bdk/src/wallet/signer.rs

1034 lines
34 KiB
Rust

// Bitcoin Dev Kit
// Written in 2020 by Alekos Filini <alekos.filini@gmail.com>
//
// Copyright (c) 2020-2021 Bitcoin Dev Kit Developers
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Generalized signers
//!
//! This module provides the ability to add customized signers to a [`Wallet`](super::Wallet)
//! through the [`Wallet::add_signer`](super::Wallet::add_signer) function.
//!
//! ```
//! # use std::sync::Arc;
//! # use std::str::FromStr;
//! # use bitcoin::secp256k1::{Secp256k1, All};
//! # use bitcoin::*;
//! # use bitcoin::util::psbt;
//! # use bdk::signer::*;
//! # use bdk::database::*;
//! # use bdk::*;
//! # #[derive(Debug)]
//! # struct CustomHSM;
//! # impl CustomHSM {
//! # fn hsm_sign_input(&self, _psbt: &mut psbt::PartiallySignedTransaction, _input: usize) -> Result<(), SignerError> {
//! # Ok(())
//! # }
//! # fn connect() -> Self {
//! # CustomHSM
//! # }
//! # fn get_id(&self) -> SignerId {
//! # SignerId::Dummy(0)
//! # }
//! # }
//! #[derive(Debug)]
//! struct CustomSigner {
//! device: CustomHSM,
//! }
//!
//! impl CustomSigner {
//! fn connect() -> Self {
//! CustomSigner { device: CustomHSM::connect() }
//! }
//! }
//!
//! impl SignerCommon for CustomSigner {
//! fn id(&self, _secp: &Secp256k1<All>) -> SignerId {
//! self.device.get_id()
//! }
//! }
//!
//! impl InputSigner for CustomSigner {
//! fn sign_input(
//! &self,
//! psbt: &mut psbt::PartiallySignedTransaction,
//! input_index: usize,
//! _secp: &Secp256k1<All>,
//! ) -> Result<(), SignerError> {
//! self.device.hsm_sign_input(psbt, input_index)?;
//!
//! Ok(())
//! }
//! }
//!
//! let custom_signer = CustomSigner::connect();
//!
//! let descriptor = "wpkh(tpubD6NzVbkrYhZ4Xferm7Pz4VnjdcDPFyjVu5K4iZXQ4pVN8Cks4pHVowTBXBKRhX64pkRyJZJN5xAKj4UDNnLPb5p2sSKXhewoYx5GbTdUFWq/*)";
//! let mut wallet = Wallet::new(descriptor, None, Network::Testnet, MemoryDatabase::default())?;
//! wallet.add_signer(
//! KeychainKind::External,
//! SignerOrdering(200),
//! Arc::new(custom_signer)
//! );
//!
//! # Ok::<_, bdk::Error>(())
//! ```
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::fmt;
use std::ops::{Bound::Included, Deref};
use std::sync::Arc;
use bitcoin::blockdata::opcodes;
use bitcoin::blockdata::script::Builder as ScriptBuilder;
use bitcoin::hashes::{hash160, Hash};
use bitcoin::secp256k1::Message;
use bitcoin::util::bip32::{ChildNumber, DerivationPath, ExtendedPrivKey, Fingerprint};
use bitcoin::util::{ecdsa, psbt, schnorr, sighash, taproot};
use bitcoin::{secp256k1, XOnlyPublicKey};
use bitcoin::{EcdsaSighashType, PrivateKey, PublicKey, SchnorrSighashType, Script};
use miniscript::descriptor::{
Descriptor, DescriptorPublicKey, DescriptorSecretKey, DescriptorSinglePriv, DescriptorXKey,
KeyMap, SinglePubKey,
};
use miniscript::{Legacy, MiniscriptKey, Segwitv0, Tap};
use super::utils::SecpCtx;
use crate::descriptor::{DescriptorMeta, XKeyUtils};
/// Identifier of a signer in the `SignersContainers`. Used as a key to find the right signer among
/// multiple of them
#[derive(Debug, Clone, Ord, PartialOrd, PartialEq, Eq, Hash)]
pub enum SignerId {
/// Bitcoin HASH160 (RIPEMD160 after SHA256) hash of an ECDSA public key
PkHash(hash160::Hash),
/// The fingerprint of a BIP32 extended key
Fingerprint(Fingerprint),
/// Dummy identifier
Dummy(u64),
}
impl From<hash160::Hash> for SignerId {
fn from(hash: hash160::Hash) -> SignerId {
SignerId::PkHash(hash)
}
}
impl From<Fingerprint> for SignerId {
fn from(fing: Fingerprint) -> SignerId {
SignerId::Fingerprint(fing)
}
}
/// Signing error
