secp256k1-zkp/include/secp256k1_rangeproof.h

298 lines
15 KiB
C
Raw Permalink Normal View History

Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
#ifndef _SECP256K1_RANGEPROOF_
# define _SECP256K1_RANGEPROOF_
# include "secp256k1.h"
2016-07-07 00:47:41 +02:00
# include "secp256k1_generator.h"
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
# ifdef __cplusplus
extern "C" {
# endif
#include <stdint.h>
/** Opaque data structure that stores a Pedersen commitment
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use secp256k1_pedersen_commitment_serialize and
* secp256k1_pedersen_commitment_parse.
*/
typedef struct {
unsigned char data[64];
} secp256k1_pedersen_commitment;
/**
* Static constant generator 'h' maintained for historical reasons.
*/
SECP256K1_API extern const secp256k1_generator *secp256k1_generator_h;
/** Parse a 33-byte commitment into a commitment object.
*
* Returns: 1 if input contains a valid commitment.
* Args: ctx: a secp256k1 context object.
* Out: commit: pointer to the output commitment object
* In: input: pointer to a 33-byte serialized commitment key
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_commitment_parse(
const secp256k1_context* ctx,
secp256k1_pedersen_commitment* commit,
const unsigned char *input
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a commitment object into a serialized byte sequence.
*
* Returns: 1 always.
* Args: ctx: a secp256k1 context object.
* Out: output: a pointer to a 33-byte byte array
* In: commit: a pointer to a secp256k1_pedersen_commitment containing an
* initialized commitment
*/
SECP256K1_API int secp256k1_pedersen_commitment_serialize(
const secp256k1_context* ctx,
unsigned char *output,
const secp256k1_pedersen_commitment* commit
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
/** Initialize a context for usage with Pedersen commitments. */
void secp256k1_pedersen_context_initialize(secp256k1_context* ctx);
/** Generate a pedersen commitment.
* Returns 1: Commitment successfully created.
* 0: Error. The blinding factor is larger than the group order
* (probability for random 32 byte number < 2^-127) or results in the
* point at infinity. Retry with a different factor.
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* In: ctx: pointer to a context object, initialized for signing and Pedersen commitment (cannot be NULL)
* blind: pointer to a 32-byte blinding factor (cannot be NULL)
* value: unsigned 64-bit integer value to commit to.
* gen: additional generator 'h'
* Out: commit: pointer to the commitment (cannot be NULL)
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
*
* Blinding factors can be generated and verified in the same way as secp256k1 private keys for ECDSA.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_commit(
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const secp256k1_context* ctx,
secp256k1_pedersen_commitment *commit,
const unsigned char *blind,
uint64_t value,
const secp256k1_generator *gen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
/** Computes the sum of multiple positive and negative blinding factors.
* Returns 1: Sum successfully computed.
* 0: Error. A blinding factor is larger than the group order
* (probability for random 32 byte number < 2^-127). Retry with
* different factors.
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* In: ctx: pointer to a context object (cannot be NULL)
* blinds: pointer to pointers to 32-byte character arrays for blinding factors. (cannot be NULL)
* n: number of factors pointed to by blinds.
* npositive: how many of the initial factors should be treated with a positive sign.
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* Out: blind_out: pointer to a 32-byte array for the sum (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_blind_sum(
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const secp256k1_context* ctx,
unsigned char *blind_out,
const unsigned char * const *blinds,
size_t n,
size_t npositive
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Verify a tally of pedersen commitments
* Returns 1: commitments successfully sum to zero.
* 0: Commitments do not sum to zero or other error.
2017-05-03 18:08:31 +00:00
* In: ctx: pointer to a context object (cannot be NULL)
* commits: pointer to array of pointers to the commitments. (cannot be NULL if pcnt is non-zero)
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* pcnt: number of commitments pointed to by commits.
* ncommits: pointer to array of pointers to the negative commitments. (cannot be NULL if ncnt is non-zero)
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* ncnt: number of commitments pointed to by ncommits.
*
* This computes sum(commit[0..pcnt)) - sum(ncommit[0..ncnt)) == 0.
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
*
* A pedersen commitment is xG + vA where G and A are generators for the secp256k1 group and x is a blinding factor,
* while v is the committed value. For a collection of commitments to sum to zero, for each distinct generator
* A all blinding factors and all values must sum to zero.
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
*
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_verify_tally(
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const secp256k1_context* ctx,
const secp256k1_pedersen_commitment * const* commits,
size_t pcnt,
const secp256k1_pedersen_commitment * const* ncommits,
size_t ncnt
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Sets the final Pedersen blinding factor correctly when the generators themselves
* have blinding factors.
