bdk/src/descriptor/mod.rs
Daniela Brozzoni 4d48a07717
fix: Explicitly deny multipath keys
Although there is *some* code to handle multipath keys inside bdk,
it's all untested, and from a few quick tests it
seems that it's pretty easy to find buggy edge cases.
Better to deny multipath descs for now, and revisit the
decision once we work on supporting multidescriptor wallets.
2023-08-16 15:02:52 +02:00

904 lines
36 KiB
Rust

// Bitcoin Dev Kit
// Written in 2020 by Alekos Filini <alekos.filini@gmail.com>
//
// Copyright (c) 2020-2021 Bitcoin Dev Kit Developers
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Descriptors
//!
//! This module contains generic utilities to work with descriptors, plus some re-exported types
//! from [`miniscript`].
use std::collections::BTreeMap;
use bitcoin::bip32::{ChildNumber, DerivationPath, ExtendedPubKey, Fingerprint, KeySource};
use bitcoin::{key::XOnlyPublicKey, secp256k1, PublicKey};
use bitcoin::{psbt, taproot};
use bitcoin::{Network, TxOut};
use miniscript::descriptor::{
DefiniteDescriptorKey, DescriptorMultiXKey, DescriptorSecretKey, DescriptorType,
DescriptorXKey, InnerXKey, KeyMap, SinglePubKey, Wildcard,
};
pub use miniscript::{
Descriptor, DescriptorPublicKey, Legacy, Miniscript, ScriptContext, Segwitv0,
};
use miniscript::{ForEachKey, MiniscriptKey, TranslatePk};
use crate::descriptor::policy::BuildSatisfaction;
pub mod checksum;
#[doc(hidden)]
pub mod dsl;
pub mod error;
pub mod policy;
pub mod template;
pub use self::checksum::calc_checksum;
use self::checksum::calc_checksum_bytes;
pub use self::error::Error as DescriptorError;
pub use self::policy::Policy;
use self::template::DescriptorTemplateOut;
use crate::keys::{IntoDescriptorKey, KeyError};
use crate::wallet::signer::SignersContainer;
use crate::wallet::utils::SecpCtx;
/// Alias for a [`Descriptor`] that can contain extended keys using [`DescriptorPublicKey`]
pub type ExtendedDescriptor = Descriptor<DescriptorPublicKey>;
/// Alias for a [`Descriptor`] that contains extended **derived** keys
pub type DerivedDescriptor = Descriptor<DefiniteDescriptorKey>;
/// Alias for the type of maps that represent derivation paths in a [`psbt::Input`] or
/// [`psbt::Output`]
///
/// [`psbt::Input`]: bitcoin::psbt::Input
/// [`psbt::Output`]: bitcoin::psbt::Output
pub type HdKeyPaths = BTreeMap<secp256k1::PublicKey, KeySource>;
/// Alias for the type of maps that represent taproot key origins in a [`psbt::Input`] or
/// [`psbt::Output`]
///
/// [`psbt::Input`]: bitcoin::psbt::Input
/// [`psbt::Output`]: bitcoin::psbt::Output
pub type TapKeyOrigins = BTreeMap<XOnlyPublicKey, (Vec<taproot::TapLeafHash>, KeySource)>;
/// Trait for types which can be converted into an [`ExtendedDescriptor`] and a [`KeyMap`] usable by a wallet in a specific [`Network`]
pub trait IntoWalletDescriptor {
/// Convert to wallet descriptor
fn into_wallet_descriptor(
self,
secp: &SecpCtx,
network: Network,
) -> Result<(ExtendedDescriptor, KeyMap), DescriptorError>;
}
impl IntoWalletDescriptor for &str {
fn into_wallet_descriptor(
self,
secp: &SecpCtx,
network: Network,
) -> Result<(ExtendedDescriptor, KeyMap), DescriptorError> {
let descriptor = match self.split_once('#') {
Some((desc, original_checksum)) => {
let checksum = calc_checksum_bytes(desc)?;
if original_checksum.as_bytes() != checksum {
return Err(DescriptorError::InvalidDescriptorChecksum);
}
desc
}
None => self,
};
ExtendedDescriptor::parse_descriptor(secp, descriptor)?