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum SignerError {
/// The private key is missing for the required public key
MissingKey,
/// The private key in use has the right fingerprint but derives differently than expected
InvalidKey,
/// The user canceled the operation
UserCanceled,
/// Input index is out of range
InputIndexOutOfRange,
/// The `non_witness_utxo` field of the transaction is required to sign this input
MissingNonWitnessUtxo,
/// The `non_witness_utxo` specified is invalid
InvalidNonWitnessUtxo,
/// The `witness_utxo` field of the transaction is required to sign this input
MissingWitnessUtxo,
/// The `witness_script` field of the transaction is required to sign this input
MissingWitnessScript,
/// The fingerprint and derivation path are missing from the psbt input
MissingHdKeypath,
/// The psbt contains a non-`SIGHASH_ALL` sighash in one of its input and the user hasn't
/// explicitly allowed them
///
/// To enable signing transactions with non-standard sighashes set
/// [`SignOptions::allow_all_sighashes`] to `true`.
NonStandardSighash,
/// Invalid SIGHASH for the signing context in use
InvalidSighash,
/// Error while computing the hash to sign
SighashError(sighash::Error),
}
impl From<sighash::Error> for SignerError {
fn from(e: sighash::Error) -> Self {
SignerError::SighashError(e)
}
}
impl fmt::Display for SignerError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self)
}
}
impl std::error::Error for SignerError {}
/// Signing context
///
/// Used by our software signers to determine the type of signatures to make
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum SignerContext {
/// Legacy context
Legacy,
/// Segwit v0 context (BIP 143)
Segwitv0,
/// Taproot context (BIP 340)
Tap {
/// Whether the signer can sign for the internal key or not
is_internal_key: bool,
},
}
/// Wrapper structure to pair a signer with its context
#[derive(Debug, Clone)]
pub struct SignerWrapper<S: Sized + fmt::Debug + Clone> {
signer: S,
ctx: SignerContext,
}
impl<S: Sized + fmt::Debug + Clone> SignerWrapper<S> {
/// Create a wrapped signer from a signer and a context
pub fn new(signer: S, ctx: SignerContext) -> Self {
SignerWrapper { signer, ctx }
}
}
impl<S: Sized + fmt::Debug + Clone> Deref for SignerWrapper<S> {
type Target = S;
fn deref(&self) -> &Self::Target {
&self.signer
}
}
/// Common signer methods
pub trait SignerCommon: fmt::Debug + Send + Sync {
/// Return the [`SignerId`] for this signer
///
/// The [`SignerId`] can be used to lookup a signer in the [`Wallet`](crate::Wallet)'s signers map or to
/// compare two signers.
fn id(&self, secp: &SecpCtx) -> SignerId;
/// Return the secret key for the signer
///
/// This is used internally to reconstruct the original descriptor that may contain secrets.
/// External signers that are meant to keep key isolated should just return `None` here (which
/// is the default for this method, if not overridden).
fn descriptor_secret_key(&self) -> Option<DescriptorSecretKey> {
None
}
}
/// PSBT Input signer
///
/// This trait can be implemented to provide custom signers to the wallet. If the signer supports signing
/// individual inputs, this trait should be implemented and BDK will provide automatically an implementation
/// for [`TransactionSigner`].
pub trait InputSigner: SignerCommon {
/// Sign a single psbt input
fn sign_input(
&self,
psbt: &mut psbt::PartiallySignedTransaction,
input_index: usize,
secp: &SecpCtx,
) -> Result<(), SignerError>;
}
/// PSBT signer
///
/// This trait can be implemented when the signer can't sign inputs individually, but signs the whole transaction
/// at once.
