secp256k1-zkp/configure.ac

613 lines
20 KiB
Plaintext
Raw Normal View History

2014-01-17 22:52:33 -05:00
AC_PREREQ([2.60])
AC_INIT([libsecp256k1],[0.1])
AC_CONFIG_AUX_DIR([build-aux])
AC_CONFIG_MACRO_DIR([build-aux/m4])
2014-01-17 22:52:33 -05:00
AC_CANONICAL_HOST
AH_TOP([#ifndef LIBSECP256K1_CONFIG_H])
AH_TOP([#define LIBSECP256K1_CONFIG_H])
AH_BOTTOM([#endif /*LIBSECP256K1_CONFIG_H*/])
2014-12-11 20:18:54 -05:00
AM_INIT_AUTOMAKE([foreign subdir-objects])
2014-01-17 22:52:33 -05:00
LT_INIT
2014-06-19 22:36:24 -04:00
dnl make the compilation flags quiet unless V=1 is used
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
2014-01-17 22:52:33 -05:00
PKG_PROG_PKG_CONFIG
AC_PATH_TOOL(AR, ar)
AC_PATH_TOOL(RANLIB, ranlib)
AC_PATH_TOOL(STRIP, strip)
AX_PROG_CC_FOR_BUILD
2014-12-09 11:48:34 +01:00
if test "x$CFLAGS" = "x"; then
CFLAGS="-g"
2014-12-09 01:30:43 +01:00
fi
AM_PROG_CC_C_O
AC_PROG_CC_C89
if test x"$ac_cv_prog_cc_c89" = x"no"; then
AC_MSG_ERROR([c89 compiler support required])
2014-01-17 22:52:33 -05:00
fi
AM_PROG_AS
2014-01-17 22:52:33 -05:00
case $host_os in
*darwin*)
if test x$cross_compiling != xyes; then
AC_PATH_PROG([BREW],brew,)
if test x$BREW != x; then
dnl These Homebrew packages may be keg-only, meaning that they won't be found
dnl in expected paths because they may conflict with system files. Ask
dnl Homebrew where each one is located, then adjust paths accordingly.
openssl_prefix=`$BREW --prefix openssl 2>/dev/null`
gmp_prefix=`$BREW --prefix gmp 2>/dev/null`
if test x$openssl_prefix != x; then
PKG_CONFIG_PATH="$openssl_prefix/lib/pkgconfig:$PKG_CONFIG_PATH"
export PKG_CONFIG_PATH
fi
if test x$gmp_prefix != x; then
GMP_CPPFLAGS="-I$gmp_prefix/include"
GMP_LIBS="-L$gmp_prefix/lib"
fi
else
AC_PATH_PROG([PORT],port,)
dnl if homebrew isn't installed and macports is, add the macports default paths
dnl as a last resort.
if test x$PORT != x; then
CPPFLAGS="$CPPFLAGS -isystem /opt/local/include"
LDFLAGS="$LDFLAGS -L/opt/local/lib"
fi
fi
fi
;;
esac
CFLAGS="$CFLAGS -W"
2015-02-23 14:12:25 -08:00
warn_CFLAGS="-std=c89 -pedantic -Wall -Wextra -Wcast-align -Wnested-externs -Wshadow -Wstrict-prototypes -Wno-unused-function -Wno-long-long -Wno-overlength-strings"
saved_CFLAGS="$CFLAGS"
CFLAGS="$CFLAGS $warn_CFLAGS"
AC_MSG_CHECKING([if ${CC} supports ${warn_CFLAGS}])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
[ AC_MSG_RESULT([yes]) ],
[ AC_MSG_RESULT([no])
CFLAGS="$saved_CFLAGS"
])
saved_CFLAGS="$CFLAGS"
CFLAGS="$CFLAGS -fvisibility=hidden"
AC_MSG_CHECKING([if ${CC} supports -fvisibility=hidden])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
[ AC_MSG_RESULT([yes]) ],
[ AC_MSG_RESULT([no])
CFLAGS="$saved_CFLAGS"
])
2014-01-17 22:52:33 -05:00
AC_ARG_ENABLE(benchmark,
2017-09-27 15:13:38 -07:00
AS_HELP_STRING([--enable-benchmark],[compile benchmark (default is yes)]),
2014-01-17 22:52:33 -05:00
[use_benchmark=$enableval],
2017-09-27 15:13:38 -07:00
[use_benchmark=yes])
2014-01-17 22:52:33 -05:00
AC_ARG_ENABLE(coverage,
AS_HELP_STRING([--enable-coverage],[enable compiler flags to support kcov coverage analysis]),
[enable_coverage=$enableval],
[enable_coverage=no])
2014-01-17 22:52:33 -05:00
AC_ARG_ENABLE(tests,
AS_HELP_STRING([--enable-tests],[compile tests (default is yes)]),
[use_tests=$enableval],
[use_tests=yes])
AC_ARG_ENABLE(openssl_tests,
AS_HELP_STRING([--enable-openssl-tests],[enable OpenSSL tests, if OpenSSL is available (default is auto)]),
[enable_openssl_tests=$enableval],
[enable_openssl_tests=auto])
2015-11-26 00:06:41 +01:00
AC_ARG_ENABLE(experimental,
