secp256k1-zkp/configure.ac

650 lines
22 KiB
Plaintext
Raw Normal View History

2014-01-17 22:52:33 -05:00
AC_PREREQ([2.60])
AC_INIT([libsecp256k1],[0.1])
AC_CONFIG_AUX_DIR([build-aux])
AC_CONFIG_MACRO_DIR([build-aux/m4])
2014-01-17 22:52:33 -05:00
AC_CANONICAL_HOST
AH_TOP([#ifndef LIBSECP256K1_CONFIG_H])
AH_TOP([#define LIBSECP256K1_CONFIG_H])
AH_BOTTOM([#endif /*LIBSECP256K1_CONFIG_H*/])
2014-12-11 20:18:54 -05:00
AM_INIT_AUTOMAKE([foreign subdir-objects])
# Set -g if CFLAGS are not already set, which matches the default autoconf
# behavior (see PROG_CC in the Autoconf manual) with the exception that we don't
# set -O2 here because we set it in any case (see further down).
: ${CFLAGS="-g"}
2014-01-17 22:52:33 -05:00
LT_INIT
2014-06-19 22:36:24 -04:00
dnl make the compilation flags quiet unless V=1 is used
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
2014-01-17 22:52:33 -05:00
PKG_PROG_PKG_CONFIG
AC_PATH_TOOL(AR, ar)
AC_PATH_TOOL(RANLIB, ranlib)
AC_PATH_TOOL(STRIP, strip)
AX_PROG_CC_FOR_BUILD
AM_PROG_CC_C_O
AC_PROG_CC_C89
if test x"$ac_cv_prog_cc_c89" = x"no"; then
AC_MSG_ERROR([c89 compiler support required])
2014-01-17 22:52:33 -05:00
fi
AM_PROG_AS
2014-01-17 22:52:33 -05:00
case $host_os in
*darwin*)
if test x$cross_compiling != xyes; then
AC_PATH_PROG([BREW],brew,)
if test x$BREW != x; then
dnl These Homebrew packages may be keg-only, meaning that they won't be found
dnl in expected paths because they may conflict with system files. Ask
dnl Homebrew where each one is located, then adjust paths accordingly.
openssl_prefix=`$BREW --prefix openssl 2>/dev/null`
gmp_prefix=`$BREW --prefix gmp 2>/dev/null`
if test x$openssl_prefix != x; then
PKG_CONFIG_PATH="$openssl_prefix/lib/pkgconfig:$PKG_CONFIG_PATH"
export PKG_CONFIG_PATH
CRYPTO_CPPFLAGS="-I$openssl_prefix/include"
fi
if test x$gmp_prefix != x; then
GMP_CPPFLAGS="-I$gmp_prefix/include"
GMP_LIBS="-L$gmp_prefix/lib"
fi
else
AC_PATH_PROG([PORT],port,)
dnl if homebrew isn't installed and macports is, add the macports default paths
dnl as a last resort.