pub trait TransactionSigner: SignerCommon {
/// Sign all the inputs of the psbt
fn sign_transaction(
&self,
psbt: &mut psbt::PartiallySignedTransaction,
secp: &SecpCtx,
) -> Result<(), SignerError>;
}
impl<T: InputSigner> TransactionSigner for T {
fn sign_transaction(
&self,
psbt: &mut psbt::PartiallySignedTransaction,
secp: &SecpCtx,
) -> Result<(), SignerError> {
for input_index in 0..psbt.inputs.len() {
self.sign_input(psbt, input_index, secp)?;
}
Ok(())
}
}
impl SignerCommon for SignerWrapper<DescriptorXKey<ExtendedPrivKey>> {
fn id(&self, secp: &SecpCtx) -> SignerId {
SignerId::from(self.root_fingerprint(secp))
}
fn descriptor_secret_key(&self) -> Option<DescriptorSecretKey> {
Some(DescriptorSecretKey::XPrv(self.signer.clone()))
}
}
impl InputSigner for SignerWrapper<DescriptorXKey<ExtendedPrivKey>> {
fn sign_input(
&self,
psbt: &mut psbt::PartiallySignedTransaction,
input_index: usize,
secp: &SecpCtx,
) -> Result<(), SignerError> {
if input_index >= psbt.inputs.len() {
return Err(SignerError::InputIndexOutOfRange);
}
if psbt.inputs[input_index].final_script_sig.is_some()
|| psbt.inputs[input_index].final_script_witness.is_some()
{
return Ok(());
}
let tap_key_origins = psbt.inputs[input_index]
.tap_key_origins
.iter()
.map(|(pk, (_, keysource))| (SinglePubKey::XOnly(*pk), keysource));
let (public_key, full_path) = match psbt.inputs[input_index]
.bip32_derivation
.iter()
.map(|(pk, keysource)| (SinglePubKey::FullKey(PublicKey::new(*pk)), keysource))
.chain(tap_key_origins)
.find_map(|(pk, keysource)| {
if self.matches(keysource, secp).is_some() {
Some((pk, keysource.1.clone()))
} else {
None
}
}) {
Some((pk, full_path)) => (pk, full_path),
None => return Ok(()),
};
let derived_key = match self.origin.clone() {
Some((_fingerprint, origin_path)) => {
let deriv_path = DerivationPath::from(
&full_path.into_iter().cloned().collect::<Vec<ChildNumber>>()
[origin_path.len()..],
);
self.xkey.derive_priv(secp, &deriv_path).unwrap()
}
None => self.xkey.derive_priv(secp, &full_path).unwrap(),
};
let computed_pk = secp256k1::PublicKey::from_secret_key(secp, &derived_key.private_key);
let valid_key = match public_key {
SinglePubKey::FullKey(pk) if pk.inner == computed_pk => true,
SinglePubKey::XOnly(x_only) if XOnlyPublicKey::from(computed_pk) == x_only => true,
_ => false,
};
if !valid_key {
Err(SignerError::InvalidKey)
} else {
// HD wallets imply compressed keys
let priv_key = PrivateKey {
compressed: true,
network: self.xkey.network,
inner: derived_key.private_key,
};
SignerWrapper::new(priv_key, self.ctx).sign_input(psbt, input_index, secp)
}
}
}
impl SignerCommon for SignerWrapper<PrivateKey> {
fn id(&self, secp: &SecpCtx) -> SignerId {
SignerId::from(self.public_key(secp).to_pubkeyhash())
}
fn descriptor_secret_key(&self) -> Option<DescriptorSecretKey> {
Some(DescriptorSecretKey::SinglePriv(DescriptorSinglePriv {
key: self.signer,
origin: None,
}))
}
}
impl InputSigner for SignerWrapper<PrivateKey> {
fn sign_input(
&self,
psbt: &mut psbt::PartiallySignedTransaction,
input_index: usize,
secp: &SecpCtx,
) -> Result<(), SignerError> {
