bdk/crates/chain/src/spk_txout_index.rs
志宇 81436fcd72
[bdk_chain_redesign] Fix Anchor definition + docs
Previously, I have misunderstood the definition of anchor. If a tx is
anchored in a block, it does not necessarily mean it is confirmed in
that block. The tx can be confirmed in an ancestor block of the anchor
block.

With this new definition, we need a new trait `ConfirmationHeight` that
has one method `confirmation_height`. This trait can be used to extend
`Anchor` for those implementations that can give us the exact
conirmation height of a tx (which is useful in most cases).

Another change is to add another variant to the `ObservedAs` enum;
`ObservedAs::ConfirmedImplicit(A)`. If a tx does not have an anchor, but
another tx that spends it has an anchor that in in the best chain, we
can assume that tx is also in the best chain. The logic of
`TxGraph::try_get_chain_position` is also changed to reflect this.

Some methods from `IndexedTxGraph` have been moved to `TxGraph` as they
do not require the `Indexer`. Some `TxGraph` methods have been renamed
for clarity and consistency.

Also more docs are added.
2023-04-18 00:02:14 +08:00

333 lines
12 KiB
Rust

use core::ops::RangeBounds;
use crate::{
collections::{hash_map::Entry, BTreeMap, BTreeSet, HashMap},
indexed_tx_graph::Indexer,
ForEachTxOut,
};
use bitcoin::{self, OutPoint, Script, Transaction, TxOut, Txid};
/// An index storing [`TxOut`]s that have a script pubkey that matches those in a list.
///
/// The basic idea is that you insert script pubkeys you care about into the index with
/// [`insert_spk`] and then when you call [`scan`], the index will look at any txouts you pass in and
/// store and index any txouts matching one of its script pubkeys.
///
/// Each script pubkey is associated with an application-defined index script index `I`, which must be
/// [`Ord`]. Usually, this is used to associate the derivation index of the script pubkey or even a
/// combination of `(keychain, derivation_index)`.
///
/// Note there is no harm in scanning transactions that disappear from the blockchain or were never
/// in there in the first place. `SpkTxOutIndex` is intentionally *monotone* -- you cannot delete or
/// modify txouts that have been indexed. To find out which txouts from the index are actually in the
/// chain or unspent, you must use other sources of information like a [`SparseChain`].
///
/// [`TxOut`]: bitcoin::TxOut
/// [`insert_spk`]: Self::insert_spk
/// [`Ord`]: core::cmp::Ord
/// [`scan`]: Self::scan
/// [`SparseChain`]: crate::sparse_chain::SparseChain
#[derive(Clone, Debug)]
pub struct SpkTxOutIndex<I> {
/// script pubkeys ordered by index
spks: BTreeMap<I, Script>,
/// A reverse lookup from spk to spk index
spk_indices: HashMap<Script, I>,
/// The set of unused indexes.
unused: BTreeSet<I>,
/// Lookup index and txout by outpoint.
txouts: BTreeMap<OutPoint, (I, TxOut)>,
/// Lookup from spk index to outpoints that had that spk
spk_txouts: BTreeSet<(I, OutPoint)>,
}
impl<I> Default for SpkTxOutIndex<I> {
fn default() -> Self {
Self {
txouts: Default::default(),
spks: Default::default(),
spk_indices: Default::default(),
spk_txouts: Default::default(),
unused: Default::default(),
}
}
}
impl<I: Clone + Ord + 'static> Indexer for SpkTxOutIndex<I> {
type Additions = ();
fn index_txout(&mut self, outpoint: OutPoint, txout: &TxOut) -> Self::Additions {
self.scan_txout(outpoint, txout);
Default::default()
}
fn index_tx(&mut self, tx: &Transaction) -> Self::Additions {
self.scan(tx);
Default::default()
}
fn apply_additions(&mut self, _additions: Self::Additions) {
// This applies nothing.
}
fn is_tx_relevant(&self, tx: &Transaction) -> bool {
self.is_relevant(tx)
}
}
/// This macro is used instead of a member function of `SpkTxOutIndex`, which would result in a
/// compiler error[E0521]: "borrowed data escapes out of closure" when we attempt to take a
/// reference out of the `ForEachTxOut` closure during scanning.
macro_rules! scan_txout {
($self:ident, $op:expr, $txout:expr) => {{
let spk_i = $self.spk_indices.get(&$txout.script_pubkey);
