Merge bitcoin-core/secp256k1#979: Native jacobi symbol algorithm
ce3cfc78a6020d21be299e1e4f22cf8ef089194d doc: Describe Jacobi calculation in safegcd_implementation.md (Elliott Jin) 6be01036c8a6da5043953d055ffb5920728fbff7 Add secp256k1_fe_is_square_var function (Pieter Wuille) 1de2a01c2b22dc8216393ad0471382beaffef525 Native jacobi symbol algorithm (Pieter Wuille) 04c6c1b18162e3dc00d9be5098ee1ccbcb2e78d9 Make secp256k1_modinv64_det_check_pow2 support abs val (Pieter Wuille) 5fffb2c7af5d33223d819283f1a561889a8210d9 Make secp256k1_i128_check_pow2 support -(2^n) (Pieter Wuille) Pull request description: This introduces variants of the vartime divsteps-based GCD algorithm used for modular inverses to compute Jacobi symbols. Changes compared to the normal vartime divsteps: * Only positive matrices are used, guaranteeing that f and g remain positive. * An additional jac variable is updated to track sign changes during matrix computation. * There is (so far) no proof that this algorithm terminates within reasonable amount of time for every input, but experimentally it appears to almost always need less than 900 iterations. To account for that, only a bounded number of iterations is performed (1500), after which failure is returned. The field logic then falls back to using square roots to determining the result. * The algorithm converges to f=g=gcd(f0,g0) rather than g=0. To keep this test simple, the end condition is f=1, which won't be reached if started with g=0. That case is dealt with specially. This code is currently unused, except for tests. I don't aim for it to be merged until there is a need for it, but this demonstrates its feasibility. In terms of performance: ``` field_inverse: min 1.76us / avg 1.76us / max 1.78us field_inverse_var: min 0.991us / avg 0.993us / max 0.996us field_jacobi_var: min 1.31us / avg 1.31us / max 1.31us field_sqrt: min 4.36us / avg 4.37us / max 4.40us ``` while with the older (f24e122d13db7061b1086ddfd21d3a1c5294213b) libgmp based Jacobi code on the same system: ``` num_jacobi: min 1.53us / avg 1.54us / max 1.55us ``` ACKs for top commit: jonasnick: ACK ce3cfc78a6020d21be299e1e4f22cf8ef089194d real-or-random: reACK ce3cfc78a6020d21be299e1e4f22cf8ef089194d diff and writeup is good and I tested every commit Tree-SHA512: 8a6204a7a108d8802d942a54faca39917f90ea5923130683bbd870f9025f4ec8ef256ffa1d939a793f0b32d4cdfcdcd1d3f8ae5ed74a0193be7ad98362ce027e
This commit is contained in:
commit
09b1d466db
@ -1,7 +1,7 @@
|
||||
# The safegcd implementation in libsecp256k1 explained
|
||||
|
||||
This document explains the modular inverse implementation in the `src/modinv*.h` files. It is based
|
||||
on the paper
|
||||
This document explains the modular inverse and Jacobi symbol implementations in the `src/modinv*.h` files.
|
||||
It is based on the paper
|
||||
["Fast constant-time gcd computation and modular inversion"](https://gcd.cr.yp.to/papers.html#safegcd)
|
||||
by Daniel J. Bernstein and Bo-Yin Yang. The references below are for the Date: 2019.04.13 version.
|
||||
|
||||
@ -769,3 +769,51 @@ def modinv_var(M, Mi, x):
|
||||
d, e = update_de(d, e, t, M, Mi)
|
||||
return normalize(f, d, Mi)
|
||||
```
|
||||
|
||||
## 8. From GCDs to Jacobi symbol
|
||||
|
||||
We can also use a similar approach to calculate Jacobi symbol *(x | M)* by keeping track of an
|
||||
extra variable *j*, for which at every step *(x | M) = j (g | f)*. As we update *f* and *g*, we
|
||||
make corresponding updates to *j* using
|
||||
[properties of the Jacobi symbol](https://en.wikipedia.org/wiki/Jacobi_symbol#Properties):
|
||||
* *((g/2) | f)* is either *(g | f)* or *-(g | f)*, depending on the value of *f mod 8* (negating if it's *3* or *5*).
|
||||
* *(f | g)* is either *(g | f)* or *-(g | f)*, depending on *f mod 4* and *g mod 4* (negating if both are *3*).
|
||||
|
||||
These updates depend only on the values of *f* and *g* modulo *4* or *8*, and can thus be applied
|
||||
very quickly, as long as we keep track of a few additional bits of *f* and *g*. Overall, this
|
||||
calculation is slightly simpler than the one for the modular inverse because we no longer need to
|
||||
keep track of *d* and *e*.
