295 lines
12 KiB
C
295 lines
12 KiB
C
|
/***********************************************************************
|
||
|
* Copyright (c) 2021-2024 Jesse Posner *
|
||
|
* Distributed under the MIT software license, see the accompanying *
|
||
|
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||
|
***********************************************************************/
|
||
|
|
||
|
/**
|
||
|
* This file demonstrates how to use the FROST module to create a threshold
|
||
|
* signature. Additionally, see the documentation in include/secp256k1_frost.h.
|
||
|
*/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <assert.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <secp256k1.h>
|
||
|
#include <secp256k1_schnorrsig.h>
|
||
|
#include <secp256k1_frost.h>
|
||
|
|
||
|
#include "examples_util.h"
|
||
|
/* Number of public keys involved in creating the aggregate signature */
|
||
|
#define N_SIGNERS 5
|
||
|
|
||
|
/* Threshold required in creating the aggregate signature */
|
||
|
#define THRESHOLD 3
|
||
|
|
||
|
struct signer_secrets {
|
||
|
secp256k1_keypair keypair;
|
||
|
secp256k1_frost_share agg_share;
|
||
|
secp256k1_frost_secnonce secnonce;
|
||
|
unsigned char seed[32];
|
||
|
};
|
||
|
|
||
|
struct signer {
|
||
|
secp256k1_pubkey pubshare;
|
||
|
secp256k1_frost_pubnonce pubnonce;
|
||
|
secp256k1_frost_session session;
|
||
|
secp256k1_frost_partial_sig partial_sig;
|
||
|
secp256k1_pubkey vss_commitment[THRESHOLD];
|
||
|
unsigned char vss_hash[32];
|
||
|
unsigned char pok[64];
|
||
|
unsigned char id[33];
|
||
|
};
|
||
|
|
||
|
/* Create a key pair and store it in seckey and pubkey */
|
||
|
int create_keypair_and_seed(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signer) {
|
||
|
unsigned char seckey[32];
|
||
|
secp256k1_pubkey pubkey_tmp;
|
||
|
size_t size = 33;
|
||
|
|
||
|
while (1) {
|
||
|
if (!fill_random(seckey, sizeof(seckey))) {
|
||
|
printf("Failed to generate randomness\n");
|
||
|
return 1;
|
||
|
}
|
||
|
if (secp256k1_keypair_create(ctx, &signer_secrets->keypair, seckey)) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!secp256k1_keypair_pub(ctx, &pubkey_tmp, &signer_secrets->keypair)) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (!secp256k1_ec_pubkey_serialize(ctx, signer->id, &size, &pubkey_tmp, SECP256K1_EC_COMPRESSED)) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (!fill_random(signer_secrets->seed, sizeof(signer_secrets->seed))) {
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Create shares and coefficient commitments */
|
||
|
int create_shares(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signer, secp256k1_xonly_pubkey *pk) {
|
||
|
int i, j;
|
||
|
secp256k1_frost_share shares[N_SIGNERS][N_SIGNERS];
|
||
|
const secp256k1_pubkey *vss_commitments[N_SIGNERS];
|
||
|
const unsigned char *ids[N_SIGNERS];
|
||
|
|
||
|
for (i = 0; i < N_SIGNERS; i++) {
|
||
|
vss_commitments[i] = signer[i].vss_commitment;
|
||
|
ids[i] = signer[i].id;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < N_SIGNERS; i++) {
|
||
|
/* Generate a polynomial share for the participants */
|
||
|
if (!secp256k1_frost_shares_gen(ctx, shares[i], signer[i].vss_commitment, signer[i].pok, signer_secrets[i].seed, THRESHOLD, N_SIGNERS, ids)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* KeyGen communication round 1: exchange shares and coefficient
|
||
|
* commitments */
|
||
|
for (i = 0; i < N_SIGNERS; i++) {
|
||
|
const secp256k1_frost_share *assigned_shares[N_SIGNERS];
|
||
|
|
||
|
/* Each participant receives a share from each participant (including
|
||
|
* themselves) corresponding to their index. */
|
||
|
for (j = 0; j < N_SIGNERS; j++) {
|
||
|
assigned_shares[j] = &shares[j][i];
|
||
|
}
|
||
|
/* Each participant aggregates the shares they received. */
|
||
|
if (!secp256k1_frost_share_agg(ctx, &signer_secrets[i].agg_share, pk, assigned_shares, vss_commitments, N_SIGNERS, THRESHOLD, signer[i].id)) {
|
||
|
return 0;
|
||
|
}
|
||
|
for (j = 0; j < N_SIGNERS; j++) {
|
||
|
/* Each participant verifies their shares. share_agg calls this
|
||
|