if test x$PORT != x; then
CPPFLAGS="$CPPFLAGS -isystem /opt/local/include"
LDFLAGS="$LDFLAGS -L/opt/local/lib"
fi
fi
fi
;;
esac
CFLAGS="-W $CFLAGS"
2015-02-23 14:12:25 -08:00
warn_CFLAGS="-std=c89 -pedantic -Wall -Wextra -Wcast-align -Wnested-externs -Wshadow -Wstrict-prototypes -Wno-unused-function -Wno-long-long -Wno-overlength-strings"
saved_CFLAGS="$CFLAGS"
CFLAGS="$warn_CFLAGS $CFLAGS"
AC_MSG_CHECKING([if ${CC} supports ${warn_CFLAGS}])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
[ AC_MSG_RESULT([yes]) ],
[ AC_MSG_RESULT([no])
CFLAGS="$saved_CFLAGS"
])
saved_CFLAGS="$CFLAGS"
CFLAGS="-fvisibility=hidden $CFLAGS"
AC_MSG_CHECKING([if ${CC} supports -fvisibility=hidden])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
[ AC_MSG_RESULT([yes]) ],
[ AC_MSG_RESULT([no])
CFLAGS="$saved_CFLAGS"
])
2014-01-17 22:52:33 -05:00
AC_ARG_ENABLE(benchmark,
2019-03-06 14:10:38 +01:00
AS_HELP_STRING([--enable-benchmark],[compile benchmark [default=yes]]),
2014-01-17 22:52:33 -05:00
[use_benchmark=$enableval],
2017-09-27 15:13:38 -07:00
[use_benchmark=yes])
2014-01-17 22:52:33 -05:00
AC_ARG_ENABLE(coverage,
2019-03-06 14:10:38 +01:00
AS_HELP_STRING([--enable-coverage],[enable compiler flags to support kcov coverage analysis [default=no]]),
[enable_coverage=$enableval],
[enable_coverage=no])
2014-01-17 22:52:33 -05:00
AC_ARG_ENABLE(tests,
2019-03-06 14:10:38 +01:00
AS_HELP_STRING([--enable-tests],[compile tests [default=yes]]),
2014-01-17 22:52:33 -05:00
[use_tests=$enableval],
[use_tests=yes])
AC_ARG_ENABLE(openssl_tests,
2019-03-06 14:10:38 +01:00
AS_HELP_STRING([--enable-openssl-tests],[enable OpenSSL tests [default=auto]]),
[enable_openssl_tests=$enableval],
[enable_openssl_tests=auto])
2015-11-26 00:06:41 +01:00
AC_ARG_ENABLE(experimental,
2019-03-06 14:10:38 +01:00
AS_HELP_STRING([--enable-experimental],[allow experimental configure options [default=no]]),
2015-11-26 00:06:41 +01:00
[use_experimental=$enableval],
[use_experimental=no])
AC_ARG_ENABLE(exhaustive_tests,
2019-03-06 14:10:38 +01:00
AS_HELP_STRING([--enable-exhaustive-tests],[compile exhaustive tests [default=yes]]),
[use_exhaustive_tests=$enableval],
[use_exhaustive_tests=yes])
2014-01-17 22:52:33 -05:00
AC_ARG_ENABLE(endomorphism,
2019-03-06 14:10:38 +01:00
AS_HELP_STRING([--enable-endomorphism],[enable endomorphism [default=no]]),
2014-01-17 22:52:33 -05:00
[use_endomorphism=$enableval],
[use_endomorphism=no])
2015-11-26 00:06:41 +01:00
AC_ARG_ENABLE(ecmult_static_precomputation,
2019-03-06 14:10:38 +01:00
AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing [default=auto]]),
[use_ecmult_static_precomputation=$enableval],
[use_ecmult_static_precomputation=auto])
2014-01-17 22:52:33 -05:00
AC_ARG_ENABLE(module_ecdh,
2015-11-26 00:06:41 +01:00
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (experimental)]),
[enable_module_ecdh=$enableval],
[enable_module_ecdh=no])
AC_ARG_ENABLE(module_recovery,
2019-03-06 14:10:38 +01:00
AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module [default=no]]),
[enable_module_recovery=$enableval],
[enable_module_recovery=no])
2016-07-07 00:47:41 +02:00
AC_ARG_ENABLE(module_generator,
AS_HELP_STRING([--enable-module-generator],[enable NUMS generator module (default is no)]),
[enable_module_generator=$enableval],
[enable_module_generator=no])
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
AC_ARG_ENABLE(module_rangeproof,
AS_HELP_STRING([--enable-module-rangeproof],[enable Pedersen / zero-knowledge range proofs module (default is no)]),
[enable_module_rangeproof=$enableval],
[enable_module_rangeproof=no])
AC_ARG_ENABLE(module_whitelist,
AS_HELP_STRING([--enable-module-whitelist],[enable key whitelisting module (default is no)]),
[enable_module_whitelist=$enableval],
[enable_module_whitelist=no])
AC_ARG_ENABLE(external_default_callbacks,
AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]),
[use_external_default_callbacks=$enableval],
[use_external_default_callbacks=no])
AC_ARG_ENABLE(module_surjectionproof,
AS_HELP_STRING([--enable-module-surjectionproof],[enable surjection proof module (default is no)]),