.into_wallet_descriptor(secp, network)
}
}
impl IntoWalletDescriptor for &String {
fn into_wallet_descriptor(
self,
secp: &SecpCtx,
network: Network,
) -> Result<(ExtendedDescriptor, KeyMap), DescriptorError> {
self.as_str().into_wallet_descriptor(secp, network)
}
}
impl IntoWalletDescriptor for ExtendedDescriptor {
fn into_wallet_descriptor(
self,
secp: &SecpCtx,
network: Network,
) -> Result<(ExtendedDescriptor, KeyMap), DescriptorError> {
(self, KeyMap::default()).into_wallet_descriptor(secp, network)
}
}
impl IntoWalletDescriptor for (ExtendedDescriptor, KeyMap) {
fn into_wallet_descriptor(
self,
secp: &SecpCtx,
network: Network,
) -> Result<(ExtendedDescriptor, KeyMap), DescriptorError> {
use crate::keys::DescriptorKey;
struct Translator<'s, 'd> {
secp: &'s SecpCtx,
descriptor: &'d ExtendedDescriptor,
network: Network,
}
impl<'s, 'd> miniscript::Translator<DescriptorPublicKey, String, DescriptorError>
for Translator<'s, 'd>
{
fn pk(&mut self, pk: &DescriptorPublicKey) -> Result<String, DescriptorError> {
let secp = &self.secp;
let (_, _, networks) = if self.descriptor.is_taproot() {
let descriptor_key: DescriptorKey<miniscript::Tap> =
pk.clone().into_descriptor_key()?;
descriptor_key.extract(secp)?
} else if self.descriptor.is_witness() {
let descriptor_key: DescriptorKey<miniscript::Segwitv0> =
pk.clone().into_descriptor_key()?;
descriptor_key.extract(secp)?
} else {
let descriptor_key: DescriptorKey<miniscript::Legacy> =
pk.clone().into_descriptor_key()?;
descriptor_key.extract(secp)?
};
if networks.contains(&self.network) {
Ok(Default::default())
} else {
Err(DescriptorError::Key(KeyError::InvalidNetwork))
}
}
fn sha256(
&mut self,
_sha256: &<DescriptorPublicKey as MiniscriptKey>::Sha256,
) -> Result<String, DescriptorError> {
Ok(Default::default())
}
fn hash256(
&mut self,
_hash256: &<DescriptorPublicKey as MiniscriptKey>::Hash256,
) -> Result<String, DescriptorError> {
Ok(Default::default())
}
fn ripemd160(
&mut self,
_ripemd160: &<DescriptorPublicKey as MiniscriptKey>::Ripemd160,
) -> Result<String, DescriptorError> {
Ok(Default::default())
}
fn hash160(
&mut self,
_hash160: &<DescriptorPublicKey as MiniscriptKey>::Hash160,
) -> Result<String, DescriptorError> {
Ok(Default::default())
}
}
// check the network for the keys
use miniscript::TranslateErr;
match self.0.translate_pk(&mut Translator {
secp,
network,
descriptor: &self.0,
}) {
Ok(_) => {}
Err(TranslateErr::TranslatorErr(e)) => return Err(e),
Err(TranslateErr::OuterError(e)) => return Err(e.into()),
}
Ok(self)
}
}
impl IntoWalletDescriptor for DescriptorTemplateOut {
fn into_wallet_descriptor(
self,
_secp: &SecpCtx,
network: Network,
) -> Result<(ExtendedDescriptor, KeyMap), DescriptorError> {
struct Translator {
network: Network,
}
impl miniscript::Translator<DescriptorPublicKey, DescriptorPublicKey, DescriptorError>
for Translator
{
fn pk(
&mut self,
pk: &DescriptorPublicKey,
) -> Result<DescriptorPublicKey, DescriptorError> {
// workaround for xpubs generated by other key types, like bip39: since when the
// conversion is made one network has to be chosen, what we generally choose
// "mainnet", but then override the set of valid networks to specify that all of
// them are valid. here we reset the network to make sure the wallet struct gets a
// descriptor with the right network everywhere.
let pk = match pk {
DescriptorPublicKey::XPub(ref xpub) => {
let mut xpub = xpub.clone();
xpub.xkey.network = self.network;
DescriptorPublicKey::XPub(xpub)
}
other => other.clone(),
};
Ok(pk)
}
miniscript::translate_hash_clone!(
DescriptorPublicKey,
DescriptorPublicKey,
DescriptorError
);
}
let (desc, keymap, networks) = self;
if !networks.contains(&network) {
return Err(DescriptorError::Key(KeyError::InvalidNetwork));
}
// fixup the network for keys that need it in the descriptor
use miniscript::TranslateErr;
let translated = match desc.translate_pk(&mut Translator { network }) {
Ok(descriptor) => descriptor,
Err(TranslateErr::TranslatorErr(e)) => return Err(e),
Err(TranslateErr::OuterError(e)) => return Err(e.into()),
};
// ...and in the key map
let fixed_keymap = keymap
.into_iter()
.map(|(mut k, mut v)| {
match (&mut k, &mut v) {
(DescriptorPublicKey::XPub(xpub), DescriptorSecretKey::XPrv(xprv)) => {
xpub.xkey.network = network;
xprv.xkey.network = network;
}
(_, DescriptorSecretKey::Single(key)) => {
key.key.network = network;
}
_ => {}
}
(k, v)
})
.collect();
Ok((translated, fixed_keymap))
}
}
/// Wrapper for `IntoWalletDescriptor` that performs additional checks on the keys contained in the
/// descriptor
pub(crate) fn into_wallet_descriptor_checked<T: IntoWalletDescriptor>(
inner: T,
secp: &SecpCtx,
network: Network,
) -> Result<(ExtendedDescriptor, KeyMap), DescriptorError> {
let (descriptor, keymap) = inner.into_wallet_descriptor(secp, network)?;
// Ensure the keys don't contain any hardened derivation steps or hardened wildcards
let descriptor_contains_hardened_steps = descriptor.for_any_key(|k| {
if let DescriptorPublicKey::XPub(DescriptorXKey {
derivation_path,
wildcard,
..
