 0xa6, 0xeb, 0x2a, 0xc3, 0xd1, 0xc6, 0x58, 0xa7, 0x25, 0x53, 0x6f, 0xf1, 0x54, 0xf3, 0x1b, 0x53, 0x6c, 0x23, 0xb2}},
|
||||
{{0x0a, 0xf9, 0x52, 0x65, 0x9e, 0xd7, 0x6f, 0x80, 0xf5, 0x85, 0x96, 0x6b, 0x95, 0xab, 0x6e, 0x6f, 0xd6, 0x86, 0x54, 0x67, 0x28, 0x27, 0x87, 0x86, 0x84, 0xc8, 0xb5, 0x47, 0xb1, 0xb9, 0x4f, 0x5a}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc8, 0x10, 0x17, 0xfd, 0x92, 0xfd, 0x31, 0x63, 0x7c, 0x26, 0xc9, 0x06, 0xb4, 0x20, 0x92, 0xe1, 0x1c, 0xc0, 0xd3, 0xaf, 0xae, 0x8d, 0x90, 0x19, 0xd2, 0x57, 0x8a, 0xf2, 0x27, 0x35, 0xce, 0x7b, 0xc4, 0x69, 0xc7, 0x2d}, {0x96, 0x52, 0xd7, 0x8b, 0xae, 0xfc, 0x02, 0x8c, 0xd3, 0x7a, 0x6a, 0x92, 0x62, 0x5b, 0x8b, 0x8f, 0x85, 0xfd, 0xe1, 0xe4, 0xc9, 0x44, 0xad, 0x3f, 0x20, 0xe1, 0x98, 0xbe, 0xf8, 0xc0, 0x2f, 0x19, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf2, 0xe9, 0x18, 0x70}, 0, {0x35, 0x68, 0xf2, 0xae, 0xa2, 0xe1, 0x4e, 0xf4, 0xee, 0x4a, 0x3c, 0x2a, 0x8b, 0x8d, 0x31, 0xbc, 0x5e, 0x31, 0x87, 0xba, 0x86, 0xdb, 0x10, 0x73, 0x9b, 0x4f, 0xf8, 0xec, 0x92, 0xff, 0x66, 0x55}},
|
||||
{{0xf9, 0x0e, 0x08, 0x0c, 0x64, 0xb0, 0x58, 0x24, 0xc5, 0xa2, 0x4b, 0x25, 0x01, 0xd5, 0xae, 0xaf, 0x08, 0xaf, 0x38, 0x72, 0xee, 0x86, 0x0a, 0xa8, 0x0b, 0xdc, 0xd4, 0x30, 0xf7, 0xb6, 0x34, 0x94}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x11, 0x51, 0x73, 0x76, 0x5d, 0xc2, 0x02, 0xcf, 0x02, 0x9a, 0xd3, 0xf1, 0x54, 0x79, 0x73, 0x5d, 0x57, 0x69, 0x7a, 0xf1, 0x2b, 0x01, 0x31, 0xdd, 0x21, 0x43, 0x0d, 0x57, 0x72, 0xe4, 0xef, 0x11, 0x47, 0x4d, 0x58, 0xb9}, {0x12, 0xa5, 0x0f, 0x3f, 0xaf, 0xea, 0x7c, 0x1e, 0xea, 0xda, 0x4c, 0xf8, 0xd3, 0x37, 0x77, 0x70, 0x4b, 0x77, 0x36, 0x14, 0x53, 0xaf, 0xc8, 0x3b, 0xda, 0x91, 0xee, 0xf3, 0x49, 0xae, 0x04, 0x4d, 0x20, 0x12, 0x6c, 0x62, 0x00, 0x54, 0x7e, 0xa5, 0xa6, 0x91, 0x17, 0x76, 0xc0, 0x5d, 0xee, 0x2a, 0x7f, 0x1a, 0x9b, 0xa7, 0xdf, 0xba, 0xbb, 0xbd, 0x27, 0x3c, 0x3e, 0xf2, 0x9e, 0xf4, 0x6e, 0x46}, 1, {0xe2, 0x54, 0x61, 0xfb, 0x0e, 0x4c, 0x16, 0x2e, 0x18, 0x12, 0x3e, 0xcd, 0xe8, 0x83, 0x42, 0xd5, 0x4d, 0x44, 0x96, 0x31, 0xe9, 0xb7, 0x5a, 0x26, 0x6f, 0xd9, 0x26, 0x0c, 0x2b, 0xb2, 0xf4, 0x1d}},
|
||||
};
|
||||
|
||||
/** This is a hasher for ellswift_xdh which just returns the shared X coordinate.
