Split fe_set_b32 into reducing and normalizing variants
This commit is contained in:
parent
006ddc1f42
commit
5b32602295
@ -65,10 +65,10 @@ static void bench_setup(void* arg) {
|
||||
|
||||
secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
|
||||
secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
|
||||
secp256k1_fe_set_b32(&data->fe[0], init[0]);
|
||||
secp256k1_fe_set_b32(&data->fe[1], init[1]);
|
||||
secp256k1_fe_set_b32(&data->fe[2], init[2]);
|
||||
secp256k1_fe_set_b32(&data->fe[3], init[3]);
|
||||
secp256k1_fe_set_b32_limit(&data->fe[0], init[0]);
|
||||
secp256k1_fe_set_b32_limit(&data->fe[1], init[1]);
|
||||
secp256k1_fe_set_b32_limit(&data->fe[2], init[2]);
|
||||
secp256k1_fe_set_b32_limit(&data->fe[3], init[3]);
|
||||
CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
|
||||
CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
|
||||
secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
|
||||
|
@ -239,7 +239,8 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_scalar *sigr, const secp25
|
||||
}
|
||||
#else
|
||||
secp256k1_scalar_get_b32(c, sigr);
|
||||
secp256k1_fe_set_b32(&xr, c);
|
||||
/* we can ignore the fe_set_b32_limit return value, because we know the input is in range */
|
||||
(void)secp256k1_fe_set_b32_limit(&xr, c);
|
||||
|
||||
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
|
||||
* in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
|
||||
|
@ -17,10 +17,10 @@
|
||||
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
|
||||
if (size == 33 && (pub[0] == SECP256K1_TAG_PUBKEY_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_ODD)) {
|
||||
secp256k1_fe x;
|
||||
return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD);
|
||||
return secp256k1_fe_set_b32_limit(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD);
|
||||
} else if (size == 65 && (pub[0] == SECP256K1_TAG_PUBKEY_UNCOMPRESSED || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) {
|
||||
secp256k1_fe x, y;
|
||||
if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) {
|
||||
if (!secp256k1_fe_set_b32_limit(&x, pub+1) || !secp256k1_fe_set_b32_limit(&y, pub+33)) {
|
||||
return 0;
|
||||
}
|
||||
secp256k1_ge_set_xy(elem, &x, &y);
|
||||
|
@ -31,7 +31,7 @@ static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage* table, cons
|
||||
secp256k1_fe nums_x;
|
||||
secp256k1_ge nums_ge;
|
||||
int r;
|
||||
r = secp256k1_fe_set_b32(&nums_x, nums_b32);
|
||||
r = secp256k1_fe_set_b32_limit(&nums_x, nums_b32);
|
||||
(void)r;
|
||||
VERIFY_CHECK(r);
|
||||
r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
|
||||
|
@ -108,7 +108,7 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
|
||||
memset(keydata, 0, sizeof(keydata));
|
||||
/* Accept unobservably small non-uniformity. */
|
||||
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
|
||||
overflow = !secp256k1_fe_set_b32(&s, nonce32);
|
||||
overflow = !secp256k1_fe_set_b32_limit(&s, nonce32);
|
||||
overflow |= secp256k1_fe_is_zero(&s);
|
||||
secp256k1_fe_cmov(&s, &secp256k1_fe_one, overflow);
|
||||
/* Randomize the projection to defend against multiplier sidechannels.
|
||||
|
21
src/field.h
21
src/field.h
@ -85,7 +85,8 @@ static const secp256k1_fe secp256k1_const_beta = SECP256K1_FE_CONST(
|
||||
# define secp256k1_fe_is_zero secp256k1_fe_impl_is_zero
|
||||
# define secp256k1_fe_is_odd secp256k1_fe_impl_is_odd
|
||||
# define secp256k1_fe_cmp_var secp256k1_fe_impl_cmp_var
|
||||
# define secp256k1_fe_set_b32 secp256k1_fe_impl_set_b32
|
||||
# define secp256k1_fe_set_b32_mod secp256k1_fe_impl_set_b32_mod
|
||||
# define secp256k1_fe_set_b32_limit secp256k1_fe_impl_set_b32_limit
|
||||
# define secp256k1_fe_get_b32 secp256k1_fe_impl_get_b32
|
||||
# define secp256k1_fe_negate secp256k1_fe_impl_negate
|
||||
# define secp256k1_fe_mul_int secp256k1_fe_impl_mul_int
|
||||
@ -189,16 +190,20 @@ static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
|
||||
*/
|
||||
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
|
||||
|
||||
/** Set a field element equal to a provided 32-byte big endian value.