AS_HELP_STRING([--enable-experimental],[allow experimental configure options (default is no)]),
[use_experimental=$enableval],
[use_experimental=no])
AC_ARG_ENABLE(exhaustive_tests,
AS_HELP_STRING([--enable-exhaustive-tests],[compile exhaustive tests (default is yes)]),
[use_exhaustive_tests=$enableval],
[use_exhaustive_tests=yes])
2014-01-17 22:52:33 -05:00
AC_ARG_ENABLE(endomorphism,
AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]),
2014-01-17 22:52:33 -05:00
[use_endomorphism=$enableval],
[use_endomorphism=no])
2015-11-26 00:06:41 +01:00
AC_ARG_ENABLE(ecmult_static_precomputation,
AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing (default is yes)]),
[use_ecmult_static_precomputation=$enableval],
[use_ecmult_static_precomputation=auto])
2014-01-17 22:52:33 -05:00
AC_ARG_ENABLE(module_ecdh,
2015-11-26 00:06:41 +01:00
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (experimental)]),
[enable_module_ecdh=$enableval],
[enable_module_ecdh=no])
AC_ARG_ENABLE(module_schnorrsig,
AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module (experimental)]),
[enable_module_schnorrsig=$enableval],
[enable_module_schnorrsig=no])
AC_ARG_ENABLE(module_musig,
AS_HELP_STRING([--enable-module-musig],[enable MuSig module (experimental)]),
[enable_module_musig=$enableval],
[enable_module_musig=no])
AC_ARG_ENABLE(module_recovery,
AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]),
[enable_module_recovery=$enableval],
[enable_module_recovery=no])
2016-07-07 00:47:41 +02:00
AC_ARG_ENABLE(module_generator,
AS_HELP_STRING([--enable-module-generator],[enable NUMS generator module (default is no)]),
[enable_module_generator=$enableval],
[enable_module_generator=no])
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
AC_ARG_ENABLE(module_rangeproof,
AS_HELP_STRING([--enable-module-rangeproof],[enable Pedersen / zero-knowledge range proofs module (default is no)]),
[enable_module_rangeproof=$enableval],
[enable_module_rangeproof=no])
AC_ARG_ENABLE(module_whitelist,
AS_HELP_STRING([--enable-module-whitelist],[enable key whitelisting module (default is no)]),
[enable_module_whitelist=$enableval],
[enable_module_whitelist=no])
AC_ARG_ENABLE(jni,
AS_HELP_STRING([--enable-jni],[enable libsecp256k1_jni (default is no)]),
[use_jni=$enableval],
[use_jni=no])
AC_ARG_ENABLE(module_surjectionproof,
AS_HELP_STRING([--enable-module-surjectionproof],[enable surjection proof module (default is no)]),
[enable_module_surjectionproof=$enableval],
[enable_module_surjectionproof=no])
2014-12-17 12:41:31 +01:00
AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto],
[Specify Field Implementation. Default is auto])],[req_field=$withval], [req_field=auto])
2014-01-17 22:52:33 -05:00
2014-12-12 16:20:47 +01:00
AC_ARG_WITH([bignum], [AS_HELP_STRING([--with-bignum=gmp|no|auto],
2014-01-17 22:52:33 -05:00
[Specify Bignum Implementation. Default is auto])],[req_bignum=$withval], [req_bignum=auto])
AC_ARG_WITH([scalar], [AS_HELP_STRING([--with-scalar=64bit|32bit|auto],
[Specify scalar implementation. Default is auto])],[req_scalar=$withval], [req_scalar=auto])
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto]
[Specify assembly optimizations to use. Default is auto (experimental: arm)])],[req_asm=$withval], [req_asm=auto])
2014-12-12 16:20:47 +01:00
2014-01-17 22:52:33 -05:00
AC_CHECK_TYPES([__int128])
AC_MSG_CHECKING([for __builtin_expect])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_expect(0,0);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_EXPECT,1,[Define this symbol if __builtin_expect is available]) ],
[ AC_MSG_RESULT([no])
])
