secp256k1-zkp/src/secp256k1.c

614 lines
20 KiB
C
Raw Normal View History

/**********************************************************************
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
2013-05-09 15:24:32 +02:00
#include "include/secp256k1.h"
#include "util.h"
#include "num_impl.h"
#include "field_impl.h"
#include "scalar_impl.h"
#include "group_impl.h"
#include "ecmult_impl.h"
#include "ecmult_const_impl.h"
#include "ecmult_gen_impl.h"
#include "ecdsa_impl.h"
#include "eckey_impl.h"
#include "hash_impl.h"
2013-03-31 06:34:15 +02:00
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
#ifdef ENABLE_MODULE_RANGEPROOF
# include "modules/rangeproof/pedersen.h"
# include "modules/rangeproof/rangeproof.h"
#endif
#define ARG_CHECK(cond) do { \
if (EXPECT(!(cond), 0)) { \
2015-09-21 20:57:54 +02:00
secp256k1_callback_call(&ctx->illegal_callback, #cond); \
return 0; \
} \
} while(0)
static void default_illegal_callback_fn(const char* str, void* data) {
(void)data;
fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str);
abort();
}
2015-09-21 20:57:54 +02:00
static const secp256k1_callback default_illegal_callback = {
default_illegal_callback_fn,
NULL
};
static void default_error_callback_fn(const char* str, void* data) {
(void)data;
fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
abort();
}
2015-09-21 20:57:54 +02:00
static const secp256k1_callback default_error_callback = {
default_error_callback_fn,
NULL
};
struct secp256k1_context_struct {
2015-09-21 20:57:54 +02:00
secp256k1_ecmult_context ecmult_ctx;
secp256k1_ecmult_gen_context ecmult_gen_ctx;
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
#ifdef ENABLE_MODULE_RANGEPROOF
secp256k1_pedersen_context pedersen_ctx;
secp256k1_rangeproof_context rangeproof_ctx;
#endif
2015-09-21 20:57:54 +02:00
secp256k1_callback illegal_callback;
secp256k1_callback error_callback;
};
2015-09-21 20:57:54 +02:00
secp256k1_context* secp256k1_context_create(unsigned int flags) {
secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context));
ret->illegal_callback = default_illegal_callback;
ret->error_callback = default_error_callback;
2015-10-21 17:43:29 +02:00
if (EXPECT((flags & SECP256K1_FLAGS_TYPE_MASK) != SECP256K1_FLAGS_TYPE_CONTEXT, 0)) {
secp256k1_callback_call(&ret->illegal_callback,
"Invalid flags");
free(ret);
return NULL;
}
secp256k1_ecmult_context_init(&ret->ecmult_ctx);
secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
#ifdef ENABLE_MODULE_RANGEPROOF
secp256k1_pedersen_context_init(&ret->pedersen_ctx);
secp256k1_rangeproof_context_init(&ret->rangeproof_ctx);
#endif
2015-10-21 17:43:29 +02:00
if (flags & SECP256K1_FLAGS_BIT_CONTEXT_SIGN) {
secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback);
}
2015-10-21 17:43:29 +02:00
if (flags & SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) {
secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback);
}
return ret;
2013-03-31 06:34:15 +02:00
}
2015-09-21 20:57:54 +02:00
secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) {
secp256k1_context* ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context));
ret->illegal_callback = ctx->illegal_callback;
ret->error_callback = ctx->error_callback;
secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback);
secp256k1_ecmult_gen_context_clone(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx, &ctx->error_callback);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
#ifdef ENABLE_MODULE_RANGEPROOF
secp256k1_pedersen_context_clone(&ret->pedersen_ctx, &ctx->pedersen_ctx, &ctx->error_callback);
secp256k1_rangeproof_context_clone(&ret->rangeproof_ctx, &ctx->rangeproof_ctx, &ctx->error_callback);
#endif
2015-04-11 14:06:54 -05:00
return ret;
}
2015-09-21 20:57:54 +02:00
void secp256k1_context_destroy(secp256k1_context* ctx) {
if (ctx != NULL) {
secp256k1_ecmult_context_clear(&ctx->ecmult_ctx);
secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
#ifdef ENABLE_MODULE_RANGEPROOF
secp256k1_pedersen_context_clear(&ctx->pedersen_ctx);
secp256k1_rangeproof_context_clear(&ctx->rangeproof_ctx);
#endif
free(ctx);
}
2013-03-31 06:34:15 +02:00
}
2015-09-21 20:57:54 +02:00
void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
if (fun == NULL) {
fun = default_illegal_callback_fn;
}
ctx->illegal_callback.fn = fun;
ctx->illegal_callback.data = data;
}
2015-09-21 20:57:54 +02:00
void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
if (fun == NULL) {
fun = default_error_callback_fn;
}
ctx->error_callback.fn = fun;
ctx->error_callback.data = data;
}
2015-09-21 20:57:54 +02:00
static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) {
if (sizeof(secp256k1_ge_storage) == 64) {
/* When the secp256k1_ge_storage type is exactly 64 byte, use its
* representation inside secp256k1_pubkey, as conversion is very fast.