* internally, so it is only neccessary to call this function if
|
||
|
* share_agg returns an error, to determine which participant(s)
|
||
|
* submitted faulty data. */
|
||
|
if (!secp256k1_frost_share_verify(ctx, THRESHOLD, signer[i].id, assigned_shares[j], &vss_commitments[j])) {
|
||
|
return 0;
|
||
|
}
|
||
|
/* Each participant generates public verification shares that are
|
||
|
* used for verifying partial signatures. */
|
||
|
if (!secp256k1_frost_compute_pubshare(ctx, &signer[j].pubshare, THRESHOLD, signer[j].id, vss_commitments, N_SIGNERS)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Tweak the pubkey corresponding to the provided tweak cache, update the cache
|
||
|
* and return the tweaked aggregate pk. */
|
||
|
int tweak(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pk, secp256k1_frost_tweak_cache *cache) {
|
||
|
secp256k1_pubkey output_pk;
|
||
|
unsigned char ordinary_tweak[32] = "this could be a BIP32 tweak....";
|
||
|
unsigned char xonly_tweak[32] = "this could be a taproot tweak..";
|
||
|
|
||
|
if (!secp256k1_frost_pubkey_tweak(ctx, cache, pk)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Ordinary tweaking which, for example, allows deriving multiple child
|
||
|
* public keys from a single aggregate key using BIP32 */
|
||
|
if (!secp256k1_frost_pubkey_ec_tweak_add(ctx, NULL, cache, ordinary_tweak)) {
|
||
|
return 0;
|
||
|
}
|
||
|
/* If one is not interested in signing, the same output_pk can be obtained
|
||
|
* by calling `secp256k1_frost_pubkey_get` right after key aggregation to
|
||
|
* get the full pubkey and then call `secp256k1_ec_pubkey_tweak_add`. */
|
||
|
|
||
|
/* Xonly tweaking which, for example, allows creating taproot commitments */
|
||
|
if (!secp256k1_frost_pubkey_xonly_tweak_add(ctx, &output_pk, cache, xonly_tweak)) {
|
||
|
return 0;
|
||
|
}
|
||
|
/* Note that if we wouldn't care about signing, we can arrive at the same
|
||
|
* output_pk by providing the untweaked public key to
|
||
|
* `secp256k1_xonly_pubkey_tweak_add` (after converting it to an xonly pubkey
|
||
|
* if necessary with `secp256k1_xonly_pubkey_from_pubkey`). */
|
||
|
|
||
|
/* Now we convert the output_pk to an xonly pubkey to allow to later verify
|
||
|
* the Schnorr signature against it. For this purpose we can ignore the
|
||
|
* `pk_parity` output argument; we would need it if we would have to open
|
||
|
* the taproot commitment. */
|
||
|
if (!secp256k1_xonly_pubkey_from_pubkey(ctx, pk, NULL, &output_pk)) {
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Sign a message hash with the given threshold and aggregate shares and store
|
||
|
* the result in sig */
|
||
|
int sign(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signer, const unsigned char* msg32, secp256k1_xonly_pubkey *pk, unsigned char *sig64, const secp256k1_frost_tweak_cache *cache) {
|
||
|
int i;
|
||
|
int signer_id = 0;
|
||
|
int signers[THRESHOLD];
|
||
|
int is_signer[N_SIGNERS];
|
||
|
const secp256k1_frost_pubnonce *pubnonces[THRESHOLD];
|
||
|
const unsigned char *ids[THRESHOLD];
|
||
|
const secp256k1_frost_partial_sig *partial_sigs[THRESHOLD];
|
||
|
|
||
|
for (i = 0; i < N_SIGNERS; i++) {
|
||
|
unsigned char session_id[32];
|
||
|
/* Create random session ID. It is absolutely necessary that the session ID
|
||
|
* is unique for every call of secp256k1_frost_nonce_gen. Otherwise
|
||
|
* it's trivial for an attacker to extract the secret key! */
|
||
|
if (!fill_random(session_id, sizeof(session_id))) {
|
||
|
return 0;
|
||
|
}
|
||
|
/* Initialize session and create secret nonce for signing and public
|
||
|
* nonce to send to the other signers. */
|
||
|
if (!secp256k1_frost_nonce_gen(ctx, &signer_secrets[i].secnonce, &signer[i].pubnonce, session_id, &signer_secrets[i].agg_share, msg32, pk, NULL)) {
|
||
|
return 0;
|
||
|
}
|
||
|
is_signer[i] = 0; /* Initialize is_signer */
|
||
|
}
|
||
|
/* Select a random subset of signers */
|
||
|
for (i = 0; i < THRESHOLD; i++) {
|
||
|
unsigned int subset_seed;
|
||
|
|
||
|
while (1) {
|
||
|
if (!fill_random((unsigned char*)&subset_seed, sizeof(subset_seed))) {
|
||
|
return 0;
|
||
|
}
|
||
|