|
||||
|
||||
However, one difficulty of this approach is that the Jacobi symbol *(a | n)* is only defined for
|
||||
positive odd integers *n*, whereas in the original safegcd algorithm, *f, g* can take negative
|
||||
values. We resolve this by using the following modified steps:
|
||||
|
||||
```python
|
||||
# Before
|
||||
if delta > 0 and g & 1:
|
||||
delta, f, g = 1 - delta, g, (g - f) // 2
|
||||
|
||||
# After
|
||||
if delta > 0 and g & 1:
|
||||
delta, f, g = 1 - delta, g, (g + f) // 2
|
||||
```
|
||||
|
||||
The algorithm is still correct, since the changed divstep, called a "posdivstep" (see section 8.4
|
||||
and E.5 in the paper) preserves *gcd(f, g)*. However, there's no proof that the modified algorithm
|
||||
will converge. The justification for posdivsteps is completely empirical: in practice, it appears
|
||||
that the vast majority of nonzero inputs converge to *f=g=gcd(f<sub>0</sub>, g<sub>0</sub>)* in a
|
||||
number of steps proportional to their logarithm.
|
||||
|
||||
Note that:
|
||||
- We require inputs to satisfy *gcd(x, M) = 1*, as otherwise *f=1* is not reached.
|
||||
- We require inputs *x &neq; 0*, because applying posdivstep with *g=0* has no effect.
|
||||
- We need to update the termination condition from *g=0* to *f=1*.
|
||||
|
||||
We account for the possibility of nonconvergence by only performing a bounded number of
|
||||
posdivsteps, and then falling back to square-root based Jacobi calculation if a solution has not
|
||||
yet been found.
|
||||
|
||||
The optimizations in sections 3-7 above are described in the context of the original divsteps, but
|
||||
in the C implementation we also adapt most of them (not including "avoiding modulus operations",
|
||||
since it's not necessary to track *d, e*, and "constant-time operation", since we never calculate
|
||||
Jacobi symbols for secret data) to the posdivsteps version.
|
||||
|
@ -219,6 +219,19 @@ static void bench_field_sqrt(void* arg, int iters) {
|
||||
CHECK(j <= iters);
|
||||
}
|
||||
|
||||
static void bench_field_is_square_var(void* arg, int iters) {
|
||||
int i, j = 0;
|
||||
bench_inv *data = (bench_inv*)arg;
|
||||
secp256k1_fe t = data->fe[0];
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
j += secp256k1_fe_is_square_var(&t);
|
||||
secp256k1_fe_add(&t, &data->fe[1]);
|
||||
secp256k1_fe_normalize_var(&t);
|
||||
}
|
||||
CHECK(j <= iters);
|
||||
}
|
||||
|
||||
static void bench_group_double_var(void* arg, int iters) {
|
||||
int i;
|
||||
bench_inv *data = (bench_inv*)arg;
|
||||
@ -371,6 +384,7 @@ int main(int argc, char **argv) {
|
||||
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
|
||||
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "issquare")) run_benchmark("field_is_square_var", bench_field_is_square_var, bench_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
|
||||
|
||||
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
|
||||
|
@ -135,4 +135,7 @@ static void secp256k1_fe_half(secp256k1_fe *r);
|
||||
* magnitude set to 'm' and is normalized if (and only if) 'm' is zero. */
|
||||
static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m);
|
||||
|
||||
/** Determine whether a is a square (modulo p). */
|
||||
static int secp256k1_fe_is_square_var(const secp256k1_fe *a);
|
||||
|
||||
#endif /* SECP256K1_FIELD_H */
|
||||
|
@ -1365,4 +1365,31 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
|
||||
}
|
||||
|
||||
static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
secp256k1_modinv32_signed30 s;
|
||||
int jac, ret;
|
||||
|
||||
tmp = *x;
|
||||
secp256k1_fe_normalize_var(&tmp);
|
||||
/* secp256k1_jacobi32_maybe_var cannot deal with input 0. */
|
||||
if (secp256k1_fe_is_zero(&tmp)) return 1;
|
||||
secp256k1_fe_to_signed30(&s, &tmp);
|
||||
jac = secp256k1_jacobi32_maybe_var(&s, &secp256k1_const_modinfo_fe);
|
||||
if (jac == 0) {
|
||||
/* secp256k1_jacobi32_maybe_var failed to compute the Jacobi symbol. Fall back
|
||||
* to computing a square root. This should be extremely rare with random
|
||||
* input (except in VERIFY mode, where a lower iteration count is used). */
|
||||
secp256k1_fe dummy;
|
||||
ret = secp256k1_fe_sqrt(&dummy, &tmp);
|
||||
} else {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe dummy;
|
||||
VERIFY_CHECK(jac == 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1);
|
||||
#endif
|
||||
ret = jac >= 0;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_FIELD_REPR_IMPL_H */
|
||||
|
@ -664,4 +664,31 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
secp256k1_modinv64_signed62 s;
|
||||
int jac, ret;
|
||||
|
||||
tmp = *x;
|
||||
secp256k1_fe_normalize_var(&tmp);
|
||||
/* secp256k1_jacobi64_maybe_var cannot deal with input 0. */
|
||||
if (secp256k1_fe_is_zero(&tmp)) return 1;
|
||||
secp256k1_fe_to_signed62(&s, &tmp);
|
||||
jac = secp256k1_jacobi64_maybe_var(&s, &secp256k1_const_modinfo_fe);
|
||||
if (jac == 0) {
|
||||
/* secp256k1_jacobi64_maybe_var failed to compute the Jacobi symbol. Fall back
|
||||
* to computing a square root. This should be extremely rare with random
|
||||
* input (except in VERIFY mode, where a lower iteration count is used). */
|
||||
secp256k1_fe dummy;
|
||||
ret = secp256k1_fe_sqrt(&dummy, &tmp);
|
||||
} else {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe dummy;
|
||||
VERIFY_CHECK(jac == 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1);
|
||||
#endif
|
||||
ret = jac >= 0;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_FIELD_REPR_IMPL_H */
|
||||
|
@ -80,10 +80,10 @@ static SECP256K1_INLINE void secp256k1_i128_from_i64(secp256k1_int128 *r, int64_
|
||||
/* Compare two 128-bit values for equality. */
|
||||
static SECP256K1_INLINE int secp256k1_i128_eq_var(const secp256k1_int128 *a, const secp256k1_int128 *b);
|
||||
|
||||
/* Tests if r is equal to 2^n.