if test x"$enable_coverage" = x"yes"; then
AC_DEFINE(COVERAGE, 1, [Define this symbol to compile out all VERIFY code])
CFLAGS="$CFLAGS -O0 --coverage"
LDFLAGS="--coverage"
else
CFLAGS="$CFLAGS -O3"
fi
AC_MSG_CHECKING([for __builtin_popcount])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_popcount(0);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_POPCOUNT,1,[Define this symbol if __builtin_popcount is available]) ],
[ AC_MSG_RESULT([no])
])
if test x"$use_ecmult_static_precomputation" != x"no"; then
save_cross_compiling=$cross_compiling
cross_compiling=no
TEMP_CC="$CC"
CC="$CC_FOR_BUILD"
AC_MSG_CHECKING([native compiler: ${CC_FOR_BUILD}])
AC_RUN_IFELSE(
[AC_LANG_PROGRAM([], [return 0])],
[working_native_cc=yes],
[working_native_cc=no],[dnl])
CC="$TEMP_CC"
cross_compiling=$save_cross_compiling
if test x"$working_native_cc" = x"no"; then
set_precomp=no
if test x"$use_ecmult_static_precomputation" = x"yes"; then
AC_MSG_ERROR([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD])
else
AC_MSG_RESULT([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD])
fi
else
AC_MSG_RESULT([ok])
set_precomp=yes
fi
else
set_precomp=no
fi
2015-08-05 16:17:50 +02:00
AC_MSG_CHECKING([for __builtin_clzll])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() { __builtin_clzll(1);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_CLZLL,1,[Define this symbol if __builtin_clzll is available]) ],
[ AC_MSG_RESULT([no])
])
2014-12-12 16:20:47 +01:00
if test x"$req_asm" = x"auto"; then
SECP_64BIT_ASM_CHECK
if test x"$has_64bit_asm" = x"yes"; then
2014-12-12 16:20:47 +01:00
set_asm=x86_64
fi
if test x"$set_asm" = x; then
set_asm=no
2014-01-17 22:52:33 -05:00
fi
2014-12-12 16:20:47 +01:00
else
set_asm=$req_asm
case $set_asm in
x86_64)
SECP_64BIT_ASM_CHECK
if test x"$has_64bit_asm" != x"yes"; then
AC_MSG_ERROR([x86_64 assembly optimization requested but not available])
fi
;;
arm)
;;
2014-12-12 16:20:47 +01:00
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimization selection])
;;
esac
fi
2014-01-17 22:52:33 -05:00
2014-12-12 16:20:47 +01:00
if test x"$req_field" = x"auto"; then
if test x"set_asm" = x"x86_64"; then
set_field=64bit
fi
2014-01-17 22:52:33 -05:00
if test x"$set_field" = x; then
SECP_INT128_CHECK
if test x"$has_int128" = x"yes"; then
set_field=64bit
2014-01-17 22:52:33 -05:00
fi
fi
if test x"$set_field" = x; then
set_field=32bit
2014-01-17 22:52:33 -05:00
fi
else
set_field=$req_field
case $set_field in
64bit)
2014-12-12 16:20:47 +01:00
if test x"$set_asm" != x"x86_64"; then
SECP_INT128_CHECK
if test x"$has_int128" != x"yes"; then
AC_MSG_ERROR([64bit field explicitly requested but neither __int128 support or x86_64 assembly available])
fi
fi
2014-01-17 22:52:33 -05:00
;;
32bit)
2014-01-17 22:52:33 -05:00
;;
*)
AC_MSG_ERROR([invalid field implementation selection])
;;
esac
fi
if test x"$req_scalar" = x"auto"; then
2014-12-12 16:20:47 +01:00
SECP_INT128_CHECK
if test x"$has_int128" = x"yes"; then
set_scalar=64bit
fi
if test x"$set_scalar" = x; then
set_scalar=32bit
fi
else
set_scalar=$req_scalar
case $set_scalar in
64bit)
SECP_INT128_CHECK
2014-12-12 16:20:47 +01:00
if test x"$has_int128" != x"yes"; then
AC_MSG_ERROR([64bit scalar explicitly requested but __int128 support not available])
fi
;;
32bit)
;;
*)
AC_MSG_ERROR([invalid scalar implementation selected])
;;
esac
fi
2014-01-17 22:52:33 -05:00
if test x"$req_bignum" = x"auto"; then
SECP_GMP_CHECK
if test x"$has_gmp" = x"yes"; then
set_bignum=gmp
fi
if test x"$set_bignum" = x; then
2014-12-12 16:20:47 +01:00
set_bignum=no
2014-01-17 22:52:33 -05:00
fi
else
set_bignum=$req_bignum