[enable_module_surjectionproof=$enableval],
[enable_module_surjectionproof=no])
2014-12-17 12:41:31 +01:00
AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto],
2019-03-06 14:10:38 +01:00
[finite field implementation to use [default=auto]])],[req_field=$withval], [req_field=auto])
2014-01-17 22:52:33 -05:00
2014-12-12 16:20:47 +01:00
AC_ARG_WITH([bignum], [AS_HELP_STRING([--with-bignum=gmp|no|auto],
2019-03-06 14:10:38 +01:00
[bignum implementation to use [default=auto]])],[req_bignum=$withval], [req_bignum=auto])
2014-01-17 22:52:33 -05:00
AC_ARG_WITH([scalar], [AS_HELP_STRING([--with-scalar=64bit|32bit|auto],
2019-03-06 14:10:38 +01:00
[scalar implementation to use [default=auto]])],[req_scalar=$withval], [req_scalar=auto])
2019-03-06 14:10:38 +01:00
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto],
[assembly optimizations to use (experimental: arm) [default=auto]])],[req_asm=$withval], [req_asm=auto])
2014-12-12 16:20:47 +01:00
AC_ARG_WITH([ecmult-window], [AS_HELP_STRING([--with-ecmult-window=SIZE|auto],
[window size for ecmult precomputation for verification, specified as integer in range [2..24].]
[Larger values result in possibly better performance at the cost of an exponentially larger precomputed table.]
[The table will store 2^(SIZE-2) * 64 bytes of data but can be larger in memory due to platform-specific padding and alignment.]
[If the endomorphism optimization is enabled, two tables of this size are used instead of only one.]
["auto" is a reasonable setting for desktop machines (currently 15). [default=auto]]
)],
[req_ecmult_window=$withval], [req_ecmult_window=auto])
AC_ARG_WITH([ecmult-gen-precision], [AS_HELP_STRING([--with-ecmult-gen-precision=2|4|8|auto],
[Precision bits to tune the precomputed table size for signing.]
[The size of the table is 32kB for 2 bits, 64kB for 4 bits, 512kB for 8 bits of precision.]
[A larger table size usually results in possible faster signing.]
["auto" is a reasonable setting for desktop machines (currently 4). [default=auto]]
)],
[req_ecmult_gen_precision=$withval], [req_ecmult_gen_precision=auto])
2014-01-17 22:52:33 -05:00
AC_CHECK_TYPES([__int128])
AC_CHECK_HEADER([valgrind/memcheck.h], [enable_valgrind=yes], [enable_valgrind=no], [])
AM_CONDITIONAL([VALGRIND_ENABLED],[test "$enable_valgrind" = "yes"])
if test x"$enable_coverage" = x"yes"; then
AC_DEFINE(COVERAGE, 1, [Define this symbol to compile out all VERIFY code])
CFLAGS="-O0 --coverage $CFLAGS"
LDFLAGS="--coverage $LDFLAGS"
else
CFLAGS="-O2 $CFLAGS"
fi
AC_MSG_CHECKING([for __builtin_popcount])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_popcount(0);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_POPCOUNT,1,[Define this symbol if __builtin_popcount is available]) ],
[ AC_MSG_RESULT([no])
])
if test x"$use_ecmult_static_precomputation" != x"no"; then
# Temporarily switch to an environment for the native compiler
save_cross_compiling=$cross_compiling
cross_compiling=no
SAVE_CC="$CC"
CC="$CC_FOR_BUILD"
SAVE_CFLAGS="$CFLAGS"
CFLAGS="$CFLAGS_FOR_BUILD"
SAVE_CPPFLAGS="$CPPFLAGS"
CPPFLAGS="$CPPFLAGS_FOR_BUILD"
SAVE_LDFLAGS="$LDFLAGS"
LDFLAGS="$LDFLAGS_FOR_BUILD"
warn_CFLAGS_FOR_BUILD="-Wall -Wextra -Wno-unused-function"
saved_CFLAGS="$CFLAGS"
CFLAGS="$warn_CFLAGS_FOR_BUILD $CFLAGS"
AC_MSG_CHECKING([if native ${CC_FOR_BUILD} supports ${warn_CFLAGS_FOR_BUILD}])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
[ AC_MSG_RESULT([yes]) ],
[ AC_MSG_RESULT([no])
CFLAGS="$saved_CFLAGS"
])
AC_MSG_CHECKING([for working native compiler: ${CC_FOR_BUILD}])
AC_RUN_IFELSE(
[AC_LANG_PROGRAM([], [])],
[working_native_cc=yes],
[working_native_cc=no],[:])
CFLAGS_FOR_BUILD="$CFLAGS"
# Restore the environment
cross_compiling=$save_cross_compiling
CC="$SAVE_CC"
CFLAGS="$SAVE_CFLAGS"
CPPFLAGS="$SAVE_CPPFLAGS"
LDFLAGS="$SAVE_LDFLAGS"
if test x"$working_native_cc" = x"no"; then
AC_MSG_RESULT([no])
set_precomp=no
m4_define([please_set_for_build], [Please set CC_FOR_BUILD, CFLAGS_FOR_BUILD, CPPFLAGS_FOR_BUILD, and/or LDFLAGS_FOR_BUILD.])