|
||||
/* Tests if r is equal to sign*2^n (sign must be 1 or -1).
|
||||
* n must be strictly less than 127.
|
||||
*/
|
||||
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n);
|
||||
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n, int sign);
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -84,9 +84,10 @@ static SECP256K1_INLINE int secp256k1_i128_eq_var(const secp256k1_int128 *a, con
|
||||
return *a == *b;
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n) {
|
||||
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n, int sign) {
|
||||
VERIFY_CHECK(n < 127);
|
||||
return (*r == (int128_t)1 << n);
|
||||
VERIFY_CHECK(sign == 1 || sign == -1);
|
||||
return (*r == (int128_t)((uint128_t)sign << n));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -189,10 +189,11 @@ static SECP256K1_INLINE int secp256k1_i128_eq_var(const secp256k1_int128 *a, con
|
||||
return a->hi == b->hi && a->lo == b->lo;
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n) {
|
||||
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n, int sign) {
|
||||
VERIFY_CHECK(n < 127);
|
||||
return n >= 64 ? r->hi == (uint64_t)1 << (n - 64) && r->lo == 0
|
||||
: r->hi == 0 && r->lo == (uint64_t)1 << n;
|
||||
VERIFY_CHECK(sign == 1 || sign == -1);
|
||||
return n >= 64 ? r->hi == (uint64_t)sign << (n - 64) && r->lo == 0
|
||||
: r->hi == (uint64_t)((sign - 1) >> 1) && r->lo == (uint64_t)sign << n;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -35,4 +35,9 @@ static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256
|
||||
/* Same as secp256k1_modinv32_var, but constant time in x (not in the modulus). */
|
||||
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
|
||||
|
||||
/* Compute the Jacobi symbol for (x | modinfo->modulus). x must be coprime with modulus (and thus
|
||||
* cannot be 0, as modulus >= 3). All limbs of x must be non-negative. Returns 0 if the result
|
||||
* cannot be computed. */
|
||||
static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
|
||||
|
||||
#endif /* SECP256K1_MODINV32_H */
|
||||
|
@ -232,19 +232,8 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_
|
||||
return zeta;
|
||||
}
|
||||
|
||||
/* Compute the transition matrix and eta for 30 divsteps (variable time).
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Output: t: transition matrix
|
||||
* Return: final eta
|
||||
*
|
||||
* Implements the divsteps_n_matrix_var function from the explanation.
|
||||
*/
|
||||
static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
|
||||
/* inv256[i] = -(2*i+1)^-1 (mod 256) */
|
||||
static const uint8_t inv256[128] = {
|
||||
/* inv256[i] = -(2*i+1)^-1 (mod 256) */
|
||||
static const uint8_t secp256k1_modinv32_inv256[128] = {
|
||||
0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
|
||||
0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
|
||||
0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
|
||||
@ -256,8 +245,19 @@ static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint
|
||||
0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
|
||||
0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
|
||||
0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
|
||||
};
|
||||
};
|
||||
|
||||
/* Compute the transition matrix and eta for 30 divsteps (variable time).
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Output: t: transition matrix
|
||||
* Return: final eta
|
||||
*
|
||||
* Implements the divsteps_n_matrix_var function from the explanation.
|
||||
*/
|
||||
static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
|
||||
/* Transformation matrix; see comments in secp256k1_modinv32_divsteps_30. */
|
||||
uint32_t u = 1, v = 0, q = 0, r = 1;
|
||||
uint32_t f = f0, g = g0, m;
|
||||
@ -297,7 +297,7 @@ static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint
|
||||
VERIFY_CHECK(limit > 0 && limit <= 30);
|
||||
m = (UINT32_MAX >> (32 - limit)) & 255U;
|
||||
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
|
||||
w = (g * inv256[(f >> 1) & 127]) & m;
|
||||
w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
|
||||
/* Do so. */
|
||||
g += f * w;
|
||||
q += u * w;
|
||||
@ -317,6 +317,86 @@ static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint
|
||||
return eta;
|
||||
}
|
||||
|
||||
/* Compute the transition matrix and eta for 30 posdivsteps (variable time, eta=-delta), and keeps track
|
||||
* of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^32 rather than 2^30, because
|
||||
* Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Output: t: transition matrix
|
||||
* Input/Output: (*jacp & 1) is bitflipped if and only if the Jacobi symbol of (f | g) changes sign
|
||||
* by applying the returned transformation matrix to it. The other bits of *jacp may
|
||||
* change, but are meaningless.