if input_index >= psbt.inputs.len() || input_index >= psbt.unsigned_tx.input.len() {
return Err(SignerError::InputIndexOutOfRange);
}
if psbt.inputs[input_index].final_script_sig.is_some()
|| psbt.inputs[input_index].final_script_witness.is_some()
{
return Ok(());
}
let pubkey = PublicKey::from_private_key(secp, self);
let x_only_pubkey = XOnlyPublicKey::from(pubkey.inner);
if let SignerContext::Tap { is_internal_key } = self.ctx {
if is_internal_key && psbt.inputs[input_index].tap_key_sig.is_none() {
let (hash, hash_ty) = Tap::sighash(psbt, input_index, None)?;
sign_psbt_schnorr(
&self.inner,
x_only_pubkey,
None,
&mut psbt.inputs[input_index],
hash,
hash_ty,
secp,
);
}
if let Some((leaf_hashes, _)) =
psbt.inputs[input_index].tap_key_origins.get(&x_only_pubkey)
{
let leaf_hashes = leaf_hashes
.iter()
.filter(|lh| {
!psbt.inputs[input_index]
.tap_script_sigs
.contains_key(&(x_only_pubkey, **lh))
})
.cloned()
.collect::<Vec<_>>();
for lh in leaf_hashes {
let (hash, hash_ty) = Tap::sighash(psbt, input_index, Some(lh))?;
sign_psbt_schnorr(
&self.inner,
x_only_pubkey,
Some(lh),
&mut psbt.inputs[input_index],
hash,
hash_ty,
secp,
);
}
}
return Ok(());
}
if psbt.inputs[input_index].partial_sigs.contains_key(&pubkey) {
return Ok(());
}
let (hash, hash_ty) = match self.ctx {
SignerContext::Segwitv0 => Segwitv0::sighash(psbt, input_index, ())?,
SignerContext::Legacy => Legacy::sighash(psbt, input_index, ())?,
_ => return Ok(()), // handled above
};
sign_psbt_ecdsa(
&self.inner,
pubkey,
&mut psbt.inputs[input_index],
hash,
hash_ty,
secp,
);
Ok(())
}
}
fn sign_psbt_ecdsa(
secret_key: &secp256k1::SecretKey,
pubkey: PublicKey,
psbt_input: &mut psbt::Input,
hash: bitcoin::Sighash,
hash_ty: EcdsaSighashType,
secp: &SecpCtx,
) {
let sig = secp.sign_ecdsa(
&Message::from_slice(&hash.into_inner()[..]).unwrap(),
secret_key,
);
let final_signature = ecdsa::EcdsaSig { sig, hash_ty };
psbt_input.partial_sigs.insert(pubkey, final_signature);
}
// Calling this with `leaf_hash` = `None` will sign for key-spend
fn sign_psbt_schnorr(
secret_key: &secp256k1::SecretKey,
pubkey: XOnlyPublicKey,
leaf_hash: Option<taproot::TapLeafHash>,
psbt_input: &mut psbt::Input,
hash: taproot::TapSighashHash,
hash_ty: SchnorrSighashType,
secp: &SecpCtx,
) {
use schnorr::TapTweak;
let keypair = secp256k1::KeyPair::from_seckey_slice(secp, secret_key.as_ref()).unwrap();
let keypair = match leaf_hash {
None => keypair
.tap_tweak(secp, psbt_input.tap_merkle_root)
.into_inner(),
Some(_) => keypair, // no tweak for script spend
};
let sig = secp.sign_schnorr(
&Message::from_slice(&hash.into_inner()[..]).unwrap(),
&keypair,
);
let final_signature = schnorr::SchnorrSig { sig, hash_ty };
if let Some(lh) = leaf_hash {
psbt_input
.tap_script_sigs
.insert((pubkey, lh), final_signature);
} else {
psbt_input.tap_key_sig = Some(final_signature);
}
}
/// Defines the order in which signers are called
///
/// The default value is `100`. Signers with an ordering above that will be called later,
/// and they will thus see the partial signatures added to the transaction once they get to sign
/// themselves.