}) = k
{
return *wildcard == Wildcard::Hardened
|| derivation_path.into_iter().any(ChildNumber::is_hardened);
}
false
});
if descriptor_contains_hardened_steps {
return Err(DescriptorError::HardenedDerivationXpub);
}
if descriptor.is_multipath() {
return Err(DescriptorError::MultiPath);
}
// Run miniscript's sanity check, which will look for duplicated keys and other potential
// issues
descriptor.sanity_check()?;
Ok((descriptor, keymap))
}
#[doc(hidden)]
/// Used internally mainly by the `descriptor!()` and `fragment!()` macros
pub trait CheckMiniscript<Ctx: miniscript::ScriptContext> {
fn check_miniscript(&self) -> Result<(), miniscript::Error>;
}
impl<Ctx: miniscript::ScriptContext, Pk: miniscript::MiniscriptKey> CheckMiniscript<Ctx>
for miniscript::Miniscript<Pk, Ctx>
{
fn check_miniscript(&self) -> Result<(), miniscript::Error> {
Ctx::check_global_validity(self)?;
Ok(())
}
}
/// Trait implemented on [`Descriptor`]s to add a method to extract the spending [`policy`]
pub trait ExtractPolicy {
/// Extract the spending [`policy`]
fn extract_policy(
&self,
signers: &SignersContainer,
psbt: BuildSatisfaction,
secp: &SecpCtx,
) -> Result<Option<Policy>, DescriptorError>;
}
pub(crate) trait XKeyUtils {
fn root_fingerprint(&self, secp: &SecpCtx) -> Fingerprint;
}
impl<T> XKeyUtils for DescriptorMultiXKey<T>
where
T: InnerXKey,
{
fn root_fingerprint(&self, secp: &SecpCtx) -> Fingerprint {
match self.origin {
Some((fingerprint, _)) => fingerprint,
None => self.xkey.xkey_fingerprint(secp),
}
}
}
impl<T> XKeyUtils for DescriptorXKey<T>
where
T: InnerXKey,
{
fn root_fingerprint(&self, secp: &SecpCtx) -> Fingerprint {
match self.origin {
Some((fingerprint, _)) => fingerprint,
None => self.xkey.xkey_fingerprint(secp),
}
}
}
pub(crate) trait DescriptorMeta {
fn is_witness(&self) -> bool;
fn is_taproot(&self) -> bool;
fn get_extended_keys(&self) -> Result<Vec<DescriptorXKey<ExtendedPubKey>>, DescriptorError>;
fn derive_from_hd_keypaths<'s>(
&self,
hd_keypaths: &HdKeyPaths,
secp: &'s SecpCtx,
) -> Option<DerivedDescriptor>;
fn derive_from_tap_key_origins<'s>(
&self,
tap_key_origins: &TapKeyOrigins,
secp: &'s SecpCtx,
) -> Option<DerivedDescriptor>;
fn derive_from_psbt_key_origins<'s>(
&self,
key_origins: BTreeMap<Fingerprint, (&DerivationPath, SinglePubKey)>,
secp: &'s SecpCtx,
) -> Option<DerivedDescriptor>;
fn derive_from_psbt_input<'s>(
&self,
psbt_input: &psbt::Input,
utxo: Option<TxOut>,
secp: &'s SecpCtx,
) -> Option<DerivedDescriptor>;
}
impl DescriptorMeta for ExtendedDescriptor {
fn is_witness(&self) -> bool {
matches!(
self.desc_type(),
DescriptorType::Wpkh
| DescriptorType::ShWpkh
| DescriptorType::Wsh
| DescriptorType::ShWsh
| DescriptorType::ShWshSortedMulti
| DescriptorType::WshSortedMulti
)
}
fn is_taproot(&self) -> bool {
self.desc_type() == DescriptorType::Tr
}
fn get_extended_keys(&self) -> Result<Vec<DescriptorXKey<ExtendedPubKey>>, DescriptorError> {
let mut answer = Vec::new();
self.for_each_key(|pk| {
if let DescriptorPublicKey::XPub(xpub) = pk {
answer.push(xpub.clone());
}
true
});
Ok(answer)
}
fn derive_from_psbt_key_origins<'s>(
&self,
key_origins: BTreeMap<Fingerprint, (&DerivationPath, SinglePubKey)>,
secp: &'s SecpCtx,
) -> Option<DerivedDescriptor> {
// Ensure that deriving `xpub` with `path` yields `expected`
let verify_key = |xpub: &DescriptorXKey<ExtendedPubKey>,
path: &DerivationPath,
expected: &SinglePubKey| {
let derived = xpub
.xkey
.derive_pub(secp, path)
.expect("The path should never contain hardened derivation steps")
.public_key;
match expected {
SinglePubKey::FullKey(pk) if &PublicKey::new(derived) == pk => true,
SinglePubKey::XOnly(pk) if &XOnlyPublicKey::from(derived) == pk => true,
_ => false,
}
};
let mut path_found = None;
// using `for_any_key` should make this stop as soon as we return `true`
self.for_any_key(|key| {
if let DescriptorPublicKey::XPub(xpub) = key {
// Check if the key matches one entry in our `key_origins`. If it does, `matches()` will
// return the "prefix" that matched, so we remove that prefix from the full path
// found in `key_origins` and save it in `derive_path`. We expect this to be a derivation
// path of length 1 if the key is `wildcard` and an empty path otherwise.