|
||||
* Return: final eta
|
||||
*/
|
||||
static int32_t secp256k1_modinv32_posdivsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t, int *jacp) {
|
||||
/* Transformation matrix. */
|
||||
uint32_t u = 1, v = 0, q = 0, r = 1;
|
||||
uint32_t f = f0, g = g0, m;
|
||||
uint16_t w;
|
||||
int i = 30, limit, zeros;
|
||||
int jac = *jacp;
|
||||
|
||||
for (;;) {
|
||||
/* Use a sentinel bit to count zeros only up to i. */
|
||||
zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
|
||||
/* Perform zeros divsteps at once; they all just divide g by two. */
|
||||
g >>= zeros;
|
||||
u <<= zeros;
|
||||
v <<= zeros;
|
||||
eta -= zeros;
|
||||
i -= zeros;
|
||||
/* Update the bottom bit of jac: when dividing g by an odd power of 2,
|
||||
* if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
|
||||
jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
|
||||
/* We're done once we've done 30 posdivsteps. */
|
||||
if (i == 0) break;
|
||||
VERIFY_CHECK((f & 1) == 1);
|
||||
VERIFY_CHECK((g & 1) == 1);
|
||||
VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
|
||||
VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
|
||||
/* If eta is negative, negate it and replace f,g with g,f. */
|
||||
if (eta < 0) {
|
||||
uint32_t tmp;
|
||||
eta = -eta;
|
||||
/* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
|
||||
* if both f and g are 3 mod 4. */
|
||||
jac ^= ((f & g) >> 1);
|
||||
tmp = f; f = g; g = tmp;
|
||||
tmp = u; u = q; q = tmp;
|
||||
tmp = v; v = r; r = tmp;
|
||||
}
|
||||
/* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
|
||||
* than i can be cancelled out (as we'd be done before that point), and no more than eta+1
|
||||
* can be done as its sign will flip once that happens. */
|
||||
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
|
||||
/* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
|
||||
VERIFY_CHECK(limit > 0 && limit <= 30);
|
||||
m = (UINT32_MAX >> (32 - limit)) & 255U;
|
||||
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
|
||||
w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
|
||||
/* Do so. */
|
||||
g += f * w;
|
||||
q += u * w;
|
||||
r += v * w;
|
||||
VERIFY_CHECK((g & m) == 0);
|
||||
}
|
||||
/* Return data in t and return value. */
|
||||
t->u = (int32_t)u;
|
||||
t->v = (int32_t)v;
|
||||
t->q = (int32_t)q;
|
||||
t->r = (int32_t)r;
|
||||
/* The determinant of t must be a power of two. This guarantees that multiplication with t
|
||||
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
||||
* will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
|
||||
* the aggregate of 30 of them will have determinant 2^30 or -2^30. */
|
||||
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30 ||
|
||||
(int64_t)t->u * t->r - (int64_t)t->v * t->q == -(((int64_t)1) << 30));
|
||||
*jacp = jac;
|
||||
return eta;
|
||||
}
|
||||
|
||||
/* Compute (t/2^30) * [d, e] mod modulus, where t is a transition matrix for 30 divsteps.
|
||||
*
|
||||
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
|
||||
@ -584,4 +664,74 @@ static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256
|
||||
*x = d;
|
||||
}
|
||||
|
||||
/* Do up to 50 iterations of 30 posdivsteps (up to 1500 steps; more is extremely rare) each until f=1.
