104 lines
4.7 KiB
C
Raw Normal View History

Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
/**********************************************************************
* Copyright (c) 2014-2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_RANGEPROOF_MAIN_H
#define SECP256K1_MODULE_RANGEPROOF_MAIN_H
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
#include "../../group.h"
#include "../generator/main_impl.h"
#include "../rangeproof/borromean_impl.h"
#include "../rangeproof/rangeproof_impl.h"
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
int secp256k1_rangeproof_info(const secp256k1_context* ctx, int *exp, int *mantissa,
uint64_t *min_value, uint64_t *max_value, const unsigned char *proof, size_t plen) {
size_t offset;
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
uint64_t scale;
ARG_CHECK(exp != NULL);
ARG_CHECK(mantissa != NULL);
ARG_CHECK(min_value != NULL);
ARG_CHECK(max_value != NULL);
2017-05-03 18:08:31 +00:00
ARG_CHECK(proof != NULL);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
offset = 0;
scale = 1;
(void)ctx;
return secp256k1_rangeproof_getheader_impl(&offset, exp, mantissa, &scale, min_value, max_value, proof, plen);
}
int secp256k1_rangeproof_rewind(const secp256k1_context* ctx,
unsigned char *blind_out, uint64_t *value_out, unsigned char *message_out, size_t *outlen, const unsigned char *nonce,
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
uint64_t *min_value, uint64_t *max_value,
const secp256k1_pedersen_commitment *commit, const unsigned char *proof, size_t plen, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_generator* gen) {
secp256k1_ge commitp;
secp256k1_ge genp;
2017-05-03 18:08:31 +00:00
VERIFY_CHECK(ctx != NULL);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
ARG_CHECK(commit != NULL);
ARG_CHECK(proof != NULL);
ARG_CHECK(min_value != NULL);
ARG_CHECK(max_value != NULL);
2017-05-03 18:08:31 +00:00
ARG_CHECK(message_out != NULL || outlen == NULL);
ARG_CHECK(nonce != NULL);
ARG_CHECK(extra_commit != NULL || extra_commit_len == 0);
ARG_CHECK(gen != NULL);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
secp256k1_pedersen_commitment_load(&commitp, commit);
secp256k1_generator_load(&genp, gen);
return secp256k1_rangeproof_verify_impl(&ctx->ecmult_gen_ctx,
blind_out, value_out, message_out, outlen, nonce, min_value, max_value, &commitp, proof, plen, extra_commit, extra_commit_len, &genp);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
}
int secp256k1_rangeproof_verify(const secp256k1_context* ctx, uint64_t *min_value, uint64_t *max_value,
const secp256k1_pedersen_commitment *commit, const unsigned char *proof, size_t plen, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_generator* gen) {
secp256k1_ge commitp;
secp256k1_ge genp;
2017-05-03 18:08:31 +00:00
VERIFY_CHECK(ctx != NULL);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
ARG_CHECK(commit != NULL);
ARG_CHECK(proof != NULL);
ARG_CHECK(min_value != NULL);
ARG_CHECK(max_value != NULL);
2017-05-03 18:08:31 +00:00
ARG_CHECK(extra_commit != NULL || extra_commit_len == 0);
ARG_CHECK(gen != NULL);
secp256k1_pedersen_commitment_load(&commitp, commit);
secp256k1_generator_load(&genp, gen);
return secp256k1_rangeproof_verify_impl(NULL,
NULL, NULL, NULL, NULL, NULL, min_value, max_value, &commitp, proof, plen, extra_commit, extra_commit_len, &genp);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
}
int secp256k1_rangeproof_sign(const secp256k1_context* ctx, unsigned char *proof, size_t *plen, uint64_t min_value,
const secp256k1_pedersen_commitment *commit, const unsigned char *blind, const unsigned char *nonce, int exp, int min_bits, uint64_t value,
const unsigned char *message, size_t msg_len, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_generator* gen){
secp256k1_ge commitp;
secp256k1_ge genp;
2017-05-03 18:08:31 +00:00
VERIFY_CHECK(ctx != NULL);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
ARG_CHECK(proof != NULL);
ARG_CHECK(plen != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(blind != NULL);
ARG_CHECK(nonce != NULL);
2017-05-03 18:08:31 +00:00
ARG_CHECK(message != NULL || msg_len == 0);
ARG_CHECK(extra_commit != NULL || extra_commit_len == 0);
ARG_CHECK(gen != NULL);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
secp256k1_pedersen_commitment_load(&commitp, commit);
secp256k1_generator_load(&genp, gen);
return secp256k1_rangeproof_sign_impl(&ctx->ecmult_gen_ctx,
proof, plen, min_value, &commitp, blind, nonce, exp, min_bits, value, message, msg_len, extra_commit, extra_commit_len, &genp);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
}
size_t secp256k1_rangeproof_max_size(const secp256k1_context* ctx, uint64_t max_value, int min_bits) {
const int val_mantissa = max_value > 0 ? 64 - secp256k1_clz64_var(max_value) : 1;
const int mantissa = min_bits > val_mantissa ? min_bits : val_mantissa;
const size_t rings = (mantissa + 1) / 2;
const size_t npubs = rings * 4 - 2 * (mantissa % 2);
VERIFY_CHECK(ctx != NULL);
(void) ctx;
return 10 + 32 * (npubs + rings - 1) + 32 + ((rings - 1 + 7) / 8);
}
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
#endif