if let Some(spk_i) = spk_i {
$self.txouts.insert($op, (spk_i.clone(), $txout.clone()));
$self.spk_txouts.insert((spk_i.clone(), $op));
$self.unused.remove(&spk_i);
}
spk_i
}};
}
impl<I: Clone + Ord> SpkTxOutIndex<I> {
/// Scans an object containing many txouts.
///
/// Typically, this is used in two situations:
///
/// 1. After loading transaction data from the disk, you may scan over all the txouts to restore all
/// your txouts.
/// 2. When getting new data from the chain, you usually scan it before incorporating it into your chain state.
///
/// See [`ForEachTxout`] for the types that support this.
///
/// [`ForEachTxout`]: crate::ForEachTxOut
pub fn scan(&mut self, txouts: &impl ForEachTxOut) -> BTreeSet<I> {
let mut scanned_indices = BTreeSet::new();
txouts.for_each_txout(|(op, txout)| {
if let Some(spk_i) = scan_txout!(self, op, txout) {
scanned_indices.insert(spk_i.clone());
}
});
scanned_indices
}
/// Scan a single `TxOut` for a matching script pubkey and returns the index that matches the
/// script pubkey (if any).
pub fn scan_txout(&mut self, op: OutPoint, txout: &TxOut) -> Option<&I> {
scan_txout!(self, op, txout)
}
/// Iterate over all known txouts that spend to tracked script pubkeys.
pub fn txouts(
&self,
) -> impl DoubleEndedIterator<Item = (&I, OutPoint, &TxOut)> + ExactSizeIterator {
self.txouts
.iter()
.map(|(op, (index, txout))| (index, *op, txout))
}
/// Finds all txouts on a transaction that has previously been scanned and indexed.
pub fn txouts_in_tx(
&self,
txid: Txid,
) -> impl DoubleEndedIterator<Item = (&I, OutPoint, &TxOut)> {
self.txouts
.range(OutPoint::new(txid, u32::MIN)..=OutPoint::new(txid, u32::MAX))
.map(|(op, (index, txout))| (index, *op, txout))
}
/// Iterates over all the outputs with script pubkeys in an index range.
pub fn outputs_in_range(
&self,
range: impl RangeBounds<I>,
) -> impl DoubleEndedIterator<Item = (&I, OutPoint)> {
use bitcoin::hashes::Hash;
use core::ops::Bound::*;
let min_op = OutPoint {
txid: Txid::from_inner([0x00; 32]),
vout: u32::MIN,
};
let max_op = OutPoint {
txid: Txid::from_inner([0xff; 32]),
vout: u32::MAX,
};
let start = match range.start_bound() {
Included(index) => Included((index.clone(), min_op)),
Excluded(index) => Excluded((index.clone(), max_op)),
Unbounded => Unbounded,
};
let end = match range.end_bound() {
Included(index) => Included((index.clone(), max_op)),
Excluded(index) => Excluded((index.clone(), min_op)),
Unbounded => Unbounded,
};
self.spk_txouts.range((start, end)).map(|(i, op)| (i, *op))
}
/// Returns the txout and script pubkey index of the `TxOut` at `OutPoint`.
///
/// Returns `None` if the `TxOut` hasn't been scanned or if nothing matching was found there.
pub fn txout(&self, outpoint: OutPoint) -> Option<(&I, &TxOut)> {
self.txouts
.get(&outpoint)
.map(|(spk_i, txout)| (spk_i, txout))
}
/// Returns the script that has been inserted at the `index`.
///
/// If that index hasn't been inserted yet, it will return `None`.
pub fn spk_at_index(&self, index: &I) -> Option<&Script> {
self.spks.get(index)
}
/// The script pubkeys that are being tracked by the index.
pub fn all_spks(&self) -> &BTreeMap<I, Script> {
&self.spks
}
/// Adds a script pubkey to scan for. Returns `false` and does nothing if spk already exists in the map
///
/// the index will look for outputs spending to this spk whenever it scans new data.
pub fn insert_spk(&mut self, index: I, spk: Script) -> bool {
match self.spk_indices.entry(spk.clone()) {
Entry::Vacant(value) => {
value.insert(index.clone());
self.spks.insert(index.clone(), spk);
self.unused.insert(index);
true
}
Entry::Occupied(_) => false,
}
}
/// Iterates over all unused script pubkeys in an index range.
///
/// Here, "unused" means that after the script pubkey was stored in the index, the index has
/// never scanned a transaction output with it.
///
/// # Example
///
/// ```rust
/// # use bdk_chain::SpkTxOutIndex;
///
/// // imagine our spks are indexed like (keychain, derivation_index).
/// let txout_index = SpkTxOutIndex::<(u32, u32)>::default();