#[derive(Debug, Clone, PartialOrd, PartialEq, Ord, Eq)]
pub struct SignerOrdering(pub usize);
impl std::default::Default for SignerOrdering {
fn default() -> Self {
SignerOrdering(100)
}
}
#[derive(Debug, Clone)]
struct SignersContainerKey {
id: SignerId,
ordering: SignerOrdering,
}
impl From<(SignerId, SignerOrdering)> for SignersContainerKey {
fn from(tuple: (SignerId, SignerOrdering)) -> Self {
SignersContainerKey {
id: tuple.0,
ordering: tuple.1,
}
}
}
/// Container for multiple signers
#[derive(Debug, Default, Clone)]
pub struct SignersContainer(BTreeMap<SignersContainerKey, Arc<dyn TransactionSigner>>);
impl SignersContainer {
/// Create a map of public keys to secret keys
pub fn as_key_map(&self, secp: &SecpCtx) -> KeyMap {
self.0
.values()
.filter_map(|signer| signer.descriptor_secret_key())
.filter_map(|secret| secret.as_public(secp).ok().map(|public| (public, secret)))
.collect()
}
/// Build a new signer container from a [`KeyMap`]
///
/// Also looks at the corresponding descriptor to determine the [`SignerContext`] to attach to
/// the signers
pub fn build(
keymap: KeyMap,
descriptor: &Descriptor<DescriptorPublicKey>,
secp: &SecpCtx,
) -> SignersContainer {
let mut container = SignersContainer::new();
for (pubkey, secret) in keymap {
let ctx = match descriptor {
Descriptor::Tr(tr) => SignerContext::Tap {
is_internal_key: tr.internal_key() == &pubkey,
},
_ if descriptor.is_witness() => SignerContext::Segwitv0,
_ => SignerContext::Legacy,
};
match secret {
DescriptorSecretKey::SinglePriv(private_key) => container.add_external(
SignerId::from(private_key.key.public_key(secp).to_pubkeyhash()),
SignerOrdering::default(),
Arc::new(SignerWrapper::new(private_key.key, ctx)),
),
DescriptorSecretKey::XPrv(xprv) => container.add_external(
SignerId::from(xprv.root_fingerprint(secp)),
SignerOrdering::default(),
Arc::new(SignerWrapper::new(xprv, ctx)),
),
};
}
container
}
}
impl SignersContainer {
/// Default constructor
pub fn new() -> Self {
SignersContainer(Default::default())
}
/// Adds an external signer to the container for the specified id. Optionally returns the
/// signer that was previously in the container, if any
pub fn add_external(
&mut self,
id: SignerId,
ordering: SignerOrdering,
signer: Arc<dyn TransactionSigner>,
) -> Option<Arc<dyn TransactionSigner>> {
self.0.insert((id, ordering).into(), signer)
}
/// Removes a signer from the container and returns it
pub fn remove(
&mut self,
id: SignerId,
ordering: SignerOrdering,
) -> Option<Arc<dyn TransactionSigner>> {
self.0.remove(&(id, ordering).into())
}
/// Returns the list of identifiers of all the signers in the container
pub fn ids(&self) -> Vec<&SignerId> {
self.0
.keys()
.map(|SignersContainerKey { id, .. }| id)
.collect()
}
/// Returns the list of signers in the container, sorted by lowest to highest `ordering`
pub fn signers(&self) -> Vec<&Arc<dyn TransactionSigner>> {
self.0.values().collect()
}
/// Finds the signer with lowest ordering for a given id in the container.
pub fn find(&self, id: SignerId) -> Option<&Arc<dyn TransactionSigner>> {
self.0
.range((
Included(&(id.clone(), SignerOrdering(0)).into()),
Included(&(id.clone(), SignerOrdering(usize::MAX)).into()),
))
.filter(|(k, _)| k.id == id)
.map(|(_, v)| v)
.next()
}
}
/// Options for a software signer
///
/// Adjust the behavior of our software signers and the way a transaction is finalized
#[derive(Debug, Clone)]
pub struct SignOptions {
/// Whether the signer should trust the `witness_utxo`, if the `non_witness_utxo` hasn't been
/// provided
///
/// Defaults to `false` to mitigate the "SegWit bug" which chould trick the wallet into
/// paying a fee larger than expected.
///
/// Some wallets, especially if relatively old, might not provide the `non_witness_utxo` for
/// SegWit transactions in the PSBT they generate: in those cases setting this to `true`
/// should correctly produce a signature, at the expense of an increased trust in the creator
/// of the PSBT.
///
/// For more details see: <https://blog.trezor.io/details-of-firmware-updates-for-trezor-one-version-1-9-1-and-trezor-model-t-version-2-3-1-1eba8f60f2dd>
pub trust_witness_utxo: bool,
/// Whether the wallet should assume a specific height has been reached when trying to finalize
/// a transaction
///
/// The wallet will only "use" a timelock to satisfy the spending policy of an input if the
/// timelock height has already been reached. This option allows overriding the "current height" to let the
/// wallet use timelocks in the future to spend a coin.
pub assume_height: Option<u32>,
/// Whether the signer should use the `sighash_type` set in the PSBT when signing, no matter
/// what its value is
///
/// Defaults to `false` which will only allow signing using `SIGHASH_ALL`.