|
||||
*
|
||||
* This is generally a bad idea as it means changes to the encoding of the
|
||||
* exchanged public keys do not affect the shared secret. However, it's used here
|
||||
* in tests to be able to verify the X coordinate through other means.
|
||||
*/
|
||||
static int ellswift_xdh_hash_x32(unsigned char *output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
|
||||
(void)ell_a64;
|
||||
(void)ell_b64;
|
||||
(void)data;
|
||||
memcpy(output, x32, 32);
|
||||
return 1;
|
||||
}
|
||||
|
||||
void run_ellswift_tests(void) {
|
||||
int i = 0;
|
||||
/* Test vectors. */
|
||||
for (i = 0; (unsigned)i < sizeof(ellswift_xswiftec_inv_tests) / sizeof(ellswift_xswiftec_inv_tests[0]); ++i) {
|
||||
const struct ellswift_xswiftec_inv_test *testcase = &ellswift_xswiftec_inv_tests[i];
|
||||
int c;
|
||||
for (c = 0; c < 8; ++c) {
|
||||
secp256k1_fe t;
|
||||
int ret = secp256k1_ellswift_xswiftec_inv_var(&t, &testcase->x, &testcase->u, c);
|
||||
CHECK(ret == ((testcase->enc_bitmap >> c) & 1));
|
||||
if (ret) {
|
||||
secp256k1_fe x2;
|
||||
CHECK(check_fe_equal(&t, &testcase->encs[c]));
|
||||
secp256k1_ellswift_xswiftec_var(&x2, &testcase->u, &testcase->encs[c]);
|
||||
CHECK(check_fe_equal(&testcase->x, &x2));
|
||||
}
|
||||
}
|
||||
}
|
||||
for (i = 0; (unsigned)i < sizeof(ellswift_decode_tests) / sizeof(ellswift_decode_tests[0]); ++i) {
|
||||
const struct ellswift_decode_test *testcase = &ellswift_decode_tests[i];
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_ge ge;
|
||||
int ret;
|
||||
ret = secp256k1_ellswift_decode(CTX, &pubkey, testcase->enc);
|
||||
CHECK(ret);
|
||||
ret = secp256k1_pubkey_load(CTX, &ge, &pubkey);
|
||||
CHECK(ret);
|
||||
CHECK(check_fe_equal(&testcase->x, &ge.x));
|
||||
CHECK(secp256k1_fe_is_odd(&ge.y) == testcase->odd_y);
|
||||
}
|
||||
for (i = 0; (unsigned)i < sizeof(ellswift_xdh_tests_bip324) / sizeof(ellswift_xdh_tests_bip324[0]); ++i) {
|
||||
const struct ellswift_xdh_test *test = &ellswift_xdh_tests_bip324[i];
|
||||
unsigned char shared_secret[32];
|
||||
int ret;
|
||||
int party = !test->initiating;
|
||||
const unsigned char* ell_a64 = party ? test->ellswift_theirs : test->ellswift_ours;
|
||||
const unsigned char* ell_b64 = party ? test->ellswift_ours : test->ellswift_theirs;
|
||||
ret = secp256k1_ellswift_xdh(CTX, shared_secret,
|
||||
ell_a64, ell_b64,
|
||||
test->priv_ours,
|
||||
party,
|
||||
secp256k1_ellswift_xdh_hash_function_bip324,
|
||||
NULL);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(shared_secret, test->shared_secret, 32) == 0);
|
||||
}
|
||||
/* Verify that secp256k1_ellswift_encode + decode roundtrips. */
|
||||
for (i = 0; i < 1000 * COUNT; i++) {
|
||||
unsigned char rnd32[32];
|
||||
unsigned char ell64[64];
|
||||
secp256k1_ge g, g2;
|
||||
secp256k1_pubkey pubkey, pubkey2;
|
||||
/* Generate random public key and random randomizer. */
|
||||
random_group_element_test(&g);
|
||||
secp256k1_pubkey_save(&pubkey, &g);
|
||||
secp256k1_testrand256(rnd32);
|
||||
/* Convert the public key to ElligatorSwift and back. */
|
||||
secp256k1_ellswift_encode(CTX, ell64, &pubkey, rnd32);
|
||||
secp256k1_ellswift_decode(CTX, &pubkey2, ell64);
|
||||
secp256k1_pubkey_load(CTX, &g2, &pubkey2);
|
||||
/* Compare with original. */
|
||||
ge_equals_ge(&g, &g2);
|
||||
}
|
||||
/* Verify the behavior of secp256k1_ellswift_create */
|
||||
for (i = 0; i < 400 * COUNT; i++) {
