secp256k1-zkp/include/secp256k1_ecdsa_s2c.h

235 lines
12 KiB
C
Raw Normal View History

#ifndef SECP256K1_ECDSA_S2C_H
#define SECP256K1_ECDSA_S2C_H
#include "secp256k1.h"
/** This module implements the sign-to-contract scheme for ECDSA signatures, as
* well as the "ECDSA Anti-Exfil Protocol" that is based on sign-to-contract
* and is specified further down. The sign-to-contract scheme allows creating a
* signature that also commits to some data. This works by offsetting the public
* nonce point of the signature R by hash(R, data)*G where G is the secp256k1
* group generator.
*/
#ifdef __cplusplus
extern "C" {
#endif
/** Data structure that holds a sign-to-contract ("s2c") opening information.
* Sign-to-contract allows a signer to commit to some data as part of a signature. It
* can be used as an Out-argument in certain signing functions.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use secp256k1_ecdsa_s2c_opening_serialize and secp256k1_ecdsa_s2c_opening_parse.
*/
typedef struct {
unsigned char data[64];
} secp256k1_ecdsa_s2c_opening;
/** Parse a sign-to-contract opening.
*
* Returns: 1 if the opening could be parsed
* 0 if the opening could not be parsed
* Args: ctx: pointer to a context object
* Out: opening: pointer to an opening object. If 1 is returned, it is set to a
* parsed version of input. If not, its value is unspecified.
* In: input33: pointer to 33-byte array with a serialized opening
*
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_s2c_opening_parse(
const secp256k1_context *ctx,
secp256k1_ecdsa_s2c_opening *opening,
const unsigned char *input33
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a sign-to-contract opening into a byte sequence.
*
* Returns: 1 if the opening was successfully serialized.
* 0 if the opening could not be serialized
* Args: ctx: pointer to a context object
* Out: output33: pointer to a 33-byte array to place the serialized opening in
* In: opening: pointer to an initialized `secp256k1_ecdsa_s2c_opening`
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_s2c_opening_serialize(
const secp256k1_context *ctx,
unsigned char *output33,
const secp256k1_ecdsa_s2c_opening *opening
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Same as secp256k1_ecdsa_sign, but s2c_data32 is committed to inside the nonce
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was invalid.
* Args: ctx: pointer to a context object (not secp256k1_context_static)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* s2c_opening: if non-NULL, pointer to an secp256k1_ecdsa_s2c_opening structure to populate
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* s2c_data32: pointer to a 32-byte data to commit to in the nonce (cannot be NULL)
*/
SECP256K1_API int secp256k1_ecdsa_s2c_sign(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sig,
secp256k1_ecdsa_s2c_opening *s2c_opening,
const unsigned char *msg32,
const unsigned char *seckey,
const unsigned char *s2c_data32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
/** Verify a sign-to-contract commitment.
*
* Returns: 1: the signature contains a commitment to data32 (though it does
* not necessarily need to be a valid siganture!)
* 0: incorrect opening
* Args: ctx: pointer to a context object
* In: sig: the signature containing the sign-to-contract commitment (cannot be NULL)
* data32: the 32-byte data that was committed to (cannot be NULL)
* opening: pointer to the opening created during signing (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_s2c_verify_commit(
const secp256k1_context *ctx,
const secp256k1_ecdsa_signature *sig,
const unsigned char *data32,
const secp256k1_ecdsa_s2c_opening *opening
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** ECDSA Anti-Exfil Protocol
*
* The ecdsa_anti_exfil_* functions can be used to prevent a signing device from
* exfiltrating the secret signing keys through biased signature nonces. The general
* idea is that a host provides additional randomness to the signing device client
* and the client commits to the randomness in the nonce using sign-to-contract.
*
* The following scheme is described by Stepan Snigirev here:
* https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2020-February/017655.html
* and by Pieter Wuille (as "Scheme 6") here:
* https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2020-March/017667.html
*
* In order to ensure the host cannot trick the signing device into revealing its
* keys, or the signing device to bias the nonce despite the host's contributions,
* the host and client must engage in a commit-reveal protocol as follows:
* 1. The host draws randomness `rho` and computes a sha256 commitment to it using
* `secp256k1_ecdsa_anti_exfil_host_commit`. It sends this to the signing device.
* 2. The signing device computes a public nonce `R` using the host's commitment
* as auxiliary randomness, using `secp256k1_ecdsa_anti_exfil_signer_commit`.
* The signing device sends the resulting `R` to the host as a s2c_opening.