2015-07-20 13:36:55 -04:00
* Note that secp256k1_pubkey_save must use the same representation. */
2015-09-21 20:57:54 +02:00
secp256k1_ge_storage s;
2015-07-20 13:36:55 -04:00
memcpy(&s, &pubkey->data[0], 64);
secp256k1_ge_from_storage(ge, &s);
} else {
/* Otherwise, fall back to 32-byte big endian for X and Y. */
2015-09-21 20:57:54 +02:00
secp256k1_fe x, y;
2015-07-20 13:36:55 -04:00
secp256k1_fe_set_b32(&x, pubkey->data);
secp256k1_fe_set_b32(&y, pubkey->data + 32);
secp256k1_ge_set_xy(ge, &x, &y);
}
ARG_CHECK(!secp256k1_fe_is_zero(&ge->x));
return 1;
2015-07-20 13:36:55 -04:00
}
2015-09-21 20:57:54 +02:00
static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) {
if (sizeof(secp256k1_ge_storage) == 64) {
secp256k1_ge_storage s;
2015-07-20 13:36:55 -04:00
secp256k1_ge_to_storage(&s, ge);
memcpy(&pubkey->data[0], &s, 64);
} else {
VERIFY_CHECK(!secp256k1_ge_is_infinity(ge));
secp256k1_fe_normalize_var(&ge->x);
secp256k1_fe_normalize_var(&ge->y);
secp256k1_fe_get_b32(pubkey->data, &ge->x);
secp256k1_fe_get_b32(pubkey->data + 32, &ge->y);
}
}
2015-09-21 20:57:54 +02:00
int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) {
secp256k1_ge Q;
2015-07-20 13:36:55 -04:00
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(input != NULL);
2015-07-20 13:36:55 -04:00
if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) {
return 0;
}
secp256k1_pubkey_save(pubkey, &Q);
secp256k1_ge_clear(&Q);
return 1;
}
2015-09-21 20:57:54 +02:00
int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) {
secp256k1_ge Q;
size_t len;
int ret = 0;
2015-07-20 13:36:55 -04:00
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(outputlen != NULL);
ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33 : 65));
len = *outputlen;
*outputlen = 0;
ARG_CHECK(output != NULL);
memset(output, 0, len);
ARG_CHECK(pubkey != NULL);
2015-10-21 17:43:29 +02:00
ARG_CHECK((flags & SECP256K1_FLAGS_TYPE_MASK) == SECP256K1_FLAGS_TYPE_COMPRESSION);
if (secp256k1_pubkey_load(ctx, &Q, pubkey)) {
ret = secp256k1_eckey_pubkey_serialize(&Q, output, &len, flags & SECP256K1_FLAGS_BIT_COMPRESSION);
if (ret) {
*outputlen = len;
}
}
return ret;
2015-07-20 13:36:55 -04:00
}
2015-09-21 20:57:54 +02:00
static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) {
(void)ctx;
2015-09-21 20:57:54 +02:00
if (sizeof(secp256k1_scalar) == 32) {
/* When the secp256k1_scalar type is exactly 32 byte, use its
* representation inside secp256k1_ecdsa_signature, as conversion is very fast.