|
||||
* In VERIFY mode use a lower number of iterations (750, close to the median 756), so failure actually occurs. */
|
||||
#ifdef VERIFY
|
||||
#define JACOBI32_ITERATIONS 25
|
||||
#else
|
||||
#define JACOBI32_ITERATIONS 50
|
||||
#endif
|
||||
|
||||
/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1. */
|
||||
static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
|
||||
/* Start with f=modulus, g=x, eta=-1. */
|
||||
secp256k1_modinv32_signed30 f = modinfo->modulus;
|
||||
secp256k1_modinv32_signed30 g = *x;
|
||||
int j, len = 9;
|
||||
int32_t eta = -1; /* eta = -delta; delta is initially 1 */
|
||||
int32_t cond, fn, gn;
|
||||
int jac = 0;
|
||||
int count;
|
||||
|
||||
/* The input limbs must all be non-negative. */
|
||||
VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0 && g.v[5] >= 0 && g.v[6] >= 0 && g.v[7] >= 0 && g.v[8] >= 0);
|
||||
|
||||
/* If x > 0, then if the loop below converges, it converges to f=g=gcd(x,modulus). Since we
|
||||
* require that gcd(x,modulus)=1 and modulus>=3, x cannot be 0. Thus, we must reach f=1 (or
|
||||
* time out). */
|
||||
VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4] | g.v[5] | g.v[6] | g.v[7] | g.v[8]) != 0);
|
||||
|
||||
for (count = 0; count < JACOBI32_ITERATIONS; ++count) {
|
||||
/* Compute transition matrix and new eta after 30 posdivsteps. */
|
||||
secp256k1_modinv32_trans2x2 t;
|
||||
eta = secp256k1_modinv32_posdivsteps_30_var(eta, f.v[0] | ((uint32_t)f.v[1] << 30), g.v[0] | ((uint32_t)g.v[1] << 30), &t, &jac);
|
||||
/* Update f,g using that transition matrix. */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
|
||||
/* If the bottom limb of f is 1, there is a chance that f=1. */
|
||||
if (f.v[0] == 1) {
|
||||
cond = 0;
|
||||
/* Check if the other limbs are also 0. */
|
||||
for (j = 1; j < len; ++j) {
|
||||
cond |= f.v[j];
|
||||
}
|
||||
/* If so, we're done. If f=1, the Jacobi symbol (g | f)=1. */
|
||||
if (cond == 0) return 1 - 2*(jac & 1);
|
||||
}
|
||||
|
||||
/* Determine if len>1 and limb (len-1) of both f and g is 0. */
|
||||
fn = f.v[len - 1];
|
||||
gn = g.v[len - 1];
|
||||
cond = ((int32_t)len - 2) >> 31;
|
||||
cond |= fn;
|
||||
cond |= gn;
|
||||
/* If so, reduce length. */
|
||||
if (cond == 0) --len;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
}
|
||||
|
||||
/* The loop failed to converge to f=g after 1500 iterations. Return 0, indicating unknown result. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_MODINV32_IMPL_H */
|
||||
|
@ -39,4 +39,9 @@ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256
|
||||
/* Same as secp256k1_modinv64_var, but constant time in x (not in the modulus). */
|
||||
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
|
||||
|
||||
/* Compute the Jacobi symbol for (x | modinfo->modulus). x must be coprime with modulus (and thus
|
||||
* cannot be 0, as modulus >= 3). All limbs of x must be non-negative. Returns 0 if the result
|
||||
* cannot be computed. */
|
||||
static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
|
||||
|
||||
#endif /* SECP256K1_MODINV64_H */
|
||||
|
@ -71,11 +71,13 @@ static int secp256k1_modinv64_mul_cmp_62(const secp256k1_modinv64_signed62 *a, i
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Check if the determinant of t is equal to 1 << n. */
|
||||
static int secp256k1_modinv64_det_check_pow2(const secp256k1_modinv64_trans2x2 *t, unsigned int n) {
|
||||
/* Check if the determinant of t is equal to 1 << n. If abs, check if |det t| == 1 << n. */
|
||||
static int secp256k1_modinv64_det_check_pow2(const secp256k1_modinv64_trans2x2 *t, unsigned int n, int abs) {
|
||||
secp256k1_int128 a;
|
||||
secp256k1_i128_det(&a, t->u, t->v, t->q, t->r);
|
||||
return secp256k1_i128_check_pow2(&a, n);
|
||||
if (secp256k1_i128_check_pow2(&a, n, 1)) return 1;
|
||||
if (abs && secp256k1_i128_check_pow2(&a, n, -1)) return 1;
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -218,7 +220,7 @@ static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_
|
||||
* aggregate of 59 of them will have determinant 2^59. Multiplying with the initial
|
||||
* 8*identity (which has determinant 2^6) means the overall outputs has determinant
|
||||
* 2^65. */
|
||||
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 65));
|
||||
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 65, 0));
|
||||
#endif
|
||||
return zeta;
|
||||
}
|
||||
@ -266,7 +268,7 @@ static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint
|
||||
tmp = v; v = r; r = -tmp;
|
||||
/* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
|
||||
* out (as we'd be done before that point), and no more than eta+1 can be done as its
|
||||
* will flip again once that happens. */
|
||||
* sign will flip again once that happens. */
|
||||
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
|
||||
VERIFY_CHECK(limit > 0 && limit <= 62);
|
||||
/* m is a mask for the bottom min(limit, 6) bits. */
|
||||
@ -301,11 +303,103 @@ static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint
|
||||
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
||||
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
||||
* aggregate of 62 of them will have determinant 2^62. */
|
||||
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62));
|
||||
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 0));
|
||||
#endif
|
||||
return eta;
|
||||
}
|
||||
|
||||
/* Compute the transition matrix and eta for 62 posdivsteps (variable time, eta=-delta), and keeps track
|
||||
* of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^64 rather than 2^62, because
|
||||
* Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
|
||||
*
|
||||
* Input: eta: initial eta
|
||||
* f0: bottom limb of initial f
|
||||
* g0: bottom limb of initial g
|
||||
* Output: t: transition matrix
|
||||
* Input/Output: (*jacp & 1) is bitflipped if and only if the Jacobi symbol of (f | g) changes sign
|
||||
* by applying the returned transformation matrix to it. The other bits of *jacp may
|
||||
* change, but are meaningless.