|
||||
unsigned char auxrnd32[32], sec32[32];
|
||||
secp256k1_scalar sec;
|
||||
secp256k1_gej res;
|
||||
secp256k1_ge dec;
|
||||
secp256k1_pubkey pub;
|
||||
unsigned char ell64[64];
|
||||
int ret;
|
||||
/* Generate random secret key and random randomizer. */
|
||||
if (i & 1) secp256k1_testrand256_test(auxrnd32);
|
||||
random_scalar_order_test(&sec);
|
||||
secp256k1_scalar_get_b32(sec32, &sec);
|
||||
/* Construct ElligatorSwift-encoded public keys for that key. */
|
||||
ret = secp256k1_ellswift_create(CTX, ell64, sec32, (i & 1) ? auxrnd32 : NULL);
|
||||
CHECK(ret);
|
||||
/* Decode it, and compare with traditionally-computed public key. */
|
||||
secp256k1_ellswift_decode(CTX, &pub, ell64);
|
||||
secp256k1_pubkey_load(CTX, &dec, &pub);
|
||||
secp256k1_ecmult(&res, NULL, &secp256k1_scalar_zero, &sec);
|
||||
ge_equals_gej(&dec, &res);
|
||||
}
|
||||
/* Verify that secp256k1_ellswift_xdh computes the right shared X coordinate. */
|
||||
for (i = 0; i < 800 * COUNT; i++) {
|
||||
unsigned char ell64[64], sec32[32], share32[32];
|
||||
secp256k1_scalar sec;
|
||||
secp256k1_ge dec, res;
|
||||
secp256k1_fe share_x;
|
||||
secp256k1_gej decj, resj;
|
||||
secp256k1_pubkey pub;
|
||||
int ret;
|
||||
/* Generate random secret key. */
|
||||
random_scalar_order_test(&sec);
|
||||
secp256k1_scalar_get_b32(sec32, &sec);
|
||||
/* Generate random ElligatorSwift encoding for the remote key and decode it. */
|
||||
secp256k1_testrand256_test(ell64);
|
||||
secp256k1_testrand256_test(ell64 + 32);
|
||||
secp256k1_ellswift_decode(CTX, &pub, ell64);
|
||||
secp256k1_pubkey_load(CTX, &dec, &pub);
|
||||
secp256k1_gej_set_ge(&decj, &dec);
|
||||
/* Compute the X coordinate of seckey*pubkey using ellswift_xdh. Note that we
|
||||
* pass ell64 as claimed (but incorrect) encoding for sec32 here; this works
|
||||
* because the "hasher" function we use here ignores the ell64 arguments. */
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32, ell64, ell64, sec32, i & 1, &ellswift_xdh_hash_x32, NULL);
|
||||
CHECK(ret);
|
||||
(void)secp256k1_fe_set_b32_limit(&share_x, share32); /* no overflow is possible */
|
||||
secp256k1_fe_verify(&share_x);
|
||||
/* Compute seckey*pubkey directly. */
|
||||
secp256k1_ecmult(&resj, &decj, &sec, NULL);
|
||||
secp256k1_ge_set_gej(&res, &resj);
|
||||
/* Compare. */
|
||||
CHECK(check_fe_equal(&res.x, &share_x));
|
||||
}
|
||||
/* Verify the joint behavior of secp256k1_ellswift_xdh */
|
||||
for (i = 0; i < 200 * COUNT; i++) {
|
||||
unsigned char auxrnd32a[32], auxrnd32b[32], auxrnd32a_bad[32], auxrnd32b_bad[32];
|
||||
unsigned char sec32a[32], sec32b[32], sec32a_bad[32], sec32b_bad[32];
|
||||
secp256k1_scalar seca, secb;
|
||||
unsigned char ell64a[64], ell64b[64], ell64a_bad[64], ell64b_bad[64];
|
||||
unsigned char share32a[32], share32b[32], share32_bad[32];
|
||||
unsigned char prefix64[64];
|
||||
secp256k1_ellswift_xdh_hash_function hash_function;
|
||||
void* data;
|
||||
int ret;
|
||||
|
||||
/* Pick hasher to use. */
|
||||
if ((i % 3) == 0) {
|
||||
hash_function = ellswift_xdh_hash_x32;
|
||||
data = NULL;
|
||||
} else if ((i % 3) == 1) {
|
||||
hash_function = secp256k1_ellswift_xdh_hash_function_bip324;
|
||||
data = NULL;
|
||||
} else {
|
||||
hash_function = secp256k1_ellswift_xdh_hash_function_prefix;
|
||||
secp256k1_testrand256_test(prefix64);
|
||||
secp256k1_testrand256_test(prefix64 + 32);