case $set_bignum in
gmp)
SECP_GMP_CHECK
2014-12-12 16:20:47 +01:00
if test x"$has_gmp" != x"yes"; then
AC_MSG_ERROR([gmp bignum explicitly requested but libgmp not available])
fi
2014-01-17 22:52:33 -05:00
;;
2014-12-12 16:20:47 +01:00
no)
2014-01-17 22:52:33 -05:00
;;
*)
AC_MSG_ERROR([invalid bignum implementation selection])
;;
esac
fi
2014-12-12 16:20:47 +01:00
# select assembly optimization
use_external_asm=no
2014-12-12 16:20:47 +01:00
case $set_asm in
x86_64)
AC_DEFINE(USE_ASM_X86_64, 1, [Define this symbol to enable x86_64 assembly optimizations])
;;
arm)
use_external_asm=yes
;;
2014-12-12 16:20:47 +01:00
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimizations])
;;
esac
2014-01-17 22:52:33 -05:00
# select field implementation
case $set_field in
64bit)
2014-01-17 22:52:33 -05:00
AC_DEFINE(USE_FIELD_5X52, 1, [Define this symbol to use the FIELD_5X52 implementation])
;;
32bit)
2014-01-17 22:52:33 -05:00
AC_DEFINE(USE_FIELD_10X26, 1, [Define this symbol to use the FIELD_10X26 implementation])
;;
*)
AC_MSG_ERROR([invalid field implementation])
;;
esac
# select bignum implementation
case $set_bignum in
gmp)
2014-11-28 01:23:55 +01:00
AC_DEFINE(HAVE_LIBGMP, 1, [Define this symbol if libgmp is installed])
AC_DEFINE(USE_NUM_GMP, 1, [Define this symbol to use the gmp implementation for num])
AC_DEFINE(USE_FIELD_INV_NUM, 1, [Define this symbol to use the num-based field inverse implementation])
AC_DEFINE(USE_SCALAR_INV_NUM, 1, [Define this symbol to use the num-based scalar inverse implementation])
2014-01-17 22:52:33 -05:00
;;
2014-12-12 16:20:47 +01:00
no)
2014-11-28 01:23:55 +01:00
AC_DEFINE(USE_NUM_NONE, 1, [Define this symbol to use no num implementation])
AC_DEFINE(USE_FIELD_INV_BUILTIN, 1, [Define this symbol to use the native field inverse implementation])
AC_DEFINE(USE_SCALAR_INV_BUILTIN, 1, [Define this symbol to use the native scalar inverse implementation])
;;
2014-01-17 22:52:33 -05:00
*)
AC_MSG_ERROR([invalid bignum implementation])
;;
esac
#select scalar implementation
case $set_scalar in
64bit)
AC_DEFINE(USE_SCALAR_4X64, 1, [Define this symbol to use the 4x64 scalar implementation])
;;
32bit)
AC_DEFINE(USE_SCALAR_8X32, 1, [Define this symbol to use the 8x32 scalar implementation])
;;
*)
AC_MSG_ERROR([invalid scalar implementation])
;;
esac
2014-01-17 22:52:33 -05:00
if test x"$use_tests" = x"yes"; then
SECP_OPENSSL_CHECK
2014-12-11 21:24:35 -05:00
if test x"$has_openssl_ec" = x"yes"; then
if test x"$enable_openssl_tests" != x"no"; then
AC_DEFINE(ENABLE_OPENSSL_TESTS, 1, [Define this symbol if OpenSSL EC functions are available])
SECP_TEST_INCLUDES="$SSL_CFLAGS $CRYPTO_CFLAGS"
SECP_TEST_LIBS="$CRYPTO_LIBS"
case $host in
*mingw*)
SECP_TEST_LIBS="$SECP_TEST_LIBS -lgdi32"
;;
esac
fi
else
if test x"$enable_openssl_tests" = x"yes"; then
AC_MSG_ERROR([OpenSSL tests requested but OpenSSL with EC support is not available])
fi
fi
else
if test x"$enable_openssl_tests" = x"yes"; then
AC_MSG_ERROR([OpenSSL tests requested but tests are not enabled])
2014-01-17 22:52:33 -05:00
fi
fi
if test x"$use_jni" != x"no"; then
AX_JNI_INCLUDE_DIR
have_jni_dependencies=yes
if test x"$enable_module_ecdh" = x"no"; then
have_jni_dependencies=no
fi
if test "x$JNI_INCLUDE_DIRS" = "x"; then
have_jni_dependencies=no
fi
if test "x$have_jni_dependencies" = "xno"; then
if test x"$use_jni" = x"yes"; then
2016-11-17 17:49:11 -08:00
AC_MSG_ERROR([jni support explicitly requested but headers/dependencies were not found. Enable ECDH and try again.])
fi
AC_MSG_WARN([jni headers/dependencies not found. jni support disabled])
use_jni=no
else