*
* Consider a generator of the form A' = A + rG, where A is the "real" generator
* but A' is the generator provided to verifiers. Then a Pedersen commitment
* P = vA' + r'G really has the form vA + (vr + r')G. To get all these (vr + r')
* to sum to zero for multiple commitments, we take three arrays consisting of
* the `v`s, `r`s, and `r'`s, respectively called `value`s, `generator_blind`s
* and `blinding_factor`s, and sum them.
*
* The function then subtracts the sum of all (vr + r') from the last element
* of the `blinding_factor` array, setting the total sum to zero.
*
* Returns 1: Blinding factor successfully computed.
* 0: Error. A blinding_factor or generator_blind are larger than the group
* order (probability for random 32 byte number < 2^-127). Retry with
* different values.
*
* In: ctx: pointer to a context object
* value: array of asset values, `v` in the above paragraph.
* May not be NULL unless `n_total` is 0.
* generator_blind: array of asset blinding factors, `r` in the above paragraph
* May not be NULL unless `n_total` is 0.
* n_total: Total size of the above arrays
* n_inputs: How many of the initial array elements represent commitments that
* will be negated in the final sum
* In/Out: blinding_factor: array of commitment blinding factors, `r'` in the above paragraph
* May not be NULL unless `n_total` is 0.
* the last value will be modified to get the total sum to zero.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_blind_generator_blind_sum(
const secp256k1_context* ctx,
const uint64_t *value,
const unsigned char* const* generator_blind,
unsigned char* const* blinding_factor,
size_t n_total,
size_t n_inputs
);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
/** Initialize a context for usage with Pedersen commitments. */
void secp256k1_rangeproof_context_initialize(secp256k1_context* ctx);
/** Verify a proof that a committed value is within a range.
* Returns 1: Value is within the range [0..2^64), the specifically proven range is in the min/max value outputs.
* 0: Proof failed or other error.
* In: ctx: pointer to a context object, initialized for range-proof and commitment (cannot be NULL)
* commit: the commitment being proved. (cannot be NULL)
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* proof: pointer to character array with the proof. (cannot be NULL)
* plen: length of proof in bytes.
* extra_commit: additional data covered in rangeproof signature
* extra_commit_len: length of extra_commit byte array (0 if NULL)
* gen: additional generator 'h'
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* Out: min_value: pointer to a unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL)
* max_value: pointer to a unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_verify(
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const secp256k1_context* ctx,
uint64_t *min_value,
uint64_t *max_value,
const secp256k1_pedersen_commitment *commit,
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const unsigned char *proof,
size_t plen,
const unsigned char *extra_commit,
size_t extra_commit_len,
const secp256k1_generator* gen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(9);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
/** Verify a range proof proof and rewind the proof to recover information sent by its author.
* Returns 1: Value is within the range [0..2^64), the specifically proven range is in the min/max value outputs, and the value and blinding were recovered.
* 0: Proof failed, rewind failed, or other error.
* In: ctx: pointer to a context object, initialized for range-proof and Pedersen commitment (cannot be NULL)
* commit: the commitment being proved. (cannot be NULL)
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* proof: pointer to character array with the proof. (cannot be NULL)
* plen: length of proof in bytes.
* nonce: 32-byte secret nonce used by the prover (cannot be NULL)
* extra_commit: additional data covered in rangeproof signature
* extra_commit_len: length of extra_commit byte array (0 if NULL)
* gen: additional generator 'h'
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* In/Out: blind_out: storage for the 32-byte blinding factor used for the commitment
* value_out: pointer to an unsigned int64 which has the exact value of the commitment.
* message_out: pointer to a 4096 byte character array to receive message data from the proof author.
* outlen: length of message data written to message_out.
* min_value: pointer to an unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL)
* max_value: pointer to an unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_rewind(
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const secp256k1_context* ctx,
unsigned char *blind_out,
uint64_t *value_out,
unsigned char *message_out,
size_t *outlen,
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const unsigned char *nonce,
uint64_t *min_value,
uint64_t *max_value,
const secp256k1_pedersen_commitment *commit,
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const unsigned char *proof,
size_t plen,
const unsigned char *extra_commit,
size_t extra_commit_len,
const secp256k1_generator *gen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(8) SECP256K1_ARG_NONNULL(9) SECP256K1_ARG_NONNULL(10) SECP256K1_ARG_NONNULL(14);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
/** Author a proof that a committed value is within a range.