|
||||
data = prefix64;
|
||||
}
|
||||
|
||||
/* Generate random secret keys and random randomizers. */
|
||||
secp256k1_testrand256_test(auxrnd32a);
|
||||
secp256k1_testrand256_test(auxrnd32b);
|
||||
random_scalar_order_test(&seca);
|
||||
random_scalar_order_test(&secb);
|
||||
secp256k1_scalar_get_b32(sec32a, &seca);
|
||||
secp256k1_scalar_get_b32(sec32b, &secb);
|
||||
|
||||
/* Construct ElligatorSwift-encoded public keys for those keys. */
|
||||
/* For A: */
|
||||
ret = secp256k1_ellswift_create(CTX, ell64a, sec32a, auxrnd32a);
|
||||
CHECK(ret);
|
||||
/* For B: */
|
||||
ret = secp256k1_ellswift_create(CTX, ell64b, sec32b, auxrnd32b);
|
||||
CHECK(ret);
|
||||
|
||||
/* Compute the shared secret both ways and compare with each other. */
|
||||
/* For A: */
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32a, ell64a, ell64b, sec32a, 0, hash_function, data);
|
||||
CHECK(ret);
|
||||
/* For B: */
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32b, ell64a, ell64b, sec32b, 1, hash_function, data);
|
||||
CHECK(ret);
|
||||
/* And compare: */
|
||||
CHECK(secp256k1_memcmp_var(share32a, share32b, 32) == 0);
|
||||
|
||||
/* Verify that the shared secret doesn't match if other side's public key is incorrect. */
|
||||
/* For A (using a bad public key for B): */
|
||||
memcpy(ell64b_bad, ell64b, sizeof(ell64a_bad));
|
||||
secp256k1_testrand_flip(ell64b_bad, sizeof(ell64b_bad));
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b_bad, sec32a, 0, hash_function, data);
|
||||
CHECK(ret); /* Mismatching encodings don't get detected by secp256k1_ellswift_xdh. */
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
|
||||
/* For B (using a bad public key for A): */
|
||||
memcpy(ell64a_bad, ell64a, sizeof(ell64a_bad));
|
||||
secp256k1_testrand_flip(ell64a_bad, sizeof(ell64a_bad));
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a_bad, ell64b, sec32b, 1, hash_function, data);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
|
||||
|
||||
/* Verify that the shared secret doesn't match if the private key is incorrect. */
|
||||
/* For A: */
|
||||
memcpy(sec32a_bad, sec32a, sizeof(sec32a_bad));
|
||||
secp256k1_testrand_flip(sec32a_bad, sizeof(sec32a_bad));
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32a_bad, 0, hash_function, data);
|
||||
CHECK(!ret || secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
|
||||
/* For B: */
|
||||
memcpy(sec32b_bad, sec32b, sizeof(sec32b_bad));
|
||||
secp256k1_testrand_flip(sec32b_bad, sizeof(sec32b_bad));
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32b_bad, 1, hash_function, data);
|
||||
CHECK(!ret || secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
|
||||
|
||||
if (hash_function != ellswift_xdh_hash_x32) {
|
||||
/* Verify that the shared secret doesn't match when a different encoding of the same public key is used. */
|
||||
/* For A (changing B's public key): */
|
||||
memcpy(auxrnd32b_bad, auxrnd32b, sizeof(auxrnd32b_bad));
|
||||
secp256k1_testrand_flip(auxrnd32b_bad, sizeof(auxrnd32b_bad));
|
||||
ret = secp256k1_ellswift_create(CTX, ell64b_bad, sec32b, auxrnd32b_bad);
|
||||
CHECK(ret);
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b_bad, sec32a, 0, hash_function, data);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
|
||||
/* For B (changing A's public key): */
|
||||
memcpy(auxrnd32a_bad, auxrnd32a, sizeof(auxrnd32a_bad));
|