use_jni=yes
for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS; do
JNI_INCLUDES="$JNI_INCLUDES -I$JNI_INCLUDE_DIR"
done
fi
fi
2014-12-17 12:41:31 +01:00
if test x"$set_bignum" = x"gmp"; then
2014-01-17 22:52:33 -05:00
SECP_LIBS="$SECP_LIBS $GMP_LIBS"
SECP_INCLUDES="$SECP_INCLUDES $GMP_CPPFLAGS"
2014-01-17 22:52:33 -05:00
fi
if test x"$use_endomorphism" = x"yes"; then
AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization])
2014-01-17 22:52:33 -05:00
fi
if test x"$set_precomp" = x"yes"; then
AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table])
fi
if test x"$enable_module_ecdh" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module])
fi
if test x"$enable_module_schnorrsig" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_SCHNORRSIG, 1, [Define this symbol to enable the schnorrsig module])
fi
if test x"$enable_module_musig" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_MUSIG, 1, [Define this symbol to enable the MuSig module])
fi
if test x"$enable_module_recovery" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module])
fi
2016-07-07 00:47:41 +02:00
if test x"$enable_module_generator" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_GENERATOR, 1, [Define this symbol to enable the NUMS generator module])
fi
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
if test x"$enable_module_rangeproof" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RANGEPROOF, 1, [Define this symbol to enable the Pedersen / zero knowledge range proof module])
fi
if test x"$enable_module_whitelist" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_WHITELIST, 1, [Define this symbol to enable the key whitelisting module])
fi
if test x"$enable_module_surjectionproof" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_SURJECTIONPROOF, 1, [Define this symbol to enable the surjection proof module])
fi
AC_C_BIGENDIAN()
if test x"$use_external_asm" = x"yes"; then
AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used])
fi
AC_MSG_NOTICE([Using static precomputation: $set_precomp])
2014-12-12 16:20:47 +01:00
AC_MSG_NOTICE([Using assembly optimizations: $set_asm])
2014-01-17 22:52:33 -05:00
AC_MSG_NOTICE([Using field implementation: $set_field])
AC_MSG_NOTICE([Using bignum implementation: $set_bignum])
AC_MSG_NOTICE([Using scalar implementation: $set_scalar])
2014-12-12 16:20:47 +01:00
AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism])
AC_MSG_NOTICE([Building benchmarks: $use_benchmark])
AC_MSG_NOTICE([Building for coverage analysis: $enable_coverage])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery])
AC_MSG_NOTICE([Using jni: $use_jni])
2015-11-26 00:06:41 +01:00
if test x"$enable_experimental" = x"yes"; then
AC_MSG_NOTICE([******])
AC_MSG_NOTICE([WARNING: experimental build])
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
2016-07-07 00:47:41 +02:00
AC_MSG_NOTICE([Building NUMS generator module: $enable_module_generator])
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
AC_MSG_NOTICE([Building range proof module: $enable_module_rangeproof])
AC_MSG_NOTICE([Building key whitelisting module: $enable_module_whitelist])
AC_MSG_NOTICE([Building surjection proof module: $enable_module_surjectionproof])
AC_MSG_NOTICE([Building schnorrsig module: $enable_module_schnorrsig])
AC_MSG_NOTICE([Building MuSig module: $enable_module_musig])
2015-11-26 00:06:41 +01:00
AC_MSG_NOTICE([******])
if test x"$enable_module_schnorrsig" != x"yes"; then
if test x"$enable_module_musig" = x"yes"; then
AC_MSG_ERROR([MuSig module requires the schnorrsig module. Use --enable-module-schnorrsig to allow.])