* Returns 1: Proof successfully created.
* 0: Error
* In: ctx: pointer to a context object, initialized for range-proof, signing, and Pedersen commitment (cannot be NULL)
* proof: pointer to array to receive the proof, can be up to 5134 bytes. (cannot be NULL)
* min_value: constructs a proof where the verifer can tell the minimum value is at least the specified amount.
* commit: the commitment being proved.
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* blind: 32-byte blinding factor used by commit.
* nonce: 32-byte secret nonce used to initialize the proof (value can be reverse-engineered out of the proof if this secret is known.)
* exp: Base-10 exponent. Digits below above will be made public, but the proof will be made smaller. Allowed range is -1 to 18.
* (-1 is a special case that makes the value public. 0 is the most private.)
* min_bits: Number of bits of the value to keep private. (0 = auto/minimal, - 64).
* value: Actual value of the commitment.
* message: pointer to a byte array of data to be embedded in the rangeproof that can be recovered by rewinding the proof
* msg_len: size of the message to be embedded in the rangeproof
* extra_commit: additional data to be covered in rangeproof signature
* extra_commit_len: length of extra_commit byte array (0 if NULL)
* gen: additional generator 'h'
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
* In/out: plen: point to an integer with the size of the proof buffer and the size of the constructed proof.
*
* If min_value or exp is non-zero then the value must be on the range [0, 2^63) to prevent the proof range from spanning past 2^64.
*
* If exp is -1 the value is revealed by the proof (e.g. it proves that the proof is a blinding of a specific value, without revealing the blinding key.)
*
* This can randomly fail with probability around one in 2^100. If this happens, buy a lottery ticket and retry with a different nonce or blinding.
*
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_sign(
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const secp256k1_context* ctx,
unsigned char *proof,
size_t *plen,
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
uint64_t min_value,
const secp256k1_pedersen_commitment *commit,
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const unsigned char *blind,
const unsigned char *nonce,
int exp,
int min_bits,
uint64_t value,
const unsigned char *message,
size_t msg_len,
const unsigned char *extra_commit,
size_t extra_commit_len,
const secp256k1_generator *gen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(15);
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
/** Extract some basic information from a range-proof.
* Returns 1: Information successfully extracted.
* 0: Decode failed.
* In: ctx: pointer to a context object
* proof: pointer to character array with the proof.
* plen: length of proof in bytes.
* Out: exp: Exponent used in the proof (-1 means the value isn't private).
* mantissa: Number of bits covered by the proof.
* min_value: pointer to an unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL)
* max_value: pointer to an unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_info(
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
const secp256k1_context* ctx,
int *exp,
int *mantissa,
uint64_t *min_value,
uint64_t *max_value,
const unsigned char *proof,
size_t plen
Pedersen commitments, borromean ring signatures, and ZK range proofs. This commit adds three new cryptosystems to libsecp256k1: Pedersen commitments are a system for making blinded commitments to a value. Functionally they work like: commit_b,v = H(blind_b || value_v), except they are additively homorphic, e.g. C(b1, v1) - C(b2, v2) = C(b1 - b2, v1 - v2) and C(b1, v1) - C(b1, v1) = 0, etc. The commitments themselves are EC points, serialized as 33 bytes. In addition to the commit function this implementation includes utility functions for verifying that a set of commitments sums to zero, and for picking blinding factors that sum to zero. If the blinding factors are uniformly random, pedersen commitments have information theoretic privacy. Borromean ring signatures are a novel efficient ring signature construction for AND/OR admissions policies (the code here implements an AND of ORs, each of any size). This construction requires 32 bytes of signature per pubkey used plus 32 bytes of constant overhead. With these you can construct signatures like "Given pubkeys A B C D E F G, the signer knows the discrete logs satisifying (A || B) & (C || D || E) & (F || G)". ZK range proofs allow someone to prove a pedersen commitment is in a particular range (e.g. [0..2^64)) without revealing the specific value. The construction here is based on the above borromean ring signature and uses a radix-4 encoding and other optimizations to maximize efficiency. It also supports encoding proofs with a non-private base-10 exponent and minimum-value to allow trading off secrecy for size and speed (or just avoiding wasting space keeping data private that was already public due to external constraints). A proof for a 32-bit mantissa takes 2564 bytes, but 2048 bytes of this can be used to communicate a private message to a receiver who shares a secret random seed with the prover. Also: get rid of precomputed H tables (Pieter Wuille)
2015-08-05 19:04:14 +02:00
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
# ifdef __cplusplus
}
# endif
#endif