signer_id = subset_seed % N_SIGNERS;
|
||
|
/* Check if signer has already been assigned */
|
||
|
if (!is_signer[signer_id]) {
|
||
|
is_signer[signer_id] = 1;
|
||
|
signers[i] = signer_id;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
/* Mark signer as assigned */
|
||
|
pubnonces[i] = &signer[signer_id].pubnonce;
|
||
|
/* pubkeys[i] = &signer[signer_id].pubkey; */
|
||
|
ids[i] = signer[signer_id].id;
|
||
|
}
|
||
|
/* Signing communication round 1: Exchange nonces */
|
||
|
for (i = 0; i < THRESHOLD; i++) {
|
||
|
signer_id = signers[i];
|
||
|
if (!secp256k1_frost_nonce_process(ctx, &signer[signer_id].session, pubnonces, THRESHOLD, msg32, pk, signer[signer_id].id, ids, cache, NULL)) {
|
||
|
return 0;
|
||
|
}
|
||
|
/* partial_sign will clear the secnonce by setting it to 0. That's because
|
||
|
* you must _never_ reuse the secnonce (or use the same session_id to
|
||
|
* create a secnonce). If you do, you effectively reuse the nonce and
|
||
|
* leak the secret key. */
|
||
|
if (!secp256k1_frost_partial_sign(ctx, &signer[signer_id].partial_sig, &signer_secrets[signer_id].secnonce, &signer_secrets[signer_id].agg_share, &signer[signer_id].session, cache)) {
|
||
|
return 0;
|
||
|
}
|
||
|
partial_sigs[i] = &signer[signer_id].partial_sig;
|
||
|
}
|
||
|
/* Communication round 2: A production system would exchange
|
||
|
* partial signatures here before moving on. */
|
||
|
for (i = 0; i < THRESHOLD; i++) {
|
||
|
signer_id = signers[i];
|
||
|
/* To check whether signing was successful, it suffices to either verify
|
||
|
* the aggregate signature with the aggregate public key using
|
||
|
* secp256k1_schnorrsig_verify, or verify all partial signatures of all
|
||
|
* signers individually. Verifying the aggregate signature is cheaper but
|
||
|
* verifying the individual partial signatures has the advantage that it
|
||
|
* can be used to determine which of the partial signatures are invalid
|
||
|
* (if any), i.e., which of the partial signatures cause the aggregate
|
||
|
* signature to be invalid and thus the protocol run to fail. It's also
|
||
|
* fine to first verify the aggregate sig, and only verify the individual
|
||
|
* sigs if it does not work.
|
||
|
*/
|
||
|
if (!secp256k1_frost_partial_sig_verify(ctx, &signer[signer_id].partial_sig, &signer[signer_id].pubnonce, &signer[signer_id].pubshare, &signer[signer_id].session, cache)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
return secp256k1_frost_partial_sig_agg(ctx, sig64, &signer[signer_id].session, partial_sigs, THRESHOLD);
|
||
|
}
|
||
|
|
||
|
int main(void) {
|
||
|
secp256k1_context* ctx;
|
||
|
int i;
|
||
|
struct signer_secrets signer_secrets[N_SIGNERS];
|
||
|
struct signer signers[N_SIGNERS];
|
||
|
secp256k1_xonly_pubkey pk;
|
||
|
secp256k1_frost_tweak_cache cache;
|
||
|
unsigned char msg[32] = "this_could_be_the_hash_of_a_msg!";
|
||
|
unsigned char sig[64];
|
||
|
|
||
|
/* Create a context for signing and verification */
|
||
|
ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
||
|
printf("Creating key pairs......");
|
||
|
for (i = 0; i < N_SIGNERS; i++) {
|
||
|
if (!create_keypair_and_seed(ctx, &signer_secrets[i], &signers[i])) {
|
||
|
printf("FAILED\n");
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
printf("ok\n");
|
||
|
printf("Creating shares.........");
|
||
|
if (!create_shares(ctx, signer_secrets, signers, &pk)) {
|
||
|
printf("FAILED\n");
|
||
|
return 1;
|
||
|
}
|
||
|
printf("ok\n");
|
||
|
printf("Tweaking................");
|
||
|
/* Optionally tweak the aggregate key */
|
||
|
if (!tweak(ctx, &pk, &cache)) {
|
||
|
printf("FAILED\n");
|
||
|
return 1;
|
||
|
}
|
||
|
printf("ok\n");
|
||
|
printf("Signing message.........");
|
||
|
if (!sign(ctx, signer_secrets, signers, msg, &pk, sig, &cache)) {
|
||
|
printf("FAILED\n");
|
||
|
return 1;
|
||
|
}
|
||
|
printf("ok\n");
|
||
|
printf("Verifying signature.....");
|
||
|
if (!secp256k1_schnorrsig_verify(ctx, sig, msg, 32, &pk)) {
|
||
|
printf("FAILED\n");
|
||
|
return 1;
|
||
|
}
|
||
|
printf("ok\n");
|
||
|
secp256k1_context_destroy(ctx);
|
||
|
return 0;
|
||
|
}
|