* Note that secp256k1_ecdsa_signature_save must use the same representation. */
memcpy(r, &sig->data[0], 32);
memcpy(s, &sig->data[32], 32);
} else {
secp256k1_scalar_set_b32(r, &sig->data[0], NULL);
secp256k1_scalar_set_b32(s, &sig->data[32], NULL);
}
}
2015-09-21 20:57:54 +02:00
static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) {
if (sizeof(secp256k1_scalar) == 32) {
memcpy(&sig->data[0], r, 32);
memcpy(&sig->data[32], s, 32);
} else {
secp256k1_scalar_get_b32(&sig->data[0], r);
secp256k1_scalar_get_b32(&sig->data[32], s);
}
}
2015-09-21 20:57:54 +02:00
int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
secp256k1_scalar r, s;
2015-07-26 16:00:55 +02:00
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(input != NULL);
2015-07-26 16:00:55 +02:00
if (secp256k1_ecdsa_sig_parse(&r, &s, input, inputlen)) {
secp256k1_ecdsa_signature_save(sig, &r, &s);
2015-07-26 16:00:55 +02:00
return 1;
} else {
memset(sig, 0, sizeof(*sig));
return 0;
}
}
int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input64) {
secp256k1_scalar r, s;
int ret = 1;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(input64 != NULL);
secp256k1_scalar_set_b32(&r, &input64[0], &overflow);
ret &= !overflow;
secp256k1_scalar_set_b32(&s, &input64[32], &overflow);
ret &= !overflow;
if (ret) {
secp256k1_ecdsa_signature_save(sig, &r, &s);
} else {
memset(sig, 0, sizeof(*sig));
}
return ret;
}
2015-09-21 20:57:54 +02:00
int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) {
secp256k1_scalar r, s;
2015-07-26 16:00:55 +02:00
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(outputlen != NULL);
ARG_CHECK(sig != NULL);
2015-07-26 16:00:55 +02:00
secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s);
2015-07-26 16:00:55 +02:00
}
int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, const secp256k1_ecdsa_signature* sig) {
secp256k1_scalar r, s;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output64 != NULL);
ARG_CHECK(sig != NULL);
secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
secp256k1_scalar_get_b32(&output64[0], &r);
secp256k1_scalar_get_b32(&output64[32], &s);
return 1;
}
int secp256k1_ecdsa_signature_normalize(const secp256k1_context* ctx, secp256k1_ecdsa_signature *sigout, const secp256k1_ecdsa_signature *sigin) {
secp256k1_scalar r, s;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sigin != NULL);
secp256k1_ecdsa_signature_load(ctx, &r, &s, sigin);
ret = secp256k1_scalar_is_high(&s);
if (sigout != NULL) {
if (ret) {
secp256k1_scalar_negate(&s, &s);
}
secp256k1_ecdsa_signature_save(sigout, &r, &s);
}
return ret;
}
2015-09-21 20:57:54 +02:00
int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
secp256k1_ge q;
secp256k1_scalar r, s;
secp256k1_scalar m;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(pubkey != NULL);
secp256k1_scalar_set_b32(&m, msg32, NULL);
secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
return (!secp256k1_scalar_is_high(&s) &&
secp256k1_pubkey_load(ctx, &q, pubkey) &&
secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m));
2013-03-16 15:51:55 +01:00
}
static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
unsigned char keydata[112];
int keylen = 64;
secp256k1_rfc6979_hmac_sha256_t rng;
unsigned int i;
/* We feed a byte array to the PRNG as input, consisting of:
* - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d.
* - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data.
* - optionally 16 extra bytes with the algorithm name.
* Because the arguments have distinct fixed lengths it is not possible for
* different argument mixtures to emulate each other and result in the same
* nonces.
*/
memcpy(keydata, key32, 32);
memcpy(keydata + 32, msg32, 32);
if (data != NULL) {
memcpy(keydata + 64, data, 32);
keylen = 96;
}
if (algo16 != NULL) {
memcpy(keydata + keylen, algo16, 16);
keylen += 16;
}
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, keylen);
memset(keydata, 0, sizeof(keydata));
for (i = 0; i <= counter; i++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
}
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
return 1;
}
2015-09-21 20:57:54 +02:00
const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979;
2015-09-21 20:57:54 +02:00
int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
secp256k1_scalar r, s;
secp256k1_scalar sec, non, msg;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(signature != NULL);
ARG_CHECK(seckey != NULL);
if (noncefp == NULL) {
noncefp = secp256k1_nonce_function_default;
}
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
/* Fail if the secret key is invalid. */
if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
unsigned char nonce32[32];
unsigned int count = 0;
secp256k1_scalar_set_b32(&msg, msg32, NULL);
while (1) {
ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count);
if (!ret) {
break;
}
secp256k1_scalar_set_b32(&non, nonce32, &overflow);
