79 lines
3.3 KiB
C
79 lines
3.3 KiB
C
|
/***********************************************************************
|
||
|
* Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
|
||
|
* Distributed under the MIT software license, see the accompanying *
|
||
|
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||
|
***********************************************************************/
|
||
|
|
||
|
#ifndef SECP256K1_ECMULT_GEN_PREC_IMPL_H
|
||
|
#define SECP256K1_ECMULT_GEN_PREC_IMPL_H
|
||
|
|
||
|
#include "ecmult_gen_prec.h"
|
||
|
#include "group_impl.h"
|
||
|
#include "field_impl.h"
|
||
|
#include "ecmult_gen.h"
|
||
|
|
||
|
static void secp256k1_ecmult_gen_create_prec_table(secp256k1_ecmult_gen_context *ctx, void **prealloc) {
|
||
|
secp256k1_ge prec[ECMULT_GEN_PREC_N * ECMULT_GEN_PREC_G];
|
||
|
secp256k1_gej gj;
|
||
|
secp256k1_gej nums_gej;
|
||
|
int i, j;
|
||
|
size_t const prealloc_size = ECMULT_GEN_PREC_TABLE_SIZE;
|
||
|
void* const base = *prealloc;
|
||
|
ctx->prec = (secp256k1_ge_storage (*)[ECMULT_GEN_PREC_N][ECMULT_GEN_PREC_G])manual_alloc(prealloc, prealloc_size, base, prealloc_size);
|
||
|
|
||
|
/* get the generator */
|
||
|
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
|
||
|
|
||
|
/* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
|
||
|
{
|
||
|
static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
|
||
|
secp256k1_fe nums_x;
|
||
|
secp256k1_ge nums_ge;
|
||
|
int r;
|
||
|
r = secp256k1_fe_set_b32(&nums_x, nums_b32);
|
||
|
(void)r;
|
||
|
VERIFY_CHECK(r);
|
||
|
r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
|
||
|
(void)r;
|
||
|
VERIFY_CHECK(r);
|
||
|
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
|
||
|
/* Add G to make the bits in x uniformly distributed. */
|
||
|
secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
|
||
|
}
|
||
|
|
||
|
/* compute prec. */
|
||
|
{
|
||
|
secp256k1_gej precj[ECMULT_GEN_PREC_N * ECMULT_GEN_PREC_G]; /* Jacobian versions of prec. */
|
||
|
secp256k1_gej gbase;
|
||
|
secp256k1_gej numsbase;
|
||
|
gbase = gj; /* PREC_G^j * G */
|
||
|
numsbase = nums_gej; /* 2^j * nums. */
|
||
|
for (j = 0; j < ECMULT_GEN_PREC_N; j++) {
|
||
|
/* Set precj[j*PREC_G .. j*PREC_G+(PREC_G-1)] to (numsbase, numsbase + gbase, ..., numsbase + (PREC_G-1)*gbase). */
|
||
|
precj[j*ECMULT_GEN_PREC_G] = numsbase;
|
||
|
for (i = 1; i < ECMULT_GEN_PREC_G; i++) {
|
||
|
secp256k1_gej_add_var(&precj[j*ECMULT_GEN_PREC_G + i], &precj[j*ECMULT_GEN_PREC_G + i - 1], &gbase, NULL);
|
||
|
}
|
||
|
/* Multiply gbase by PREC_G. */
|
||
|
for (i = 0; i < ECMULT_GEN_PREC_B; i++) {
|
||
|
secp256k1_gej_double_var(&gbase, &gbase, NULL);
|
||
|
}
|
||
|
/* Multiply numbase by 2. */
|
||
|
secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
|
||
|
if (j == ECMULT_GEN_PREC_N - 2) {
|
||
|
/* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
|
||
|
secp256k1_gej_neg(&numsbase, &numsbase);
|
||
|
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
|
||
|
}
|
||
|
}
|
||
|
secp256k1_ge_set_all_gej_var(prec, precj, ECMULT_GEN_PREC_N * ECMULT_GEN_PREC_G);
|
||
|
}
|
||
|
for (j = 0; j < ECMULT_GEN_PREC_N; j++) {
|
||
|
for (i = 0; i < ECMULT_GEN_PREC_G; i++) {
|
||
|
secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*ECMULT_GEN_PREC_G + i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* SECP256K1_ECMULT_GEN_PREC_IMPL_H */
|