if test x"$use_ecmult_static_precomputation" = x"yes"; then
AC_MSG_ERROR([native compiler ${CC_FOR_BUILD} does not produce working binaries. please_set_for_build])
else
AC_MSG_WARN([Disabling statically generated ecmult table because the native compiler ${CC_FOR_BUILD} does not produce working binaries. please_set_for_build])
fi
else
AC_MSG_RESULT([yes])
set_precomp=yes
fi
else
set_precomp=no
fi
2015-08-05 16:17:50 +02:00
AC_MSG_CHECKING([for __builtin_clzll])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() { __builtin_clzll(1);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_CLZLL,1,[Define this symbol if __builtin_clzll is available]) ],
[ AC_MSG_RESULT([no])
])
2014-12-12 16:20:47 +01:00
if test x"$req_asm" = x"auto"; then
SECP_64BIT_ASM_CHECK
if test x"$has_64bit_asm" = x"yes"; then
2014-12-12 16:20:47 +01:00
set_asm=x86_64
fi
if test x"$set_asm" = x; then
set_asm=no
2014-01-17 22:52:33 -05:00
fi
2014-12-12 16:20:47 +01:00
else
set_asm=$req_asm
case $set_asm in
x86_64)
SECP_64BIT_ASM_CHECK
if test x"$has_64bit_asm" != x"yes"; then
AC_MSG_ERROR([x86_64 assembly optimization requested but not available])
fi
;;
arm)
;;
2014-12-12 16:20:47 +01:00
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimization selection])
;;
esac
fi
2014-01-17 22:52:33 -05:00
2014-12-12 16:20:47 +01:00
if test x"$req_field" = x"auto"; then
if test x"set_asm" = x"x86_64"; then
set_field=64bit
fi
2014-01-17 22:52:33 -05:00
if test x"$set_field" = x; then
SECP_INT128_CHECK
if test x"$has_int128" = x"yes"; then
set_field=64bit
2014-01-17 22:52:33 -05:00
fi
fi
if test x"$set_field" = x; then
set_field=32bit
2014-01-17 22:52:33 -05:00
fi
else
set_field=$req_field
case $set_field in
64bit)
2014-12-12 16:20:47 +01:00
if test x"$set_asm" != x"x86_64"; then
SECP_INT128_CHECK
if test x"$has_int128" != x"yes"; then
AC_MSG_ERROR([64bit field explicitly requested but neither __int128 support or x86_64 assembly available])
fi
fi
2014-01-17 22:52:33 -05:00
;;
32bit)
2014-01-17 22:52:33 -05:00
;;
*)
AC_MSG_ERROR([invalid field implementation selection])
;;
esac
fi
if test x"$req_scalar" = x"auto"; then
2014-12-12 16:20:47 +01:00
SECP_INT128_CHECK
if test x"$has_int128" = x"yes"; then
set_scalar=64bit
fi
if test x"$set_scalar" = x; then
set_scalar=32bit
fi
else
set_scalar=$req_scalar
case $set_scalar in
64bit)
SECP_INT128_CHECK
2014-12-12 16:20:47 +01:00
if test x"$has_int128" != x"yes"; then
AC_MSG_ERROR([64bit scalar explicitly requested but __int128 support not available])
fi
;;
32bit)
;;
*)
AC_MSG_ERROR([invalid scalar implementation selected])
;;
esac
fi
2014-01-17 22:52:33 -05:00
if test x"$req_bignum" = x"auto"; then
SECP_GMP_CHECK
if test x"$has_gmp" = x"yes"; then
set_bignum=gmp
fi
if test x"$set_bignum" = x; then
2014-12-12 16:20:47 +01:00
set_bignum=no
2014-01-17 22:52:33 -05:00
fi
else
set_bignum=$req_bignum
case $set_bignum in
gmp)
SECP_GMP_CHECK
2014-12-12 16:20:47 +01:00
if test x"$has_gmp" != x"yes"; then
AC_MSG_ERROR([gmp bignum explicitly requested but libgmp not available])
fi
2014-01-17 22:52:33 -05:00
;;
2014-12-12 16:20:47 +01:00
no)
2014-01-17 22:52:33 -05:00
;;
*)
AC_MSG_ERROR([invalid bignum implementation selection])