let root_fingerprint = xpub.root_fingerprint(secp);
let derive_path = key_origins
.get_key_value(&root_fingerprint)
.and_then(|(fingerprint, (path, expected))| {
xpub.matches(&(*fingerprint, (*path).clone()), secp)
.zip(Some((path, expected)))
})
.and_then(|(prefix, (full_path, expected))| {
let derive_path = full_path
.into_iter()
.skip(prefix.into_iter().count())
.cloned()
.collect::<DerivationPath>();
// `derive_path` only contains the replacement index for the wildcard, if present, or
// an empty path for fixed descriptors. To verify the key we also need the normal steps
// that come before the wildcard, so we take them directly from `xpub` and then append
// the final index
if verify_key(
xpub,
&xpub.derivation_path.extend(derive_path.clone()),
expected,
) {
Some(derive_path)
} else {
log::debug!(
"Key `{}` derived with {} yields an unexpected key",
root_fingerprint,
derive_path
);
None
}
});
match derive_path {
Some(path) if xpub.wildcard != Wildcard::None && path.len() == 1 => {
// Ignore hardened wildcards
if let ChildNumber::Normal { index } = path[0] {
path_found = Some(index);
return true;
}
}
Some(path) if xpub.wildcard == Wildcard::None && path.is_empty() => {
path_found = Some(0);
return true;
}
_ => {}
}
}
false
});
path_found.map(|path| {
self.at_derivation_index(path)
.expect("We ignore hardened wildcards")
})
}
fn derive_from_hd_keypaths<'s>(
&self,
hd_keypaths: &HdKeyPaths,
secp: &'s SecpCtx,
) -> Option<DerivedDescriptor> {
// "Convert" an hd_keypaths map to the format required by `derive_from_psbt_key_origins`
let key_origins = hd_keypaths
.iter()
.map(|(pk, (fingerprint, path))| {
(
*fingerprint,
(path, SinglePubKey::FullKey(PublicKey::new(*pk))),
)
})
.collect();
self.derive_from_psbt_key_origins(key_origins, secp)
}
fn derive_from_tap_key_origins<'s>(
&self,
tap_key_origins: &TapKeyOrigins,
secp: &'s SecpCtx,
) -> Option<DerivedDescriptor> {
// "Convert" a tap_key_origins map to the format required by `derive_from_psbt_key_origins`
let key_origins = tap_key_origins
.iter()
.map(|(pk, (_, (fingerprint, path)))| (*fingerprint, (path, SinglePubKey::XOnly(*pk))))
.collect();
self.derive_from_psbt_key_origins(key_origins, secp)
}
fn derive_from_psbt_input<'s>(
&self,
psbt_input: &psbt::Input,
utxo: Option<TxOut>,
secp: &'s SecpCtx,
) -> Option<DerivedDescriptor> {
if let Some(derived) = self.derive_from_hd_keypaths(&psbt_input.bip32_derivation, secp) {
return Some(derived);
}
if let Some(derived) = self.derive_from_tap_key_origins(&psbt_input.tap_key_origins, secp) {
return Some(derived);
}
if self.has_wildcard() {
// We can't try to bruteforce the derivation index, exit here
return None;
}
let descriptor = self.at_derivation_index(0).expect("0 is not hardened");
match descriptor.desc_type() {
// TODO: add pk() here
DescriptorType::Pkh
| DescriptorType::Wpkh
| DescriptorType::ShWpkh
| DescriptorType::Tr
if utxo.is_some()
&& descriptor.script_pubkey() == utxo.as_ref().unwrap().script_pubkey =>
{
Some(descriptor)
}
DescriptorType::Bare | DescriptorType::Sh | DescriptorType::ShSortedMulti
if psbt_input.redeem_script.is_some()
&& &descriptor.explicit_script().unwrap()
== psbt_input.redeem_script.as_ref().unwrap() =>
{
Some(descriptor)