|
||||
/** Set a field element equal to a provided 32-byte big endian value, reducing it.
|
||||
*
|
||||
* On input, r does not need to be initalized. a must be a pointer to an initialized 32-byte array.
|
||||
* On output, r = a (mod p). It will have magnitude 1, and if (a < p), it will be normalized.
|
||||
* If not, it will only be weakly normalized. Returns whether (a < p).
|
||||
*
|
||||
* Note that this function is unusual in that the normalization of the output depends on the
|
||||
* run-time value of a.
|
||||
* On output, r = a (mod p). It will have magnitude 1, and not be normalized.
|
||||
*/
|
||||
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a);
|
||||
static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
|
||||
|
||||
/** Set a field element equal to a provided 32-byte big endian value, checking for overflow.
|
||||
*
|
||||
* On input, r does not need to be initalized. a must be a pointer to an initialized 32-byte array.
|
||||
* On output, r = a if (a < p), it will be normalized with magnitude 1, and 1 is returned.
|
||||
* If a >= p, 0 is returned, and r will be made invalid (and must not be used without overwriting).
|
||||
*/
|
||||
static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
|
||||
|
||||
/** Convert a field element to 32-byte big endian byte array.
|
||||
* On input, a must be a valid normalized field element, and r a pointer to a 32-byte array.
|
||||
|
@ -290,7 +290,7 @@ static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
||||
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
|
||||
r->n[0] = (uint32_t)a[31] | ((uint32_t)a[30] << 8) | ((uint32_t)a[29] << 16) | ((uint32_t)(a[28] & 0x3) << 24);
|
||||
r->n[1] = (uint32_t)((a[28] >> 2) & 0x3f) | ((uint32_t)a[27] << 6) | ((uint32_t)a[26] << 14) | ((uint32_t)(a[25] & 0xf) << 22);
|
||||
r->n[2] = (uint32_t)((a[25] >> 4) & 0xf) | ((uint32_t)a[24] << 4) | ((uint32_t)a[23] << 12) | ((uint32_t)(a[22] & 0x3f) << 20);
|
||||
@ -301,7 +301,10 @@ static int secp256k1_fe_impl_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
||||
r->n[7] = (uint32_t)((a[9] >> 6) & 0x3) | ((uint32_t)a[8] << 2) | ((uint32_t)a[7] << 10) | ((uint32_t)a[6] << 18);
|
||||
r->n[8] = (uint32_t)a[5] | ((uint32_t)a[4] << 8) | ((uint32_t)a[3] << 16) | ((uint32_t)(a[2] & 0x3) << 24);
|
||||
r->n[9] = (uint32_t)((a[2] >> 2) & 0x3f) | ((uint32_t)a[1] << 6) | ((uint32_t)a[0] << 14);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
|
||||
secp256k1_fe_impl_set_b32_mod(r, a);
|
||||
return !((r->n[9] == 0x3FFFFFUL) & ((r->n[8] & r->n[7] & r->n[6] & r->n[5] & r->n[4] & r->n[3] & r->n[2]) == 0x3FFFFFFUL) & ((r->n[1] + 0x40UL + ((r->n[0] + 0x3D1UL) >> 26)) > 0x3FFFFFFUL));
|
||||
}
|
||||
|
||||
|
@ -236,7 +236,7 @@ static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
||||
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
|
||||
r->n[0] = (uint64_t)a[31]
|
||||
| ((uint64_t)a[30] << 8)
|
||||
| ((uint64_t)a[29] << 16)
|
||||
@ -271,6 +271,10 @@ static int secp256k1_fe_impl_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
||||
| ((uint64_t)a[2] << 24)
|
||||
| ((uint64_t)a[1] << 32)
|
||||
| ((uint64_t)a[0] << 40);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
|
||||
secp256k1_fe_impl_set_b32_mod(r, a);
|
||||
return !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL));
|
||||
}
|
||||
|
||||
|
@ -260,13 +260,26 @@ SECP256K1_INLINE static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const se
|
||||