pub allow_all_sighashes: bool,
}
#[allow(clippy::derivable_impls)]
impl Default for SignOptions {
fn default() -> Self {
SignOptions {
trust_witness_utxo: false,
assume_height: None,
allow_all_sighashes: false,
}
}
}
pub(crate) trait ComputeSighash {
type Extra;
type Sighash;
type SighashType;
fn sighash(
psbt: &psbt::PartiallySignedTransaction,
input_index: usize,
extra: Self::Extra,
) -> Result<(Self::Sighash, Self::SighashType), SignerError>;
}
impl ComputeSighash for Legacy {
type Extra = ();
type Sighash = bitcoin::Sighash;
type SighashType = EcdsaSighashType;
fn sighash(
psbt: &psbt::PartiallySignedTransaction,
input_index: usize,
_extra: (),
) -> Result<(Self::Sighash, Self::SighashType), SignerError> {
if input_index >= psbt.inputs.len() || input_index >= psbt.unsigned_tx.input.len() {
return Err(SignerError::InputIndexOutOfRange);
}
let psbt_input = &psbt.inputs[input_index];
let tx_input = &psbt.unsigned_tx.input[input_index];
let sighash = psbt_input
.sighash_type
.unwrap_or_else(|| EcdsaSighashType::All.into())
.ecdsa_hash_ty()
.map_err(|_| SignerError::InvalidSighash)?;
let script = match psbt_input.redeem_script {
Some(ref redeem_script) => redeem_script.clone(),
None => {
let non_witness_utxo = psbt_input
.non_witness_utxo
.as_ref()
.ok_or(SignerError::MissingNonWitnessUtxo)?;
let prev_out = non_witness_utxo
.output
.get(tx_input.previous_output.vout as usize)
.ok_or(SignerError::InvalidNonWitnessUtxo)?;
prev_out.script_pubkey.clone()
}
};
Ok((
sighash::SighashCache::new(&psbt.unsigned_tx).legacy_signature_hash(
input_index,
&script,
sighash.to_u32(),
)?,
sighash,
))
}
}
fn p2wpkh_script_code(script: &Script) -> Script {
ScriptBuilder::new()
.push_opcode(opcodes::all::OP_DUP)
.push_opcode(opcodes::all::OP_HASH160)
.push_slice(&script[2..])
.push_opcode(opcodes::all::OP_EQUALVERIFY)
.push_opcode(opcodes::all::OP_CHECKSIG)
.into_script()
}
impl ComputeSighash for Segwitv0 {
type Extra = ();
type Sighash = bitcoin::Sighash;
type SighashType = EcdsaSighashType;
fn sighash(
psbt: &psbt::PartiallySignedTransaction,
input_index: usize,
_extra: (),
) -> Result<(Self::Sighash, Self::SighashType), SignerError> {
if input_index >= psbt.inputs.len() || input_index >= psbt.unsigned_tx.input.len() {
return Err(SignerError::InputIndexOutOfRange);
}
let psbt_input = &psbt.inputs[input_index];
let tx_input = &psbt.unsigned_tx.input[input_index];
let sighash = psbt_input
.sighash_type
.unwrap_or_else(|| EcdsaSighashType::All.into())
.ecdsa_hash_ty()
.map_err(|_| SignerError::InvalidSighash)?;
// Always try first with the non-witness utxo
let utxo = if let Some(prev_tx) = &psbt_input.non_witness_utxo {
// Check the provided prev-tx
if prev_tx.txid() != tx_input.previous_output.txid {
return Err(SignerError::InvalidNonWitnessUtxo);
}
// The output should be present, if it's missing the `non_witness_utxo` is invalid
prev_tx
.output
.get(tx_input.previous_output.vout as usize)
.ok_or(SignerError::InvalidNonWitnessUtxo)?
