bdk/src/keys/mod.rs
Alekos Filini ccbbad3e9e
[keys] Improve the API of DerivableKey
A new `ExtendedKey` type has been added, which is basically an enum of
`bip32::ExtendedPubKey` and `bip32::ExtendedPrivKey`, with some extra metadata
regarding the `ScriptContext`.

This type has some methods that make it very easy to extract its content as
either an `xprv` or `xpub`.

The `DerivableKey` trait has been updated so that the user now only has to
implement a method (`DerivableKey::into_extended_key()`) to perform the
conversion into an `ExtendedKey`.

The method that was previously called `add_metadata()` has now been renamed
to `into_descriptor_key()`, and it has
a blanket implementation.
2021-01-29 15:21:36 -05:00

927 lines
31 KiB
Rust

// Magical Bitcoin Library
// Written in 2020 by
// Alekos Filini <alekos.filini@gmail.com>
//
// Copyright (c) 2020 Magical Bitcoin
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//! Key formats
use std::any::TypeId;
use std::collections::HashSet;
use std::marker::PhantomData;
use std::ops::Deref;
use std::str::FromStr;
use bitcoin::secp256k1::{self, Secp256k1, Signing};
use bitcoin::util::bip32;
use bitcoin::{Network, PrivateKey, PublicKey};
pub use miniscript::descriptor::{
DescriptorPublicKey, DescriptorSecretKey, DescriptorSinglePriv, DescriptorSinglePub,
SortedMultiVec,
};
use miniscript::descriptor::{DescriptorXKey, KeyMap};
pub use miniscript::ScriptContext;
use miniscript::{Miniscript, Terminal};
use crate::descriptor::{CheckMiniscript, DescriptorError};
use crate::wallet::utils::SecpCtx;
#[cfg(feature = "keys-bip39")]
#[cfg_attr(docsrs, doc(cfg(feature = "keys-bip39")))]
pub mod bip39;
/// Set of valid networks for a key
pub type ValidNetworks = HashSet<Network>;
/// Create a set containing mainnet, testnet and regtest
pub fn any_network() -> ValidNetworks {
vec![Network::Bitcoin, Network::Testnet, Network::Regtest]
.into_iter()
.collect()
}
/// Create a set only containing mainnet
pub fn mainnet_network() -> ValidNetworks {
vec![Network::Bitcoin].into_iter().collect()
}
/// Create a set containing testnet and regtest
pub fn test_networks() -> ValidNetworks {
vec![Network::Testnet, Network::Regtest]
.into_iter()
.collect()
}
/// Compute the intersection of two sets
pub fn merge_networks(a: &ValidNetworks, b: &ValidNetworks) -> ValidNetworks {
a.intersection(b).cloned().collect()
}
/// Container for public or secret keys
#[derive(Debug)]
pub enum DescriptorKey<Ctx: ScriptContext> {
#[doc(hidden)]
Public(DescriptorPublicKey, ValidNetworks, PhantomData<Ctx>),
#[doc(hidden)]
Secret(DescriptorSecretKey, ValidNetworks, PhantomData<Ctx>),
}
impl<Ctx: ScriptContext> DescriptorKey<Ctx> {
/// Create an instance given a public key and a set of valid networks
pub fn from_public(public: DescriptorPublicKey, networks: ValidNetworks) -> Self {
DescriptorKey::Public(public, networks, PhantomData)
}
/// Create an instance given a secret key and a set of valid networks
pub fn from_secret(secret: DescriptorSecretKey, networks: ValidNetworks) -> Self {
DescriptorKey::Secret(secret, networks, PhantomData)
}
/// Override the computed set of valid networks
pub fn override_valid_networks(self, networks: ValidNetworks) -> Self {
match self {
DescriptorKey::Public(key, _, _) => DescriptorKey::Public(key, networks, PhantomData),
DescriptorKey::Secret(key, _, _) => DescriptorKey::Secret(key, networks, PhantomData),
}
}
// This method is used internally by `bdk::fragment!` and `bdk::descriptor!`. It has to be
// public because it is effectively called by external crates, once the macros are expanded,
// but since it is not meant to be part of the public api we hide it from the docs.
#[doc(hidden)]
pub fn extract(
self,
secp: &SecpCtx,
) -> Result<(DescriptorPublicKey, KeyMap, ValidNetworks), KeyError> {
match self {
DescriptorKey::Public(public, valid_networks, _) => {
Ok((public, KeyMap::default(), valid_networks))
}
DescriptorKey::Secret(secret, valid_networks, _) => {
let mut key_map = KeyMap::with_capacity(1);
let public = secret
.as_public(secp)
.map_err(|e| miniscript::Error::Unexpected(e.to_string()))?;
key_map.insert(public.clone(), secret);
Ok((public, key_map, valid_networks))
}
}
}
}
/// Enum representation of the known valid [`ScriptContext`]s
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
pub enum ScriptContextEnum {
/// Legacy scripts
Legacy,
/// Segwitv0 scripts
Segwitv0,
}
impl ScriptContextEnum {
/// Returns whether the script context is [`ScriptContextEnum::Legacy`]
pub fn is_legacy(&self) -> bool {
self == &ScriptContextEnum::Legacy
}
/// Returns whether the script context is [`ScriptContextEnum::Segwitv0`]
pub fn is_segwit_v0(&self) -> bool {
self == &ScriptContextEnum::Segwitv0
}
}
/// Trait that adds extra useful methods to [`ScriptContext`]s
pub trait ExtScriptContext: ScriptContext {
/// Returns the [`ScriptContext`] as a [`ScriptContextEnum`]