return secp256k1_fe_impl_cmp_var(a, b);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_set_b32(secp256k1_fe *r, const unsigned char *a);
|
||||
SECP256K1_INLINE static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
||||
int ret = secp256k1_fe_impl_set_b32(r, a);
|
||||
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
|
||||
secp256k1_fe_impl_set_b32_mod(r, a);
|
||||
r->magnitude = 1;
|
||||
r->normalized = ret;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
|
||||
SECP256K1_INLINE static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
|
||||
if (secp256k1_fe_impl_set_b32_limit(r, a)) {
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
return 1;
|
||||
} else {
|
||||
/* Mark the output field element as invalid. */
|
||||
r->magnitude = -1;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a);
|
||||
|
@ -28,7 +28,7 @@ int secp256k1_xonly_pubkey_parse(const secp256k1_context* ctx, secp256k1_xonly_p
|
||||
memset(pubkey, 0, sizeof(*pubkey));
|
||||
ARG_CHECK(input32 != NULL);
|
||||
|
||||
if (!secp256k1_fe_set_b32(&x, input32)) {
|
||||
if (!secp256k1_fe_set_b32_limit(&x, input32)) {
|
||||
return 0;
|
||||
}
|
||||
if (!secp256k1_ge_set_xo_var(&pk, &x, 0)) {
|
||||
|
@ -47,7 +47,7 @@ static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp25
|
||||
CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], buf, 32) == 0);
|
||||
|
||||
/* Compare the xonly_pubkey bytes against the precomputed group. */
|
||||
secp256k1_fe_set_b32(&fe, xonly_pubkey_bytes[i - 1]);
|
||||
secp256k1_fe_set_b32_mod(&fe, xonly_pubkey_bytes[i - 1]);
|
||||
CHECK(secp256k1_fe_equal_var(&fe, &group[i].x));
|
||||
|
||||
/* Check the parity against the precomputed group. */
|
||||
|
@ -98,7 +98,7 @@ static int secp256k1_ecdsa_sig_recover(const secp256k1_scalar *sigr, const secp2
|
||||
}
|
||||
|
||||
secp256k1_scalar_get_b32(brx, sigr);
|
||||
r = secp256k1_fe_set_b32(&fx, brx);
|
||||
r = secp256k1_fe_set_b32_limit(&fx, brx);
|
||||
(void)r;
|
||||
VERIFY_CHECK(r); /* brx comes from a scalar, so is less than the order; certainly less than p */
|
||||
if (recid & 2) {
|
||||
|
@ -232,7 +232,7 @@ int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned cha
|
||||
ARG_CHECK(msg != NULL || msglen == 0);
|
||||
ARG_CHECK(pubkey != NULL);
|
||||
|
||||
if (!secp256k1_fe_set_b32(&rx, &sig64[0])) {
|
||||
if (!secp256k1_fe_set_b32_limit(&rx, &sig64[0])) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -247,8 +247,8 @@ static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge,
|
||||
} else {
|
||||
/* Otherwise, fall back to 32-byte big endian for X and Y. */
|
||||
secp256k1_fe x, y;
|
||||
secp256k1_fe_set_b32(&x, pubkey->data);
|
||||
secp256k1_fe_set_b32(&y, pubkey->data + 32);
|
||||
secp256k1_fe_set_b32_mod(&x, pubkey->data);
|
||||
secp256k1_fe_set_b32_mod(&y, pubkey->data + 32);
|
||||
secp256k1_ge_set_xy(ge, &x, &y);
|
||||
}
|
||||
ARG_CHECK(!secp256k1_fe_is_zero(&ge->x));
|
||||
|
21
src/tests.c
21
src/tests.c
@ -90,7 +90,7 @@ static void random_field_element_test(secp256k1_fe *fe) {
|
||||
do {
|
||||
unsigned char b32[32];
|
||||
secp256k1_testrand256_test(b32);
|
||||
if (secp256k1_fe_set_b32(fe, b32)) {
|
||||
if (secp256k1_fe_set_b32_limit(fe, b32)) {
|
||||
break;
|
||||
}
|
||||
} while(1);
|
||||
@ -2957,7 +2957,7 @@ static void random_fe(secp256k1_fe *x) {
|
||||
unsigned char bin[32];
|
||||
do {
|
||||
secp256k1_testrand256(bin);
|
||||
if (secp256k1_fe_set_b32(x, bin)) {
|
||||