|
||||
* Return: final eta
|
||||
*/
|
||||
static int64_t secp256k1_modinv64_posdivsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t, int *jacp) {
|
||||
/* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
|
||||
uint64_t u = 1, v = 0, q = 0, r = 1;
|
||||
uint64_t f = f0, g = g0, m;
|
||||
uint32_t w;
|
||||
int i = 62, limit, zeros;
|
||||
int jac = *jacp;
|
||||
|
||||
for (;;) {
|
||||
/* Use a sentinel bit to count zeros only up to i. */
|
||||
zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
|
||||
/* Perform zeros divsteps at once; they all just divide g by two. */
|
||||
g >>= zeros;
|
||||
u <<= zeros;
|
||||
v <<= zeros;
|
||||
eta -= zeros;
|
||||
i -= zeros;
|
||||
/* Update the bottom bit of jac: when dividing g by an odd power of 2,
|
||||
* if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
|
||||
jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
|
||||
/* We're done once we've done 62 posdivsteps. */
|
||||
if (i == 0) break;
|
||||
VERIFY_CHECK((f & 1) == 1);
|
||||
VERIFY_CHECK((g & 1) == 1);
|
||||
VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
|
||||
VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
|
||||
/* If eta is negative, negate it and replace f,g with g,f. */
|
||||
if (eta < 0) {
|
||||
uint64_t tmp;
|
||||
eta = -eta;
|
||||
tmp = f; f = g; g = tmp;
|
||||
tmp = u; u = q; q = tmp;
|
||||
tmp = v; v = r; r = tmp;
|
||||
/* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
|
||||
* if both f and g are 3 mod 4. */
|
||||
jac ^= ((f & g) >> 1);
|
||||
/* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
|
||||
* out (as we'd be done before that point), and no more than eta+1 can be done as its
|
||||
* sign will flip again once that happens. */
|
||||
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
|
||||
VERIFY_CHECK(limit > 0 && limit <= 62);
|
||||
/* m is a mask for the bottom min(limit, 6) bits. */
|
||||
m = (UINT64_MAX >> (64 - limit)) & 63U;
|
||||
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
|
||||
* bits. */
|
||||
w = (f * g * (f * f - 2)) & m;
|
||||
} else {
|
||||
/* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
|
||||
* eta tends to be smaller here. */
|
||||
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
|
||||
VERIFY_CHECK(limit > 0 && limit <= 62);
|
||||
/* m is a mask for the bottom min(limit, 4) bits. */
|
||||
m = (UINT64_MAX >> (64 - limit)) & 15U;
|
||||
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
|
||||
* bits. */
|
||||
w = f + (((f + 1) & 4) << 1);
|
||||
w = (-w * g) & m;
|
||||
}
|
||||
g += f * w;
|
||||
q += u * w;
|
||||
r += v * w;
|
||||
VERIFY_CHECK((g & m) == 0);
|
||||
}
|
||||
/* Return data in t and return value. */
|
||||
t->u = (int64_t)u;
|
||||
t->v = (int64_t)v;
|
||||
t->q = (int64_t)q;
|
||||
t->r = (int64_t)r;
|
||||
#ifdef VERIFY
|
||||
/* The determinant of t must be a power of two. This guarantees that multiplication with t
|
||||
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
||||
* will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
|
||||
* the aggregate of 62 of them will have determinant 2^62 or -2^62. */
|
||||
VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 1));
|
||||
#endif
|
||||
*jacp = jac;
|
||||
return eta;
|
||||
}
|
||||
|
||||
/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
|
||||
*
|
||||
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
|
||||
@ -626,4 +720,74 @@ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256
|
||||
*x = d;
|
||||
}
|
||||
|
||||
/* Do up to 25 iterations of 62 posdivsteps (up to 1550 steps; more is extremely rare) each until f=1.