}
DescriptorType::Wsh
| DescriptorType::ShWsh
| DescriptorType::ShWshSortedMulti
| DescriptorType::WshSortedMulti
if psbt_input.witness_script.is_some()
&& &descriptor.explicit_script().unwrap()
== psbt_input.witness_script.as_ref().unwrap() =>
{
Some(descriptor)
}
_ => None,
}
}
}
#[cfg(test)]
mod test {
use std::str::FromStr;
use assert_matches::assert_matches;
use bitcoin::hashes::hex::FromHex;
use bitcoin::secp256k1::Secp256k1;
use bitcoin::ScriptBuf;
use bitcoin::{bip32, psbt::Psbt};
use super::*;
use crate::psbt::PsbtUtils;
#[test]
fn test_derive_from_psbt_input_wpkh_wif() {
let descriptor = Descriptor::<DescriptorPublicKey>::from_str(
"wpkh(02b4632d08485ff1df2db55b9dafd23347d1c47a457072a1e87be26896549a8737)",
)
.unwrap();
let psbt = Psbt::deserialize(
&Vec::<u8>::from_hex(
"70736274ff010052010000000162307be8e431fbaff807cdf9cdc3fde44d7402\
11bc8342c31ffd6ec11fe35bcc0100000000ffffffff01328601000000000016\
001493ce48570b55c42c2af816aeaba06cfee1224fae000000000001011fa086\
01000000000016001493ce48570b55c42c2af816aeaba06cfee1224fae010304\
010000000000",
)
.unwrap(),
)
.unwrap();
assert!(descriptor
.derive_from_psbt_input(&psbt.inputs[0], psbt.get_utxo_for(0), &Secp256k1::new())
.is_some());
}
#[test]
fn test_derive_from_psbt_input_pkh_tpub() {
let descriptor = Descriptor::<DescriptorPublicKey>::from_str(
"pkh([0f056943/44h/0h/0h]tpubDDpWvmUrPZrhSPmUzCMBHffvC3HyMAPnWDSAQNBTnj1iZeJa7BZQEttFiP4DS4GCcXQHezdXhn86Hj6LHX5EDstXPWrMaSneRWM8yUf6NFd/10/*)",
)
.unwrap();
let psbt = Psbt::deserialize(
&Vec::<u8>::from_hex(
"70736274ff010053010000000145843b86be54a3cd8c9e38444e1162676c00df\
e7964122a70df491ea12fd67090100000000ffffffff01c19598000000000017\
a91432bb94283282f72b2e034709e348c44d5a4db0ef8700000000000100f902\
0000000001010167e99c0eb67640f3a1b6805f2d8be8238c947f8aaf49eb0a9c\
bee6a42c984200000000171600142b29a22019cca05b9c2b2d283a4c4489e1cf\
9f8ffeffffff02a01dced06100000017a914e2abf033cadbd74f0f4c74946201\
decd20d5c43c8780969800000000001976a9148b0fce5fb1264e599a65387313\
3c95478b902eb288ac02473044022015d9211576163fa5b001e84dfa3d44efd9\
86b8f3a0d3d2174369288b2b750906022048dacc0e5d73ae42512fd2b97e2071\
a8d0bce443b390b1fe0b8128fe70ec919e01210232dad1c5a67dcb0116d407e2\
52584228ab7ec00e8b9779d0c3ffe8114fc1a7d2c80600000103040100000022\
0603433b83583f8c4879b329dd08bbc7da935e4cc02f637ff746e05f0466ffb2\
a6a2180f0569432c00008000000080000000800a000000000000000000",
)
.unwrap(),
)
.unwrap();
assert!(descriptor
.derive_from_psbt_input(&psbt.inputs[0], psbt.get_utxo_for(0), &Secp256k1::new())
.is_some());
}
#[test]
fn test_derive_from_psbt_input_wsh() {
let descriptor = Descriptor::<DescriptorPublicKey>::from_str(
"wsh(and_v(v:pk(03b6633fef2397a0a9de9d7b6f23aef8368a6e362b0581f0f0af70d5ecfd254b14),older(6)))",
)
.unwrap();
let psbt = Psbt::deserialize(
&Vec::<u8>::from_hex(
"70736274ff01005302000000011c8116eea34408ab6529223c9a176606742207\
67a1ff1d46a6e3c4a88243ea6e01000000000600000001109698000000000017\
a914ad105f61102e0d01d7af40d06d6a5c3ae2f7fde387000000000001012b80\
969800000000002200203ca72f106a72234754890ca7640c43f65d2174e44d33\
336030f9059345091044010304010000000105252103b6633fef2397a0a9de9d\
7b6f23aef8368a6e362b0581f0f0af70d5ecfd254b14ad56b20000",
)
.unwrap(),
)