;;
esac
fi
2014-12-12 16:20:47 +01:00
# select assembly optimization
use_external_asm=no
2014-12-12 16:20:47 +01:00
case $set_asm in
x86_64)
AC_DEFINE(USE_ASM_X86_64, 1, [Define this symbol to enable x86_64 assembly optimizations])
;;
arm)
use_external_asm=yes
;;
2014-12-12 16:20:47 +01:00
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimizations])
;;
esac
2014-01-17 22:52:33 -05:00
# select field implementation
case $set_field in
64bit)
2014-01-17 22:52:33 -05:00
AC_DEFINE(USE_FIELD_5X52, 1, [Define this symbol to use the FIELD_5X52 implementation])
;;
32bit)
2014-01-17 22:52:33 -05:00
AC_DEFINE(USE_FIELD_10X26, 1, [Define this symbol to use the FIELD_10X26 implementation])
;;
*)
AC_MSG_ERROR([invalid field implementation])
;;
esac
# select bignum implementation
case $set_bignum in
gmp)
2014-11-28 01:23:55 +01:00
AC_DEFINE(HAVE_LIBGMP, 1, [Define this symbol if libgmp is installed])
AC_DEFINE(USE_NUM_GMP, 1, [Define this symbol to use the gmp implementation for num])
AC_DEFINE(USE_FIELD_INV_NUM, 1, [Define this symbol to use the num-based field inverse implementation])
AC_DEFINE(USE_SCALAR_INV_NUM, 1, [Define this symbol to use the num-based scalar inverse implementation])
2014-01-17 22:52:33 -05:00
;;
2014-12-12 16:20:47 +01:00
no)
2014-11-28 01:23:55 +01:00
AC_DEFINE(USE_NUM_NONE, 1, [Define this symbol to use no num implementation])
AC_DEFINE(USE_FIELD_INV_BUILTIN, 1, [Define this symbol to use the native field inverse implementation])
AC_DEFINE(USE_SCALAR_INV_BUILTIN, 1, [Define this symbol to use the native scalar inverse implementation])
;;
2014-01-17 22:52:33 -05:00
*)
AC_MSG_ERROR([invalid bignum implementation])
;;
esac
#select scalar implementation
case $set_scalar in
64bit)
AC_DEFINE(USE_SCALAR_4X64, 1, [Define this symbol to use the 4x64 scalar implementation])
;;
32bit)
AC_DEFINE(USE_SCALAR_8X32, 1, [Define this symbol to use the 8x32 scalar implementation])
;;
*)
AC_MSG_ERROR([invalid scalar implementation])
;;
esac
#set ecmult window size
if test x"$req_ecmult_window" = x"auto"; then
set_ecmult_window=15
else
set_ecmult_window=$req_ecmult_window
fi
error_window_size=['window size for ecmult precomputation not an integer in range [2..24] or "auto"']
case $set_ecmult_window in
''|*[[!0-9]]*)
# no valid integer
AC_MSG_ERROR($error_window_size)
;;
*)
if test "$set_ecmult_window" -lt 2 -o "$set_ecmult_window" -gt 24 ; then
# not in range
AC_MSG_ERROR($error_window_size)
fi
AC_DEFINE_UNQUOTED(ECMULT_WINDOW_SIZE, $set_ecmult_window, [Set window size for ecmult precomputation])
;;
esac
#set ecmult gen precision
if test x"$req_ecmult_gen_precision" = x"auto"; then
set_ecmult_gen_precision=4
else
set_ecmult_gen_precision=$req_ecmult_gen_precision
fi
case $set_ecmult_gen_precision in
2|4|8)
AC_DEFINE_UNQUOTED(ECMULT_GEN_PREC_BITS, $set_ecmult_gen_precision, [Set ecmult gen precision bits])
;;
*)
AC_MSG_ERROR(['ecmult gen precision not 2, 4, 8 or "auto"'])
;;
esac
2014-01-17 22:52:33 -05:00
if test x"$use_tests" = x"yes"; then
SECP_OPENSSL_CHECK
2014-12-11 21:24:35 -05:00
if test x"$has_openssl_ec" = x"yes"; then
if test x"$enable_openssl_tests" != x"no"; then