} else if let Some(witness_utxo) = &psbt_input.witness_utxo {
// Fallback to the witness_utxo. If we aren't allowed to use it, signing should fail
// before we get to this point
witness_utxo
} else {
// Nothing has been provided
return Err(SignerError::MissingNonWitnessUtxo);
};
let value = utxo.value;
let script = match psbt_input.witness_script {
Some(ref witness_script) => witness_script.clone(),
None => {
if utxo.script_pubkey.is_v0_p2wpkh() {
p2wpkh_script_code(&utxo.script_pubkey)
} else if psbt_input
.redeem_script
.as_ref()
.map(Script::is_v0_p2wpkh)
.unwrap_or(false)
{
p2wpkh_script_code(psbt_input.redeem_script.as_ref().unwrap())
} else {
return Err(SignerError::MissingWitnessScript);
}
}
};
Ok((
sighash::SighashCache::new(&psbt.unsigned_tx).segwit_signature_hash(
input_index,
&script,
value,
sighash,
)?,
sighash,
))
}
}
impl ComputeSighash for Tap {
type Extra = Option<taproot::TapLeafHash>;
type Sighash = taproot::TapSighashHash;
type SighashType = SchnorrSighashType;
fn sighash(
psbt: &psbt::PartiallySignedTransaction,
input_index: usize,
extra: Self::Extra,
) -> Result<(Self::Sighash, SchnorrSighashType), SignerError> {
if input_index >= psbt.inputs.len() || input_index >= psbt.unsigned_tx.input.len() {
return Err(SignerError::InputIndexOutOfRange);
}
let psbt_input = &psbt.inputs[input_index];
let sighash_type = psbt_input
.sighash_type
.unwrap_or_else(|| SchnorrSighashType::Default.into())
.schnorr_hash_ty()
.map_err(|_| SignerError::InvalidSighash)?;
let witness_utxos = psbt
.inputs
.iter()
.cloned()
.map(|i| i.witness_utxo)
.collect::<Vec<_>>();
let mut all_witness_utxos = vec![];
let mut cache = sighash::SighashCache::new(&psbt.unsigned_tx);
let is_anyone_can_pay = psbt::PsbtSighashType::from(sighash_type).to_u32() & 0x80 != 0;
let prevouts = if is_anyone_can_pay {
sighash::Prevouts::One(
input_index,
witness_utxos[input_index]
.as_ref()
.ok_or(SignerError::MissingWitnessUtxo)?,
)
} else if witness_utxos.iter().all(Option::is_some) {
all_witness_utxos.extend(witness_utxos.iter().filter_map(|x| x.as_ref()));
sighash::Prevouts::All(&all_witness_utxos)
} else {
return Err(SignerError::MissingWitnessUtxo);
};
// Assume no OP_CODESEPARATOR
let extra = extra.map(|leaf_hash| (leaf_hash, 0xFFFFFFFF));
Ok((
cache.taproot_signature_hash(input_index, &prevouts, None, extra, sighash_type)?,
sighash_type,
))
}
}
impl PartialOrd for SignersContainerKey {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for SignersContainerKey {
fn cmp(&self, other: &Self) -> Ordering {
self.ordering
.cmp(&other.ordering)
.then(self.id.cmp(&other.id))
}
}
impl PartialEq for SignersContainerKey {
fn eq(&self, other: &Self) -> bool {
self.id == other.id && self.ordering == other.ordering
}
}
impl Eq for SignersContainerKey {}
#[cfg(test)]
mod signers_container_tests {
use super::*;
use crate::descriptor;
use crate::descriptor::IntoWalletDescriptor;
use crate::keys::{DescriptorKey, IntoDescriptorKey};
use bitcoin::secp256k1::{All, Secp256k1};
use bitcoin::util::bip32;
use bitcoin::Network;
use miniscript::ScriptContext;
use std::str::FromStr;
fn is_equal(this: &Arc<dyn TransactionSigner>, that: &Arc<DummySigner>) -> bool {
let secp = Secp256k1::new();
this.id(&secp) == that.id(&secp)
}
// Signers added with the same ordering (like `Ordering::default`) created from `KeyMap`
// should be preserved and not overwritten.
// This happens usually when a set of signers is created from a descriptor with private keys.