*
* If, at any point from this step onward, the hardware device fails, it is
* okay to restart the protocol using **exactly the same `rho`** and checking
* that the hardware device proposes **exactly the same** `R`. Otherwise, the
* hardware device may be selectively aborting and thereby biasing the set of
* nonces that are used in actual signatures.
*
* It takes many (>100) such aborts before there is a plausible attack, given
* current knowledge in 2020. However such aborts accumulate even across a total
* replacement of all relevant devices (but not across replacement of the actual
* signing keys with new independently random ones).
*
* In case the hardware device cannot be made to sign with the given `rho`, `R`
* pair, wallet authors should alert the user and present a very scary message
* implying that if this happens more than even a few times, say 20 or more times
* EVER, they should change hardware vendors and perhaps sweep their coins.
*
* 3. The host replies with `rho` generated in step 1.
* 4. The device signs with `secp256k1_anti_exfil_sign`, using `rho` as `host_data32`,
* and sends the signature to the host.
* 5. The host verifies that the signature's public nonce matches the opening from
* step 2 and its original randomness `rho`, using `secp256k1_anti_exfil_host_verify`.
*
* Rationale:
* - The reason for having a host commitment is to allow the signing device to
* deterministically derive a unique nonce even if the host restarts the protocol
* using the same message and keys. Otherwise the signer might reuse the original
* nonce in two iterations of the protocol with different `rho`, which leaks the
* the secret key.
* - The signer does not need to check that the host commitment matches the host's
* claimed `rho`. Instead it re-derives the commitment (and its original `R`) from
* the provided `rho`. If this differs from the original commitment, the result
* will be an invalid `s2c_opening`, but since `R` was unique there is no risk to
* the signer's secret keys. Because of this, the signing device does not need to
* maintain any state about the progress of the protocol.
*/
/** Create the initial host commitment to `rho`. Part of the ECDSA Anti-Exfil Protocol.
*
* Returns 1 on success, 0 on failure.
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: rand_commitment32: pointer to 32-byte array to store the returned commitment (cannot be NULL)
* In: rand32: the 32-byte randomness to commit to (cannot be NULL). It must come from
* a cryptographically secure RNG. As per the protocol, this value must not
* be revealed to the client until after the host has received the client
* commitment.
*/
SECP256K1_API int secp256k1_ecdsa_anti_exfil_host_commit(
const secp256k1_context *ctx,
unsigned char *rand_commitment32,
const unsigned char *rand32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Compute signer's original nonce. Part of the ECDSA Anti-Exfil Protocol.
*
* Returns 1 on success, 0 on failure.
* Args: ctx: pointer to a context object (not secp256k1_context_static)
* Out: s2c_opening: pointer to an s2c_opening where the signer's public nonce will be
* placed. (cannot be NULL)
* In: msg32: the 32-byte message hash to be signed (cannot be NULL)
* seckey32: the 32-byte secret key used for signing (cannot be NULL)
* rand_commitment32: the 32-byte randomness commitment from the host (cannot be NULL)
*/
SECP256K1_API int secp256k1_ecdsa_anti_exfil_signer_commit(
const secp256k1_context *ctx,
secp256k1_ecdsa_s2c_opening *s2c_opening,
const unsigned char *msg32,
const unsigned char *seckey32,
const unsigned char *rand_commitment32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
/** Same as secp256k1_ecdsa_sign, but commits to host randomness in the nonce. Part of the
* ECDSA Anti-Exfil Protocol.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was invalid.
* Args: ctx: pointer to a context object (not secp256k1_context_static)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* host_data32: pointer to 32-byte host-provided randomness (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_anti_exfil_sign(
const secp256k1_context *ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *msg32,
const unsigned char *seckey,
const unsigned char *host_data32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
/** Verify a signature was correctly constructed using the ECDSA Anti-Exfil Protocol.
*
* Returns: 1: the signature is valid and contains a commitment to host_data32
* 0: incorrect opening
* Args: ctx: pointer to a context object
* In: sig: the signature produced by the signer (cannot be NULL)
* msghash32: the 32-byte message hash being verified (cannot be NULL)
* pubkey: pointer to the signer's public key (cannot be NULL)
* host_data32: the 32-byte data provided by the host (cannot be NULL)
* opening: the s2c opening provided by the signer (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_anti_exfil_host_verify(
const secp256k1_context *ctx,
const secp256k1_ecdsa_signature *sig,
const unsigned char *msg32,
const secp256k1_pubkey *pubkey,
const unsigned char *host_data32,
const secp256k1_ecdsa_s2c_opening *opening
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_ECDSA_S2C_H */