.unwrap();
assert!(descriptor
.derive_from_psbt_input(&psbt.inputs[0], psbt.get_utxo_for(0), &Secp256k1::new())
.is_some());
}
#[test]
fn test_derive_from_psbt_input_sh() {
let descriptor = Descriptor::<DescriptorPublicKey>::from_str(
"sh(and_v(v:pk(021403881a5587297818fcaf17d239cefca22fce84a45b3b1d23e836c4af671dbb),after(630000)))",
)
.unwrap();
let psbt = Psbt::deserialize(
&Vec::<u8>::from_hex(
"70736274ff0100530100000001bc8c13df445dfadcc42afa6dc841f85d22b01d\
a6270ebf981740f4b7b1d800390000000000feffffff01ba9598000000000017\
a91457b148ba4d3e5fa8608a8657875124e3d1c9390887f09c0900000100e002\
0000000001016ba1bbe05cc93574a0d611ec7d93ad0ab6685b28d0cd80e8a82d\
debb326643c90100000000feffffff02809698000000000017a914d9a6e8c455\
8e16c8253afe53ce37ad61cf4c38c487403504cf6100000017a9144044fb6e0b\
757dfc1b34886b6a95aef4d3db137e870247304402202a9b72d939bcde8ba2a1\
e0980597e47af4f5c152a78499143c3d0a78ac2286a602207a45b1df9e93b8c9\
6f09f5c025fe3e413ca4b905fe65ee55d32a3276439a9b8f012102dc1fcc2636\
4da1aa718f03d8d9bd6f2ff410ed2cf1245a168aa3bcc995ac18e0a806000001\
03040100000001042821021403881a5587297818fcaf17d239cefca22fce84a4\
5b3b1d23e836c4af671dbbad03f09c09b10000",
)
.unwrap(),
)
.unwrap();
assert!(descriptor
.derive_from_psbt_input(&psbt.inputs[0], psbt.get_utxo_for(0), &Secp256k1::new())
.is_some());
}
#[test]
fn test_to_wallet_descriptor_fixup_networks() {
use crate::keys::{any_network, IntoDescriptorKey};
let secp = Secp256k1::new();
let xprv = bip32::ExtendedPrivKey::from_str("xprv9s21ZrQH143K3c3gF1DUWpWNr2SG2XrG8oYPpqYh7hoWsJy9NjabErnzriJPpnGHyKz5NgdXmq1KVbqS1r4NXdCoKitWg5e86zqXHa8kxyB").unwrap();
let path = bip32::DerivationPath::from_str("m/0").unwrap();
// here `to_descriptor_key` will set the valid networks for the key to only mainnet, since
// we are using an "xpub"
let key = (xprv, path.clone()).into_descriptor_key().unwrap();
// override it with any. this happens in some key conversions, like bip39
let key = key.override_valid_networks(any_network());
// make a descriptor out of it
let desc = crate::descriptor!(wpkh(key)).unwrap();
// this should convert the key that supports "any_network" to the right network (testnet)
let (wallet_desc, keymap) = desc
.into_wallet_descriptor(&secp, Network::Testnet)
.unwrap();
let mut xprv_testnet = xprv;
xprv_testnet.network = Network::Testnet;
let xpub_testnet = bip32::ExtendedPubKey::from_priv(&secp, &xprv_testnet);
let desc_pubkey = DescriptorPublicKey::XPub(DescriptorXKey {
xkey: xpub_testnet,
origin: None,
derivation_path: path,
wildcard: Wildcard::Unhardened,
});
assert_eq!(wallet_desc.to_string(), "wpkh(tpubD6NzVbkrYhZ4XtJzoDja5snUjBNQRP5B3f4Hyn1T1x6PVPxzzVjvw6nJx2D8RBCxog9GEVjZoyStfepTz7TtKoBVdkCtnc7VCJh9dD4RAU9/0/*)#a3svx0ha");
assert_eq!(
keymap
.get(&desc_pubkey)
.map(|key| key.to_public(&secp).unwrap()),
Some(desc_pubkey)
);
}
// test IntoWalletDescriptor trait from &str with and without checksum appended
#[test]
fn test_descriptor_from_str_with_checksum() {
let secp = Secp256k1::new();
let desc = "wpkh(tprv8ZgxMBicQKsPdpkqS7Eair4YxjcuuvDPNYmKX3sCniCf16tHEVrjjiSXEkFRnUH77yXc6ZcwHHcLNfjdi5qUvw3VDfgYiH5mNsj5izuiu2N/1/2/*)#tqz0nc62"
.into_wallet_descriptor(&secp, Network::Testnet);
assert!(desc.is_ok());