AC_DEFINE(ENABLE_OPENSSL_TESTS, 1, [Define this symbol if OpenSSL EC functions are available])
SECP_TEST_INCLUDES="$SSL_CFLAGS $CRYPTO_CFLAGS $CRYPTO_CPPFLAGS"
SECP_TEST_LIBS="$CRYPTO_LIBS"
case $host in
*mingw*)
SECP_TEST_LIBS="$SECP_TEST_LIBS -lgdi32"
;;
esac
fi
else
if test x"$enable_openssl_tests" = x"yes"; then
AC_MSG_ERROR([OpenSSL tests requested but OpenSSL with EC support is not available])
fi
fi
else
if test x"$enable_openssl_tests" = x"yes"; then
AC_MSG_ERROR([OpenSSL tests requested but tests are not enabled])
2014-01-17 22:52:33 -05:00
fi
fi
2014-12-17 12:41:31 +01:00
if test x"$set_bignum" = x"gmp"; then
2014-01-17 22:52:33 -05:00
SECP_LIBS="$SECP_LIBS $GMP_LIBS"
SECP_INCLUDES="$SECP_INCLUDES $GMP_CPPFLAGS"
2014-01-17 22:52:33 -05:00
fi
if test x"$use_endomorphism" = x"yes"; then
AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization])
2014-01-17 22:52:33 -05:00
fi
if test x"$set_precomp" = x"yes"; then
AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table])
fi
if test x"$enable_module_ecdh" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module])
fi
if test x"$enable_module_recovery" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module])
fi
2016-07-07 00:47:41 +02:00
if test x"$enable_module_generator" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_GENERATOR, 1, [Define this symbol to enable the NUMS generator module])
fi
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
if test x"$enable_module_rangeproof" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RANGEPROOF, 1, [Define this symbol to enable the Pedersen / zero knowledge range proof module])
fi
if test x"$enable_module_whitelist" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_WHITELIST, 1, [Define this symbol to enable the key whitelisting module])
fi
if test x"$enable_module_surjectionproof" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_SURJECTIONPROOF, 1, [Define this symbol to enable the surjection proof module])
fi
AC_C_BIGENDIAN()
if test x"$use_external_asm" = x"yes"; then
AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used])
fi
if test x"$use_external_default_callbacks" = x"yes"; then
AC_DEFINE(USE_EXTERNAL_DEFAULT_CALLBACKS, 1, [Define this symbol if an external implementation of the default callbacks is used])
fi
2015-11-26 00:06:41 +01:00
if test x"$enable_experimental" = x"yes"; then
AC_MSG_NOTICE([******])
AC_MSG_NOTICE([WARNING: experimental build])
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
2016-07-07 00:47:41 +02:00
AC_MSG_NOTICE([Building NUMS generator module: $enable_module_generator])
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
AC_MSG_NOTICE([Building range proof module: $enable_module_rangeproof])
AC_MSG_NOTICE([Building key whitelisting module: $enable_module_whitelist])
AC_MSG_NOTICE([Building surjection proof module: $enable_module_surjectionproof])
2015-11-26 00:06:41 +01:00
AC_MSG_NOTICE([******])
2016-07-07 00:47:41 +02:00
if test x"$enable_module_generator" != x"yes"; then
if test x"$enable_module_rangeproof" = x"yes"; then
AC_MSG_ERROR([Rangeproof module requires the generator module. Use --enable-module-generator to allow.])