||||
secp256k1_testrand_flip(auxrnd32a_bad, sizeof(auxrnd32a_bad));
|
||||
ret = secp256k1_ellswift_create(CTX, ell64a_bad, sec32a, auxrnd32a_bad);
|
||||
CHECK(ret);
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a_bad, ell64b, sec32b, 1, hash_function, data);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
|
||||
|
||||
/* Verify that swapping sides changes the shared secret. */
|
||||
/* For A (claiming to be B): */
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32a, 1, hash_function, data);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
|
||||
/* For B (claiming to be A): */
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32b, 0, hash_function, data);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
|
||||
}
|
||||
}
|
||||
|
||||
/* Test hash initializers. */
|
||||
{
|
||||
secp256k1_sha256 sha, sha_optimized;
|
||||
static const unsigned char encode_tag[25] = "secp256k1_ellswift_encode";
|
||||
static const unsigned char create_tag[25] = "secp256k1_ellswift_create";
|
||||
static const unsigned char bip324_tag[26] = "bip324_ellswift_xonly_ecdh";
|
||||
|
||||
/* Check that hash initialized by
|
||||
* secp256k1_ellswift_sha256_init_encode has the expected
|
||||
* state. */
|
||||
secp256k1_sha256_initialize_tagged(&sha, encode_tag, sizeof(encode_tag));
|
||||
secp256k1_ellswift_sha256_init_encode(&sha_optimized);
|
||||
test_sha256_eq(&sha, &sha_optimized);
|
||||
|
||||
/* Check that hash initialized by
|
||||
* secp256k1_ellswift_sha256_init_create has the expected
|
||||
* state. */
|
||||
secp256k1_sha256_initialize_tagged(&sha, create_tag, sizeof(create_tag));
|
||||
secp256k1_ellswift_sha256_init_create(&sha_optimized);
|
||||
test_sha256_eq(&sha, &sha_optimized);
|
||||
|
||||
/* Check that hash initialized by
|
||||
* secp256k1_ellswift_sha256_init_bip324 has the expected
|
||||
* state. */
|
||||
secp256k1_sha256_initialize_tagged(&sha, bip324_tag, sizeof(bip324_tag));
|
||||
secp256k1_ellswift_sha256_init_bip324(&sha_optimized);
|
||||
test_sha256_eq(&sha, &sha_optimized);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -20,17 +20,6 @@ static void nonce_function_bip340_bitflip(unsigned char **args, size_t n_flip, s
|
||||
CHECK(secp256k1_memcmp_var(nonces[0], nonces[1], 32) != 0);
|
||||
}
|
||||
|
||||
/* Tests for the equality of two sha256 structs. This function only produces a
|
||||
* correct result if an integer multiple of 64 many bytes have been written
|
||||
* into the hash functions. */
|
||||
static void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2) {
|
||||
/* Is buffer fully consumed? */
|
||||
CHECK((sha1->bytes & 0x3F) == 0);
|
||||
|
||||
CHECK(sha1->bytes == sha2->bytes);
|
||||
CHECK(secp256k1_memcmp_var(sha1->s, sha2->s, sizeof(sha1->s)) == 0);
|
||||
}
|
||||
|
||||
static void run_nonce_function_bip340_tests(void) {
|
||||
unsigned char tag[13] = "BIP0340/nonce";
|
||||
unsigned char aux_tag[11] = "BIP0340/aux";
|
||||
|
@ -811,3 +811,7 @@ int secp256k1_tagged_sha256(const secp256k1_context* ctx, unsigned char *hash32,
|
||||
#ifdef ENABLE_MODULE_SCHNORRSIG
|
||||
# include "modules/schnorrsig/main_impl.h"
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
# include "modules/ellswift/main_impl.h"
|
||||
#endif
|
||||
|
49
src/tests.c
49
src/tests.c
@ -697,6 +697,17 @@ static void run_sha256_counter_tests(void) {
|
||||
}
|
||||
}
|
||||
|
||||