|
||||
* In VERIFY mode use a lower number of iterations (744, close to the median 756), so failure actually occurs. */
|
||||
#ifdef VERIFY
|
||||
#define JACOBI64_ITERATIONS 12
|
||||
#else
|
||||
#define JACOBI64_ITERATIONS 25
|
||||
#endif
|
||||
|
||||
/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1. */
|
||||
static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
|
||||
/* Start with f=modulus, g=x, eta=-1. */
|
||||
secp256k1_modinv64_signed62 f = modinfo->modulus;
|
||||
secp256k1_modinv64_signed62 g = *x;
|
||||
int j, len = 5;
|
||||
int64_t eta = -1; /* eta = -delta; delta is initially 1 */
|
||||
int64_t cond, fn, gn;
|
||||
int jac = 0;
|
||||
int count;
|
||||
|
||||
/* The input limbs must all be non-negative. */
|
||||
VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0);
|
||||
|
||||
/* If x > 0, then if the loop below converges, it converges to f=g=gcd(x,modulus). Since we
|
||||
* require that gcd(x,modulus)=1 and modulus>=3, x cannot be 0. Thus, we must reach f=1 (or
|
||||
* time out). */
|
||||
VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4]) != 0);
|
||||
|
||||
for (count = 0; count < JACOBI64_ITERATIONS; ++count) {
|
||||
/* Compute transition matrix and new eta after 62 posdivsteps. */
|
||||
secp256k1_modinv64_trans2x2 t;
|
||||
eta = secp256k1_modinv64_posdivsteps_62_var(eta, f.v[0] | ((uint64_t)f.v[1] << 62), g.v[0] | ((uint64_t)g.v[1] << 62), &t, &jac);
|
||||
/* Update f,g using that transition matrix. */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
|
||||
/* If the bottom limb of f is 1, there is a chance that f=1. */
|
||||
if (f.v[0] == 1) {
|
||||
cond = 0;
|
||||
/* Check if the other limbs are also 0. */
|
||||
for (j = 1; j < len; ++j) {
|
||||
cond |= f.v[j];
|
||||
}
|
||||
/* If so, we're done. When f=1, the Jacobi symbol (g | f)=1. */
|
||||
if (cond == 0) return 1 - 2*(jac & 1);
|
||||
}
|
||||
|
||||
/* Determine if len>1 and limb (len-1) of both f and g is 0. */
|
||||
fn = f.v[len - 1];
|
||||
gn = g.v[len - 1];
|
||||
cond = ((int64_t)len - 2) >> 63;
|
||||
cond |= fn;
|
||||
cond |= gn;
|
||||
/* If so, reduce length. */
|
||||
if (cond == 0) --len;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
|
||||
VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
|
||||
#endif
|
||||
}
|
||||
|
||||
/* The loop failed to converge to f=g after 1550 iterations. Return 0, indicating unknown result. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_MODINV64_IMPL_H */
|
||||
|
84
src/tests.c
84
src/tests.c
@ -1022,12 +1022,32 @@ static void test_modinv32_uint16(uint16_t* out, const uint16_t* in, const uint16
|
||||
uint16_to_signed30(&x, in);
|
||||
nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4] | x.v[5] | x.v[6] | x.v[7] | x.v[8]) != 0;
|
||||
uint16_to_signed30(&m.modulus, mod);
|
||||
mutate_sign_signed30(&m.modulus);
|
||||
|
||||
/* compute 1/modulus mod 2^30 */
|
||||
m.modulus_inv30 = modinv2p64(m.modulus.v[0]) & 0x3fffffff;
|
||||
CHECK(((m.modulus_inv30 * m.modulus.v[0]) & 0x3fffffff) == 1);
|
||||
|
||||
/* Test secp256k1_jacobi32_maybe_var. */
|
||||
if (nonzero) {
|
||||
int jac;
|
||||
uint16_t sqr[16], negone[16];
|
||||
mulmod256(sqr, in, in, mod);
|
||||
uint16_to_signed30(&x, sqr);
|
||||
/* Compute jacobi symbol of in^2, which must be 1 (or uncomputable). */
|
||||
jac = secp256k1_jacobi32_maybe_var(&x, &m);
|
||||
CHECK(jac == 0 || jac == 1);
|
||||
/* Then compute the jacobi symbol of -(in^2). x and -x have opposite
|
||||
* jacobi symbols if and only if (mod % 4) == 3. */
|
||||
negone[0] = mod[0] - 1;
|
||||
for (i = 1; i < 16; ++i) negone[i] = mod[i];
|
||||
mulmod256(sqr, sqr, negone, mod);
|
||||
uint16_to_signed30(&x, sqr);
|
||||
jac = secp256k1_jacobi32_maybe_var(&x, &m);
|
||||
CHECK(jac == 0 || jac == 1 - (mod[0] & 2));
|
||||
}
|
||||
|
||||
uint16_to_signed30(&x, in);
|
||||
mutate_sign_signed30(&m.modulus);
|
||||
for (vartime = 0; vartime < 2; ++vartime) {
|
||||
/* compute inverse */
|
||||
(vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m);
|
||||