if (secp256k1_fe_set_b32_limit(x, bin)) {
|
||||
return;
|
||||
}
|
||||
} while(1);
|
||||
@ -2967,7 +2967,7 @@ static void random_fe_test(secp256k1_fe *x) {
|
||||
unsigned char bin[32];
|
||||
do {
|
||||
secp256k1_testrand256_test(bin);
|
||||
if (secp256k1_fe_set_b32(x, bin)) {
|
||||
if (secp256k1_fe_set_b32_limit(x, bin)) {
|
||||
return;
|
||||
}
|
||||
} while(1);
|
||||
@ -3021,7 +3021,7 @@ static void run_field_convert(void) {
|
||||
unsigned char b322[32];
|
||||
secp256k1_fe_storage fes2;
|
||||
/* Check conversions to fe. */
|
||||
CHECK(secp256k1_fe_set_b32(&fe2, b32));
|
||||
CHECK(secp256k1_fe_set_b32_limit(&fe2, b32));
|
||||
CHECK(secp256k1_fe_equal_var(&fe, &fe2));
|
||||
secp256k1_fe_from_storage(&fe2, &fes);
|
||||
CHECK(secp256k1_fe_equal_var(&fe, &fe2));
|
||||
@ -3043,7 +3043,8 @@ static void run_field_be32_overflow(void) {
|
||||
static const unsigned char zero[32] = { 0x00 };
|
||||
unsigned char out[32];
|
||||
secp256k1_fe fe;
|
||||
CHECK(secp256k1_fe_set_b32(&fe, zero_overflow) == 0);
|
||||
CHECK(secp256k1_fe_set_b32_limit(&fe, zero_overflow) == 0);
|
||||
secp256k1_fe_set_b32_mod(&fe, zero_overflow);
|
||||
CHECK(secp256k1_fe_normalizes_to_zero(&fe) == 1);
|
||||
secp256k1_fe_normalize(&fe);
|
||||
CHECK(secp256k1_fe_is_zero(&fe) == 1);
|
||||
@ -3065,7 +3066,8 @@ static void run_field_be32_overflow(void) {
|
||||
};
|
||||
unsigned char out[32];
|
||||
secp256k1_fe fe;
|
||||
CHECK(secp256k1_fe_set_b32(&fe, one_overflow) == 0);
|
||||
CHECK(secp256k1_fe_set_b32_limit(&fe, one_overflow) == 0);
|
||||
secp256k1_fe_set_b32_mod(&fe, one_overflow);
|
||||
secp256k1_fe_normalize(&fe);
|
||||
CHECK(secp256k1_fe_cmp_var(&fe, &secp256k1_fe_one) == 0);
|
||||
secp256k1_fe_get_b32(out, &fe);
|
||||
@ -3087,7 +3089,8 @@ static void run_field_be32_overflow(void) {
|
||||
unsigned char out[32];
|
||||
secp256k1_fe fe;
|
||||
const secp256k1_fe fe_ff = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0x01, 0x000003d0);
|
||||
CHECK(secp256k1_fe_set_b32(&fe, ff_overflow) == 0);
|
||||
CHECK(secp256k1_fe_set_b32_limit(&fe, ff_overflow) == 0);
|
||||
secp256k1_fe_set_b32_mod(&fe, ff_overflow);
|
||||
secp256k1_fe_normalize(&fe);
|
||||
CHECK(secp256k1_fe_cmp_var(&fe, &fe_ff) == 0);
|
||||
secp256k1_fe_get_b32(out, &fe);
|
||||
@ -3673,7 +3676,7 @@ static void run_inverse_tests(void)
|
||||
b32[31] = i & 0xff;
|
||||
b32[30] = (i >> 8) & 0xff;
|
||||
secp256k1_scalar_set_b32(&x_scalar, b32, NULL);
|
||||
secp256k1_fe_set_b32(&x_fe, b32);
|
||||
secp256k1_fe_set_b32_mod(&x_fe, b32);
|
||||
for (var = 0; var <= 1; ++var) {
|
||||
test_inverse_scalar(NULL, &x_scalar, var);
|
||||
test_inverse_field(NULL, &x_fe, var);
|
||||
@ -3690,7 +3693,7 @@ static void run_inverse_tests(void)
|
||||
for (i = 0; i < 64 * COUNT; ++i) {
|
||||
(testrand ? secp256k1_testrand256_test : secp256k1_testrand256)(b32);
|
||||
secp256k1_scalar_set_b32(&x_scalar, b32, NULL);
|
||||
secp256k1_fe_set_b32(&x_fe, b32);
|
||||
secp256k1_fe_set_b32_mod(&x_fe, b32);
|
||||
for (var = 0; var <= 1; ++var) {
|
||||
test_inverse_scalar(NULL, &x_scalar, var);
|
||||
test_inverse_field(NULL, &x_fe, var);
|
||||
|
@ -60,7 +60,7 @@ static void random_fe(secp256k1_fe *x) {
|
||||
unsigned char bin[32];
|
||||
do {
|
||||
secp256k1_testrand256(bin);
|
||||
if (secp256k1_fe_set_b32(x, bin)) {
|
||||
if (secp256k1_fe_set_b32_limit(x, bin)) {
|
||||
return;
|
||||
}
|
||||
} while(1);
|
||||
|
Loading…
x
Reference in New Issue
Block a user