/* Tests for the equality of two sha256 structs. This function only produces a
|
||||
* correct result if an integer multiple of 64 many bytes have been written
|
||||
* into the hash functions. This function is used by some module tests. */
|
||||
static void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2) {
|
||||
/* Is buffer fully consumed? */
|
||||
CHECK((sha1->bytes & 0x3F) == 0);
|
||||
|
||||
CHECK(sha1->bytes == sha2->bytes);
|
||||
CHECK(secp256k1_memcmp_var(sha1->s, sha2->s, sizeof(sha1->s)) == 0);
|
||||
}
|
||||
|
||||
static void run_hmac_sha256_tests(void) {
|
||||
static const char *keys[6] = {
|
||||
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
|
||||
@ -3775,7 +3786,7 @@ static void test_ge(void) {
|
||||
*/
|
||||
secp256k1_ge *ge = (secp256k1_ge *)checked_malloc(&CTX->error_callback, sizeof(secp256k1_ge) * (1 + 4 * runs));
|
||||
secp256k1_gej *gej = (secp256k1_gej *)checked_malloc(&CTX->error_callback, sizeof(secp256k1_gej) * (1 + 4 * runs));
|
||||
secp256k1_fe zf;
|
||||
secp256k1_fe zf, r;
|
||||
secp256k1_fe zfi2, zfi3;
|
||||
|
||||
secp256k1_gej_set_infinity(&gej[0]);
|
||||
@ -3817,6 +3828,11 @@ static void test_ge(void) {
|
||||
secp256k1_fe_sqr(&zfi2, &zfi3);
|
||||
secp256k1_fe_mul(&zfi3, &zfi3, &zfi2);
|
||||
|
||||
/* Generate random r */
|
||||
do {
|
||||
random_field_element_test(&r);
|
||||
} while(secp256k1_fe_is_zero(&r));
|
||||
|
||||
for (i1 = 0; i1 < 1 + 4 * runs; i1++) {
|
||||
int i2;
|
||||
for (i2 = 0; i2 < 1 + 4 * runs; i2++) {
|
||||
@ -3929,6 +3945,29 @@ static void test_ge(void) {
|
||||
free(ge_set_all);
|
||||
}
|
||||
|
||||
/* Test that all elements have X coordinates on the curve. */
|
||||
for (i = 1; i < 4 * runs + 1; i++) {
|
||||
secp256k1_fe n;
|
||||
CHECK(secp256k1_ge_x_on_curve_var(&ge[i].x));
|
||||
/* And the same holds after random rescaling. */
|
||||
secp256k1_fe_mul(&n, &zf, &ge[i].x);
|
||||
CHECK(secp256k1_ge_x_frac_on_curve_var(&n, &zf));
|
||||
}
|
||||
|
||||
/* Test correspondence of secp256k1_ge_x{,_frac}_on_curve_var with ge_set_xo. */
|
||||
{
|
||||
secp256k1_fe n;
|
||||
secp256k1_ge q;
|
||||
int ret_on_curve, ret_frac_on_curve, ret_set_xo;
|
||||
secp256k1_fe_mul(&n, &zf, &r);
|
||||
ret_on_curve = secp256k1_ge_x_on_curve_var(&r);
|
||||
ret_frac_on_curve = secp256k1_ge_x_frac_on_curve_var(&n, &zf);
|
||||
ret_set_xo = secp256k1_ge_set_xo_var(&q, &r, 0);
|
||||
CHECK(ret_on_curve == ret_frac_on_curve);
|
||||
CHECK(ret_on_curve == ret_set_xo);
|
||||
if (ret_set_xo) CHECK(secp256k1_fe_equal_var(&r, &q.x));
|
||||
}
|
||||
|
||||
/* Test batch gej -> ge conversion with many infinities. */
|
||||
for (i = 0; i < 4 * runs + 1; i++) {
|
||||
int odd;
|
||||
@ -7500,6 +7539,10 @@ static void run_ecdsa_wycheproof(void) {
|
||||
# include "modules/schnorrsig/tests_impl.h"
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
# include "modules/ellswift/tests_impl.h"
|
||||
#endif
|
||||
|
||||
static void run_secp256k1_memczero_test(void) {
|
||||
unsigned char buf1[6] = {1, 2, 3, 4, 5, 6};
|
||||
unsigned char buf2[sizeof(buf1)];
|
||||
@ -7847,6 +7890,10 @@ int main(int argc, char **argv) {
|
||||
run_schnorrsig_tests();
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
run_ellswift_tests();
|
||||
#endif
|
||||
|
||||
/* util tests */
|
||||
run_secp256k1_memczero_test();
|
||||
run_secp256k1_byteorder_tests();
|
||||
|
Loading…
x
Reference in New Issue
Block a user