@ -1095,12 +1115,32 @@ static void test_modinv64_uint16(uint16_t* out, const uint16_t* in, const uint16
|
||||
uint16_to_signed62(&x, in);
|
||||
nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4]) != 0;
|
||||
uint16_to_signed62(&m.modulus, mod);
|
||||
mutate_sign_signed62(&m.modulus);
|
||||
|
||||
/* compute 1/modulus mod 2^62 */
|
||||
m.modulus_inv62 = modinv2p64(m.modulus.v[0]) & M62;
|
||||
CHECK(((m.modulus_inv62 * m.modulus.v[0]) & M62) == 1);
|
||||
|
||||
/* Test secp256k1_jacobi64_maybe_var. */
|
||||
if (nonzero) {
|
||||
int jac;
|
||||
uint16_t sqr[16], negone[16];
|
||||
mulmod256(sqr, in, in, mod);
|
||||
uint16_to_signed62(&x, sqr);
|
||||
/* Compute jacobi symbol of in^2, which must be 1 (or uncomputable). */
|
||||
jac = secp256k1_jacobi64_maybe_var(&x, &m);
|
||||
CHECK(jac == 0 || jac == 1);
|
||||
/* Then compute the jacobi symbol of -(in^2). x and -x have opposite
|
||||
* jacobi symbols if and only if (mod % 4) == 3. */
|
||||
negone[0] = mod[0] - 1;
|
||||
for (i = 1; i < 16; ++i) negone[i] = mod[i];
|
||||
mulmod256(sqr, sqr, negone, mod);
|
||||
uint16_to_signed62(&x, sqr);
|
||||
jac = secp256k1_jacobi64_maybe_var(&x, &m);
|
||||
CHECK(jac == 0 || jac == 1 - (mod[0] & 2));
|
||||
}
|
||||
|
||||
uint16_to_signed62(&x, in);
|
||||
mutate_sign_signed62(&m.modulus);
|
||||
for (vartime = 0; vartime < 2; ++vartime) {
|
||||
/* compute inverse */
|
||||
(vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m);
|
||||
@ -2022,30 +2062,56 @@ static void run_int128_test_case(void) {
|
||||
}
|
||||
CHECK(secp256k1_i128_eq_var(&swa, &swz) == expect);
|
||||
}
|
||||
/* test secp256k1_i128_check_pow2 */
|
||||
/* test secp256k1_i128_check_pow2 (sign == 1) */
|
||||
{
|
||||
int expect = (uc & 1);
|
||||
int pos = ub % 127;
|
||||
if (expect) {
|
||||
/* If expect==1, set swz to exactly (2 << pos). */
|
||||
/* If expect==1, set swz to exactly 2^pos. */
|
||||
uint64_t hi = 0;
|
||||
uint64_t lo = 0;
|
||||
if (pos & 64) {
|
||||
if (pos >= 64) {
|
||||
hi = (((uint64_t)1) << (pos & 63));
|
||||
} else {
|
||||
lo = (((uint64_t)1) << (pos & 63));
|
||||
}
|
||||
secp256k1_i128_load(&swz, hi, lo);
|
||||
} else {
|
||||
/* If expect==0, set swz = swa, but update expect=1 if swa happens to equal (2 << pos). */
|
||||
if (pos & 64) {
|
||||
/* If expect==0, set swz = swa, but update expect=1 if swa happens to equal 2^pos. */
|
||||
if (pos >= 64) {
|
||||
if ((v[1] == (((uint64_t)1) << (pos & 63))) && v[0] == 0) expect = 1;
|
||||
} else {
|
||||
if ((v[0] == (((uint64_t)1) << (pos & 63))) && v[1] == 0) expect = 1;
|
||||
}
|
||||
swz = swa;
|
||||
}
|
||||
CHECK(secp256k1_i128_check_pow2(&swz, pos) == expect);
|
||||
CHECK(secp256k1_i128_check_pow2(&swz, pos, 1) == expect);
|
||||
}
|
||||
/* test secp256k1_i128_check_pow2 (sign == -1) */
|
||||
{
|
||||
int expect = (uc & 1);
|
||||
int pos = ub % 127;
|
||||
if (expect) {
|
||||
/* If expect==1, set swz to exactly -2^pos. */
|
||||
uint64_t hi = ~(uint64_t)0;
|
||||
uint64_t lo = ~(uint64_t)0;
|
||||
if (pos >= 64) {
|
||||
hi <<= (pos & 63);
|
||||
lo = 0;
|
||||
} else {
|
||||
lo <<= (pos & 63);
|
||||
}
|
||||
secp256k1_i128_load(&swz, hi, lo);
|
||||
} else {
|
||||
/* If expect==0, set swz = swa, but update expect=1 if swa happens to equal -2^pos. */
|
||||
if (pos >= 64) {
|
||||
if ((v[1] == ((~(uint64_t)0) << (pos & 63))) && v[0] == 0) expect = 1;
|
||||
} else {
|
||||
if ((v[0] == ((~(uint64_t)0) << (pos & 63))) && v[1] == ~(uint64_t)0) expect = 1;
|
||||
}
|
||||
swz = swa;
|
||||
}
|
||||
CHECK(secp256k1_i128_check_pow2(&swz, pos, -1) == expect);
|
||||
}
|
||||
}
|
||||
|
||||
@ -3233,8 +3299,10 @@ static void run_sqrt(void) {
|
||||
for (j = 0; j < COUNT; j++) {
|
||||
random_fe(&x);
|
||||
secp256k1_fe_sqr(&s, &x);
|
||||
CHECK(secp256k1_fe_is_square_var(&s));
|
||||
test_sqrt(&s, &x);
|
||||
secp256k1_fe_negate(&t, &s, 1);
|
||||
CHECK(!secp256k1_fe_is_square_var(&t));
|
||||
test_sqrt(&t, NULL);
|
||||
secp256k1_fe_mul(&t, &s, &ns);
|
||||
test_sqrt(&t, NULL);
|
||||
|
Loading…
x
Reference in New Issue
Block a user