let desc = "wpkh(tprv8ZgxMBicQKsPdpkqS7Eair4YxjcuuvDPNYmKX3sCniCf16tHEVrjjiSXEkFRnUH77yXc6ZcwHHcLNfjdi5qUvw3VDfgYiH5mNsj5izuiu2N/1/2/*)"
.into_wallet_descriptor(&secp, Network::Testnet);
assert!(desc.is_ok());
let desc = "wpkh(tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK/1/2/*)#67ju93jw"
.into_wallet_descriptor(&secp, Network::Testnet);
assert!(desc.is_ok());
let desc = "wpkh(tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK/1/2/*)"
.into_wallet_descriptor(&secp, Network::Testnet);
assert!(desc.is_ok());
let desc = "wpkh(tprv8ZgxMBicQKsPdpkqS7Eair4YxjcuuvDPNYmKX3sCniCf16tHEVrjjiSXEkFRnUH77yXc6ZcwHHcLNfjdi5qUvw3VDfgYiH5mNsj5izuiu2N/1/2/*)#67ju93jw"
.into_wallet_descriptor(&secp, Network::Testnet);
assert_matches!(desc, Err(DescriptorError::InvalidDescriptorChecksum));
let desc = "wpkh(tprv8ZgxMBicQKsPdpkqS7Eair4YxjcuuvDPNYmKX3sCniCf16tHEVrjjiSXEkFRnUH77yXc6ZcwHHcLNfjdi5qUvw3VDfgYiH5mNsj5izuiu2N/1/2/*)#67ju93jw"
.into_wallet_descriptor(&secp, Network::Testnet);
assert_matches!(desc, Err(DescriptorError::InvalidDescriptorChecksum));
}
// test IntoWalletDescriptor trait from &str with keys from right and wrong network
#[test]
fn test_descriptor_from_str_with_keys_network() {
let secp = Secp256k1::new();
let desc = "wpkh(tprv8ZgxMBicQKsPdpkqS7Eair4YxjcuuvDPNYmKX3sCniCf16tHEVrjjiSXEkFRnUH77yXc6ZcwHHcLNfjdi5qUvw3VDfgYiH5mNsj5izuiu2N/1/2/*)"
.into_wallet_descriptor(&secp, Network::Testnet);
assert!(desc.is_ok());
let desc = "wpkh(tprv8ZgxMBicQKsPdpkqS7Eair4YxjcuuvDPNYmKX3sCniCf16tHEVrjjiSXEkFRnUH77yXc6ZcwHHcLNfjdi5qUvw3VDfgYiH5mNsj5izuiu2N/1/2/*)"
.into_wallet_descriptor(&secp, Network::Regtest);
assert!(desc.is_ok());
let desc = "wpkh(tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK/1/2/*)"
.into_wallet_descriptor(&secp, Network::Testnet);
assert!(desc.is_ok());
let desc = "wpkh(tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK/1/2/*)"
.into_wallet_descriptor(&secp, Network::Regtest);
assert!(desc.is_ok());
let desc = "sh(wpkh(02864bb4ad00cefa806098a69e192bbda937494e69eb452b87bb3f20f6283baedb))"
.into_wallet_descriptor(&secp, Network::Testnet);
assert!(desc.is_ok());
let desc = "sh(wpkh(02864bb4ad00cefa806098a69e192bbda937494e69eb452b87bb3f20f6283baedb))"
.into_wallet_descriptor(&secp, Network::Bitcoin);
assert!(desc.is_ok());
let desc = "wpkh(tprv8ZgxMBicQKsPdpkqS7Eair4YxjcuuvDPNYmKX3sCniCf16tHEVrjjiSXEkFRnUH77yXc6ZcwHHcLNfjdi5qUvw3VDfgYiH5mNsj5izuiu2N/1/2/*)"
.into_wallet_descriptor(&secp, Network::Bitcoin);
assert_matches!(desc, Err(DescriptorError::Key(KeyError::InvalidNetwork)));
let desc = "wpkh(tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK/1/2/*)"
.into_wallet_descriptor(&secp, Network::Bitcoin);
assert_matches!(desc, Err(DescriptorError::Key(KeyError::InvalidNetwork)));
}
// test IntoWalletDescriptor trait from the output of the descriptor!() macro
#[test]
fn test_descriptor_from_str_from_output_of_macro() {
let secp = Secp256k1::new();
let tpub = bip32::ExtendedPubKey::from_str("tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK").unwrap();
let path = bip32::DerivationPath::from_str("m/1/2").unwrap();
let key = (tpub, path).into_descriptor_key().unwrap();
// make a descriptor out of it