fi
fi
2016-07-07 00:47:41 +02:00
if test x"$enable_module_generator" != x"yes"; then
if test x"$enable_module_rangeproof" = x"yes"; then
AC_MSG_ERROR([Rangeproof module requires the generator module. Use --enable-module-generator to allow.])
fi
fi
if test x"$enable_module_rangeproof" != x"yes"; then
if test x"$enable_module_whitelist" = x"yes"; then
AC_MSG_ERROR([Whitelist module requires the rangeproof module. Use --enable-module-rangeproof to allow.])
fi
if test x"$enable_module_surjectionproof" = x"yes"; then
AC_MSG_ERROR([Surjection proof module requires the rangeproof module. Use --enable-module-rangeproof to allow.])
fi
fi
2015-11-26 00:06:41 +01:00
else
if test x"$enable_module_ecdh" = x"yes"; then
AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_schnorrsig" = x"yes"; then
AC_MSG_ERROR([schnorrsig module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_musig" = x"yes"; then
AC_MSG_ERROR([MuSig module is experimental. Use --enable-experimental to allow.])
fi
if test x"$set_asm" = x"arm"; then
AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.])
fi
2016-07-07 00:47:41 +02:00
if test x"$enable_module_generator" = x"yes"; then
AC_MSG_ERROR([NUMS generator module is experimental. Use --enable-experimental to allow.])
fi
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
if test x"$enable_module_rangeproof" = x"yes"; then
AC_MSG_ERROR([Range proof module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_whitelist" = x"yes"; then
AC_MSG_ERROR([Key whitelisting module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_surjectionproof" = x"yes"; then
AC_MSG_ERROR([Surjection proof module is experimental. Use --enable-experimental to allow.])
fi
2015-11-26 00:06:41 +01:00
fi
2014-01-17 22:52:33 -05:00
AC_CONFIG_HEADERS([src/libsecp256k1-config.h])
2014-05-07 06:10:08 +00:00
AC_CONFIG_FILES([Makefile libsecp256k1.pc])
AC_SUBST(JNI_INCLUDES)
2014-01-17 22:52:33 -05:00
AC_SUBST(SECP_INCLUDES)
AC_SUBST(SECP_LIBS)
AC_SUBST(SECP_TEST_LIBS)
AC_SUBST(SECP_TEST_INCLUDES)
AM_CONDITIONAL([ENABLE_COVERAGE], [test x"$enable_coverage" = x"yes"])
2014-01-17 22:52:33 -05:00
AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"])
AM_CONDITIONAL([USE_EXHAUSTIVE_TESTS], [test x"$use_exhaustive_tests" != x"no"])
2014-12-11 20:09:19 -05:00
AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_MUSIG], [test x"$enable_module_musig" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
2016-07-07 00:47:41 +02:00
AM_CONDITIONAL([ENABLE_MODULE_GENERATOR], [test x"$enable_module_generator" = x"yes"])
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
AM_CONDITIONAL([ENABLE_MODULE_RANGEPROOF], [test x"$enable_module_rangeproof" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_WHITELIST], [test x"$enable_module_whitelist" = x"yes"])
AM_CONDITIONAL([USE_JNI], [test x"$use_jni" == x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
AM_CONDITIONAL([ENABLE_MODULE_SURJECTIONPROOF], [test x"$enable_module_surjectionproof" = x"yes"])
dnl make sure nothing new is exported so that we don't break the cache
PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH"
unset PKG_CONFIG_PATH
PKG_CONFIG_PATH="$PKGCONFIG_PATH_TEMP"
2014-01-17 22:52:33 -05:00
AC_OUTPUT