#[test]
fn signers_with_same_ordering() {
let secp = Secp256k1::new();
let (prvkey1, _, _) = setup_keys(TPRV0_STR);
let (prvkey2, _, _) = setup_keys(TPRV1_STR);
let desc = descriptor!(sh(multi(2, prvkey1, prvkey2))).unwrap();
let (wallet_desc, keymap) = desc
.into_wallet_descriptor(&secp, Network::Testnet)
.unwrap();
let signers = SignersContainer::build(keymap, &wallet_desc, &secp);
assert_eq!(signers.ids().len(), 2);
let signers = signers.signers();
assert_eq!(signers.len(), 2);
}
#[test]
fn signers_sorted_by_ordering() {
let mut signers = SignersContainer::new();
let signer1 = Arc::new(DummySigner { number: 1 });
let signer2 = Arc::new(DummySigner { number: 2 });
let signer3 = Arc::new(DummySigner { number: 3 });
// Mixed order insertions verifies we are not inserting at head or tail.
signers.add_external(SignerId::Dummy(2), SignerOrdering(2), signer2.clone());
signers.add_external(SignerId::Dummy(1), SignerOrdering(1), signer1.clone());
signers.add_external(SignerId::Dummy(3), SignerOrdering(3), signer3.clone());
// Check that signers are sorted from lowest to highest ordering
let signers = signers.signers();
assert!(is_equal(signers[0], &signer1));
assert!(is_equal(signers[1], &signer2));
assert!(is_equal(signers[2], &signer3));
}
#[test]
fn find_signer_by_id() {
let mut signers = SignersContainer::new();
let signer1 = Arc::new(DummySigner { number: 1 });
let signer2 = Arc::new(DummySigner { number: 2 });
let signer3 = Arc::new(DummySigner { number: 3 });
let signer4 = Arc::new(DummySigner { number: 3 }); // Same ID as `signer3` but will use lower ordering.
let id1 = SignerId::Dummy(1);
let id2 = SignerId::Dummy(2);
let id3 = SignerId::Dummy(3);
let id_nonexistent = SignerId::Dummy(999);
signers.add_external(id1.clone(), SignerOrdering(1), signer1.clone());
signers.add_external(id2.clone(), SignerOrdering(2), signer2.clone());
signers.add_external(id3.clone(), SignerOrdering(3), signer3.clone());
assert!(matches!(signers.find(id1), Some(signer) if is_equal(signer, &signer1)));
assert!(matches!(signers.find(id2), Some(signer) if is_equal(signer, &signer2)));
assert!(matches!(signers.find(id3.clone()), Some(signer) if is_equal(signer, &signer3)));
// The `signer4` has the same ID as `signer3` but lower ordering.
// It should be found by `id3` instead of `signer3`.
signers.add_external(id3.clone(), SignerOrdering(2), signer4.clone());
assert!(matches!(signers.find(id3), Some(signer) if is_equal(signer, &signer4)));
// Can't find anything with ID that doesn't exist
assert!(matches!(signers.find(id_nonexistent), None));
}
#[derive(Debug, Clone, Copy)]
struct DummySigner {
number: u64,
}
impl SignerCommon for DummySigner {
fn id(&self, _secp: &SecpCtx) -> SignerId {
SignerId::Dummy(self.number)
}
}
impl TransactionSigner for DummySigner {
fn sign_transaction(
&self,
_psbt: &mut psbt::PartiallySignedTransaction,
_secp: &SecpCtx,
) -> Result<(), SignerError> {
Ok(())
}
}
const TPRV0_STR:&str = "tprv8ZgxMBicQKsPdZXrcHNLf5JAJWFAoJ2TrstMRdSKtEggz6PddbuSkvHKM9oKJyFgZV1B7rw8oChspxyYbtmEXYyg1AjfWbL3ho3XHDpHRZf";
const TPRV1_STR:&str = "tprv8ZgxMBicQKsPdpkqS7Eair4YxjcuuvDPNYmKX3sCniCf16tHEVrjjiSXEkFRnUH77yXc6ZcwHHcLNfjdi5qUvw3VDfgYiH5mNsj5izuiu2N";
const PATH: &str = "m/44'/1'/0'/0";
fn setup_keys<Ctx: ScriptContext>(
tprv: &str,
) -> (DescriptorKey<Ctx>, DescriptorKey<Ctx>, Fingerprint) {
let secp: Secp256k1<All> = Secp256k1::new();
let path = bip32::DerivationPath::from_str(PATH).unwrap();
let tprv = bip32::ExtendedPrivKey::from_str(tprv).unwrap();
let tpub = bip32::ExtendedPubKey::from_priv(&secp, &tprv);
let fingerprint = tprv.fingerprint(&secp);
let prvkey = (tprv, path.clone()).into_descriptor_key().unwrap();
let pubkey = (tpub, path).into_descriptor_key().unwrap();
(prvkey, pubkey, fingerprint)
}
}