fi
fi
if test x"$enable_module_rangeproof" != x"yes"; then
if test x"$enable_module_whitelist" = x"yes"; then
AC_MSG_ERROR([Whitelist module requires the rangeproof module. Use --enable-module-rangeproof to allow.])
fi
if test x"$enable_module_surjectionproof" = x"yes"; then
AC_MSG_ERROR([Surjection proof module requires the rangeproof module. Use --enable-module-rangeproof to allow.])
fi
fi
2015-11-26 00:06:41 +01:00
else
if test x"$enable_module_ecdh" = x"yes"; then
AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
fi
if test x"$set_asm" = x"arm"; then
AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.])
fi
2016-07-07 00:47:41 +02:00
if test x"$enable_module_generator" = x"yes"; then
AC_MSG_ERROR([NUMS generator module is experimental. Use --enable-experimental to allow.])
fi
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
if test x"$enable_module_rangeproof" = x"yes"; then
AC_MSG_ERROR([Range proof module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_whitelist" = x"yes"; then
AC_MSG_ERROR([Key whitelisting module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_surjectionproof" = x"yes"; then
AC_MSG_ERROR([Surjection proof module is experimental. Use --enable-experimental to allow.])
fi
2015-11-26 00:06:41 +01:00
fi
2014-01-17 22:52:33 -05:00
AC_CONFIG_HEADERS([src/libsecp256k1-config.h])
2014-05-07 06:10:08 +00:00
AC_CONFIG_FILES([Makefile libsecp256k1.pc])
2014-01-17 22:52:33 -05:00
AC_SUBST(SECP_INCLUDES)
AC_SUBST(SECP_LIBS)
AC_SUBST(SECP_TEST_LIBS)
AC_SUBST(SECP_TEST_INCLUDES)
AM_CONDITIONAL([ENABLE_COVERAGE], [test x"$enable_coverage" = x"yes"])
2014-01-17 22:52:33 -05:00
AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"])
AM_CONDITIONAL([USE_EXHAUSTIVE_TESTS], [test x"$use_exhaustive_tests" != x"no"])
2014-12-11 20:09:19 -05:00
AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
2016-07-07 00:47:41 +02:00
AM_CONDITIONAL([ENABLE_MODULE_GENERATOR], [test x"$enable_module_generator" = x"yes"])
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
AM_CONDITIONAL([ENABLE_MODULE_RANGEPROOF], [test x"$enable_module_rangeproof" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_WHITELIST], [test x"$enable_module_whitelist" = x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
AM_CONDITIONAL([ENABLE_MODULE_SURJECTIONPROOF], [test x"$enable_module_surjectionproof" = x"yes"])
dnl make sure nothing new is exported so that we don't break the cache
PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH"
unset PKG_CONFIG_PATH
PKG_CONFIG_PATH="$PKGCONFIG_PATH_TEMP"
2014-01-17 22:52:33 -05:00
AC_OUTPUT
echo
echo "Build Options:"
echo " with endomorphism = $use_endomorphism"
echo " with ecmult precomp = $set_precomp"
echo " with external callbacks = $use_external_default_callbacks"
echo " with benchmarks = $use_benchmark"
echo " with coverage = $enable_coverage"
echo " module ecdh = $enable_module_ecdh"
echo " module recovery = $enable_module_recovery"
echo
echo " asm = $set_asm"
echo " bignum = $set_bignum"
echo " field = $set_field"
echo " scalar = $set_scalar"
echo " ecmult window size = $set_ecmult_window"
echo " ecmult gen prec. bits = $set_ecmult_gen_precision"
echo
echo " valgrind = $enable_valgrind"
echo " CC = $CC"
echo " CFLAGS = $CFLAGS"
echo " CPPFLAGS = $CPPFLAGS"
echo " LDFLAGS = $LDFLAGS"
echo