let desc = crate::descriptor!(wpkh(key)).unwrap();
let (wallet_desc, _) = desc
.into_wallet_descriptor(&secp, Network::Testnet)
.unwrap();
let wallet_desc_str = wallet_desc.to_string();
assert_eq!(wallet_desc_str, "wpkh(tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK/1/2/*)#67ju93jw");
let (wallet_desc2, _) = wallet_desc_str
.into_wallet_descriptor(&secp, Network::Testnet)
.unwrap();
assert_eq!(wallet_desc, wallet_desc2)
}
#[test]
fn test_into_wallet_descriptor_checked() {
let secp = Secp256k1::new();
let descriptor = "wpkh(tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK/0'/1/2/*)";
let result = into_wallet_descriptor_checked(descriptor, &secp, Network::Testnet);
assert_matches!(result, Err(DescriptorError::HardenedDerivationXpub));
let descriptor = "wpkh(tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK/<0;1>/*)";
let result = into_wallet_descriptor_checked(descriptor, &secp, Network::Testnet);
assert_matches!(result, Err(DescriptorError::MultiPath));
// repeated pubkeys
let descriptor = "wsh(multi(2,tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK/0/*,tpubD6NzVbkrYhZ4XHndKkuB8FifXm8r5FQHwrN6oZuWCz13qb93rtgKvD4PQsqC4HP4yhV3tA2fqr2RbY5mNXfM7RxXUoeABoDtsFUq2zJq6YK/0/*))";
let result = into_wallet_descriptor_checked(descriptor, &secp, Network::Testnet);
assert!(result.is_err());
}
#[test]
fn test_sh_wsh_sortedmulti_redeemscript() {
use miniscript::psbt::PsbtInputExt;
let secp = Secp256k1::new();
let descriptor = "sh(wsh(sortedmulti(3,tpubDEsqS36T4DVsKJd9UH8pAKzrkGBYPLEt9jZMwpKtzh1G6mgYehfHt9WCgk7MJG5QGSFWf176KaBNoXbcuFcuadAFKxDpUdMDKGBha7bY3QM/0/*,tpubDF3cpwfs7fMvXXuoQbohXtLjNM6ehwYT287LWtmLsd4r77YLg6MZg4vTETx5MSJ2zkfigbYWu31VA2Z2Vc1cZugCYXgS7FQu6pE8V6TriEH/0/*,tpubDE1SKfcW76Tb2AASv5bQWMuScYNAdoqLHoexw13sNDXwmUhQDBbCD3QAedKGLhxMrWQdMDKENzYtnXPDRvexQPNuDrLj52wAjHhNEm8sJ4p/0/*,tpubDFLc6oXwJmhm3FGGzXkfJNTh2KitoY3WhmmQvuAjMhD8YbyWn5mAqckbxXfm2etM3p5J6JoTpSrMqRSTfMLtNW46poDaEZJ1kjd3csRSjwH/0/*,tpubDEWD9NBeWP59xXmdqSNt4VYdtTGwbpyP8WS962BuqpQeMZmX9Pur14dhXdZT5a7wR1pK6dPtZ9fP5WR493hPzemnBvkfLLYxnUjAKj1JCQV/0/*,tpubDEHyZkkwd7gZWCTgQuYQ9C4myF2hMEmyHsBCCmLssGqoqUxeT3gzohF5uEVURkf9TtmeepJgkSUmteac38FwZqirjApzNX59XSHLcwaTZCH/0/*,tpubDEqLouCekwnMUWN486kxGzD44qVgeyuqHyxUypNEiQt5RnUZNJe386TKPK99fqRV1vRkZjYAjtXGTECz98MCsdLcnkM67U6KdYRzVubeCgZ/0/*)))";
let (descriptor, _) =
into_wallet_descriptor_checked(descriptor, &secp, Network::Testnet).unwrap();
let descriptor = descriptor.at_derivation_index(0).unwrap();
let script = ScriptBuf::from_hex("5321022f533b667e2ea3b36e21961c9fe9dca340fbe0af5210173a83ae0337ab20a57621026bb53a98e810bd0ee61a0ed1164ba6c024786d76554e793e202dc6ce9c78c4ea2102d5b8a7d66a41ffdb6f4c53d61994022e886b4f45001fb158b95c9164d45f8ca3210324b75eead2c1f9c60e8adeb5e7009fec7a29afcdb30d829d82d09562fe8bae8521032d34f8932200833487bd294aa219dcbe000b9f9b3d824799541430009f0fa55121037468f8ea99b6c64788398b5ad25480cad08f4b0d65be54ce3a55fd206b5ae4722103f72d3d96663b0ea99b0aeb0d7f273cab11a8de37885f1dddc8d9112adb87169357ae").unwrap();
let mut psbt_input = psbt::Input::default();
psbt_input
.update_with_descriptor_unchecked(&descriptor)
.unwrap();
assert_eq!(psbt_input.redeem_script, Some(script.to_v0_p2wsh()));
assert_eq!(psbt_input.witness_script, Some(script));
}
}