/// let all_unused_spks = txout_index.unused_spks(..);
/// let change_index = 1;
/// let unused_change_spks =
/// txout_index.unused_spks((change_index, u32::MIN)..(change_index, u32::MAX));
/// ```
pub fn unused_spks<R>(&self, range: R) -> impl DoubleEndedIterator<Item = (&I, &Script)>
where
R: RangeBounds<I>,
{
self.unused
.range(range)
.map(move |index| (index, self.spk_at_index(index).expect("must exist")))
}
/// Returns whether the script pubkey at `index` has been used or not.
///
/// Here, "unused" means that after the script pubkey was stored in the index, the index has
/// never scanned a transaction output with it.
pub fn is_used(&self, index: &I) -> bool {
self.unused.get(index).is_none()
}
/// Marks the script pubkey at `index` as used even though it hasn't seen an output spending to it.
/// This only affects when the `index` had already been added to `self` and was unused.
///
/// Returns whether the `index` was initially present as `unused`.
///
/// This is useful when you want to reserve a script pubkey for something but don't want to add
/// the transaction output using it to the index yet. Other callers will consider the `index` used
/// until you call [`unmark_used`].
///
/// [`unmark_used`]: Self::unmark_used
pub fn mark_used(&mut self, index: &I) -> bool {
self.unused.remove(index)
}
/// Undoes the effect of [`mark_used`]. Returns whether the `index` is inserted back into
/// `unused`.
///
/// Note that if `self` has scanned an output with this script pubkey then this will have no
/// effect.
///
/// [`mark_used`]: Self::mark_used
pub fn unmark_used(&mut self, index: &I) -> bool {
// we cannot set the index as unused when it does not exist
if !self.spks.contains_key(index) {
return false;
}
// we cannot set the index as unused when txouts are indexed under it
if self.outputs_in_range(index..=index).next().is_some() {
return false;
}
self.unused.insert(index.clone())
}
/// Returns the index associated with the script pubkey.
pub fn index_of_spk(&self, script: &Script) -> Option<&I> {
self.spk_indices.get(script)
}
/// Computes total input value going from script pubkeys in the index (sent) and the total output
/// value going to script pubkeys in the index (received) in `tx`. For the `sent` to be computed
/// correctly, the output being spent must have already been scanned by the index. Calculating
/// received just uses the transaction outputs directly, so it will be correct even if it has not
/// been scanned.
pub fn sent_and_received(&self, tx: &Transaction) -> (u64, u64) {
let mut sent = 0;
let mut received = 0;
for txin in &tx.input {
if let Some((_, txout)) = self.txout(txin.previous_output) {
sent += txout.value;
}
}
for txout in &tx.output {
if self.index_of_spk(&txout.script_pubkey).is_some() {
received += txout.value;
}
}
(sent, received)
}
/// Computes the net value that this transaction gives to the script pubkeys in the index and
/// *takes* from the transaction outputs in the index. Shorthand for calling
/// [`sent_and_received`] and subtracting sent from received.
///
/// [`sent_and_received`]: Self::sent_and_received
pub fn net_value(&self, tx: &Transaction) -> i64 {
let (sent, received) = self.sent_and_received(tx);
received as i64 - sent as i64
}
/// Whether any of the inputs of this transaction spend a txout tracked or whether any output
/// matches one of our script pubkeys.
///
/// It is easily possible to misuse this method and get false negatives by calling it before you
/// have scanned the `TxOut`s the transaction is spending. For example, if you want to filter out
/// all the transactions in a block that are irrelevant, you **must first scan all the
/// transactions in the block** and only then use this method.
pub fn is_relevant(&self, tx: &Transaction) -> bool {
let input_matches = tx
.input
.iter()
.any(|input| self.txouts.contains_key(&input.previous_output));
let output_matches = tx
.output
.iter()
.any(|output| self.spk_indices.contains_key(&output.script_pubkey));
input_matches || output_matches
}
}