if (!overflow && !secp256k1_scalar_is_zero(&non)) {
if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, NULL)) {
break;
}
}
count++;
}
memset(nonce32, 0, 32);
secp256k1_scalar_clear(&msg);
secp256k1_scalar_clear(&non);
secp256k1_scalar_clear(&sec);
}
if (ret) {
secp256k1_ecdsa_signature_save(signature, &r, &s);
} else {
memset(signature, 0, sizeof(*signature));
}
return ret;
}
2015-09-21 20:57:54 +02:00
int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) {
secp256k1_scalar sec;
int ret;
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
ret = !overflow && !secp256k1_scalar_is_zero(&sec);
secp256k1_scalar_clear(&sec);
2013-05-05 00:49:30 +02:00
return ret;
}
2015-09-21 20:57:54 +02:00
int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
secp256k1_gej pj;
secp256k1_ge p;
secp256k1_scalar sec;
int overflow;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey != NULL);
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec));
if (ret) {
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
secp256k1_ge_set_gej(&p, &pj);
secp256k1_pubkey_save(pubkey, &p);
}
secp256k1_scalar_clear(&sec);
return ret;
}
int secp256k1_ec_privkey_negate(const secp256k1_context* ctx, unsigned char *seckey) {
secp256k1_scalar sec;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
secp256k1_scalar_set_b32(&sec, seckey, NULL);
secp256k1_scalar_negate(&sec, &sec);
secp256k1_scalar_get_b32(seckey, &sec);
return 1;
}
int secp256k1_ec_pubkey_negate(const secp256k1_context* ctx, secp256k1_pubkey *pubkey) {
int ret = 0;
secp256k1_ge p;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
ret = secp256k1_pubkey_load(ctx, &p, pubkey);
memset(pubkey, 0, sizeof(*pubkey));
if (ret) {
secp256k1_ge_neg(&p, &p);
secp256k1_pubkey_save(pubkey, &p);
}
return ret;
}
2015-09-21 20:57:54 +02:00
int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
secp256k1_scalar term;
secp256k1_scalar sec;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&term, tweak, &overflow);
secp256k1_scalar_set_b32(&sec, seckey, NULL);
ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term);
memset(seckey, 0, 32);
2013-05-27 01:18:48 +02:00
if (ret) {
secp256k1_scalar_get_b32(seckey, &sec);
}
secp256k1_scalar_clear(&sec);
secp256k1_scalar_clear(&term);
2013-05-27 01:18:48 +02:00
return ret;
}
2015-09-21 20:57:54 +02:00
int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
secp256k1_ge p;
secp256k1_scalar term;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(pubkey != NULL);
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&term, tweak, &overflow);
ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
memset(pubkey, 0, sizeof(*pubkey));
if (ret) {
if (secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term)) {
2015-07-20 13:36:55 -04:00
secp256k1_pubkey_save(pubkey, &p);
} else {
ret = 0;
}
}
return ret;
}
2015-09-21 20:57:54 +02:00
int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
secp256k1_scalar factor;
secp256k1_scalar sec;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&factor, tweak, &overflow);
secp256k1_scalar_set_b32(&sec, seckey, NULL);
ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor);
memset(seckey, 0, 32);
if (ret) {
secp256k1_scalar_get_b32(seckey, &sec);
}
secp256k1_scalar_clear(&sec);
secp256k1_scalar_clear(&factor);
return ret;
}
2015-09-21 20:57:54 +02:00
int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
secp256k1_ge p;
secp256k1_scalar factor;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(pubkey != NULL);
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&factor, tweak, &overflow);
ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
memset(pubkey, 0, sizeof(*pubkey));
if (ret) {
if (secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor)) {
2015-07-20 13:36:55 -04:00
secp256k1_pubkey_save(pubkey, &p);
} else {
ret = 0;
}
2013-05-27 01:18:48 +02:00
}
2013-05-27 01:18:48 +02:00
return ret;
}
2015-09-21 20:57:54 +02:00
int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
return 1;
}
int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, size_t n) {
size_t i;
2015-09-21 20:57:54 +02:00
secp256k1_gej Qj;
secp256k1_ge Q;
ARG_CHECK(pubnonce != NULL);
memset(pubnonce, 0, sizeof(*pubnonce));
ARG_CHECK(n >= 1);
ARG_CHECK(pubnonces != NULL);
secp256k1_gej_set_infinity(&Qj);
for (i = 0; i < n; i++) {
secp256k1_pubkey_load(ctx, &Q, pubnonces[i]);
secp256k1_gej_add_ge(&Qj, &Qj, &Q);
}
if (secp256k1_gej_is_infinity(&Qj)) {
return 0;
}
secp256k1_ge_set_gej(&Q, &Qj);
secp256k1_pubkey_save(pubnonce, &Q);
return 1;
}
#ifdef ENABLE_MODULE_ECDH
# include "modules/ecdh/main_impl.h"
#endif
#ifdef ENABLE_MODULE_SCHNORR
# include "modules/schnorr/main_impl.h"
#endif
#ifdef ENABLE_MODULE_RECOVERY
# include "modules/recovery/main_impl.h"
#endif
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover.
2015-08-05 19:04:14 +02:00
#ifdef ENABLE_MODULE_RANGEPROOF
# include "modules/rangeproof/main_impl.h"
#endif