fn as_enum() -> ScriptContextEnum;
/// Returns whether the script context is [`Legacy`](miniscript::Legacy)
fn is_legacy() -> bool {
Self::as_enum().is_legacy()
}
/// Returns whether the script context is [`Segwitv0`](miniscript::Segwitv0)
fn is_segwit_v0() -> bool {
Self::as_enum().is_segwit_v0()
}
}
impl<Ctx: ScriptContext + 'static> ExtScriptContext for Ctx {
fn as_enum() -> ScriptContextEnum {
match TypeId::of::<Ctx>() {
t if t == TypeId::of::<miniscript::Legacy>() => ScriptContextEnum::Legacy,
t if t == TypeId::of::<miniscript::Segwitv0>() => ScriptContextEnum::Segwitv0,
_ => unimplemented!("Unknown ScriptContext type"),
}
}
}
/// Trait for objects that can be turned into a public or secret [`DescriptorKey`]
///
/// The generic type `Ctx` is used to define the context in which the key is valid: some key
/// formats, like the mnemonics used by Electrum wallets, encode internally whether the wallet is
/// legacy or segwit. Thus, trying to turn a valid legacy mnemonic into a `DescriptorKey`
/// that would become part of a segwit descriptor should fail.
///
/// For key types that do care about this, the [`ExtScriptContext`] trait provides some useful
/// methods that can be used to check at runtime which `Ctx` is being used.
///
/// For key types that can do this check statically (because they can only work within a
/// single `Ctx`), the "specialized" trait can be implemented to make the compiler handle the type
/// checking.
///
/// Keys also have control over the networks they support: constructing the return object with
/// [`DescriptorKey::from_public`] or [`DescriptorKey::from_secret`] allows to specify a set of
/// [`ValidNetworks`].
///
/// ## Examples
///
/// Key type valid in any context:
///
/// ```
/// use bdk::bitcoin::PublicKey;
///
/// use bdk::keys::{DescriptorKey, KeyError, ScriptContext, ToDescriptorKey};
///
/// pub struct MyKeyType {
/// pubkey: PublicKey,
/// }
///
/// impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for MyKeyType {
/// fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
/// self.pubkey.to_descriptor_key()
/// }
/// }
/// ```
///
/// Key type that is only valid on mainnet:
///
/// ```
/// use bdk::bitcoin::PublicKey;
///
/// use bdk::keys::{
/// mainnet_network, DescriptorKey, DescriptorPublicKey, DescriptorSinglePub, KeyError,
/// ScriptContext, ToDescriptorKey,
/// };
///
/// pub struct MyKeyType {
/// pubkey: PublicKey,
/// }
///
/// impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for MyKeyType {
/// fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
/// Ok(DescriptorKey::from_public(
/// DescriptorPublicKey::SinglePub(DescriptorSinglePub {
/// origin: None,
/// key: self.pubkey,
/// }),
/// mainnet_network(),
/// ))
/// }
/// }
/// ```
///
/// Key type that internally encodes in which context it's valid. The context is checked at runtime:
///
/// ```
/// use bdk::bitcoin::PublicKey;
///
/// use bdk::keys::{DescriptorKey, ExtScriptContext, KeyError, ScriptContext, ToDescriptorKey};
///
/// pub struct MyKeyType {
/// is_legacy: bool,
/// pubkey: PublicKey,
/// }
///
/// impl<Ctx: ScriptContext + 'static> ToDescriptorKey<Ctx> for MyKeyType {
/// fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
/// if Ctx::is_legacy() == self.is_legacy {
/// self.pubkey.to_descriptor_key()
/// } else {
/// Err(KeyError::InvalidScriptContext)
/// }
/// }
/// }
/// ```
///
/// Key type that can only work within [`miniscript::Segwitv0`] context. Only the specialized version
/// of the trait is implemented.
///
/// This example deliberately fails to compile, to demonstrate how the compiler can catch when keys
/// are misused. In this case, the "segwit-only" key is used to build a `pkh()` descriptor, which
/// makes the compiler (correctly) fail.
///
/// ```compile_fail
/// use bdk::bitcoin::PublicKey;
/// use std::str::FromStr;
///
/// use bdk::keys::{DescriptorKey, KeyError, ToDescriptorKey};
///
/// pub struct MySegwitOnlyKeyType {
/// pubkey: PublicKey,
/// }
///
/// impl ToDescriptorKey<bdk::miniscript::Segwitv0> for MySegwitOnlyKeyType {
/// fn to_descriptor_key(self) -> Result<DescriptorKey<bdk::miniscript::Segwitv0>, KeyError> {
/// self.pubkey.to_descriptor_key()
/// }
/// }
///
/// let key = MySegwitOnlyKeyType {
/// pubkey: PublicKey::from_str("...")?,
/// };
/// let (descriptor, _, _) = bdk::descriptor!(pkh(key))?;
/// // ^^^^^ changing this to `wpkh` would make it compile
///
/// # Ok::<_, Box<dyn std::error::Error>>(())
/// ```
pub trait ToDescriptorKey<Ctx: ScriptContext>: Sized {
/// Turn the key into a [`DescriptorKey`] within the requested [`ScriptContext`]
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError>;
}
/// Enum for extended keys that can be either `xprv` or `xpub`
///
/// An instance of [`ExtendedKey`] can be constructed from an [`ExtendedPrivKey`](bip32::ExtendedPrivKey)
/// or an [`ExtendedPubKey`](bip32::ExtendedPubKey) by using the `From` trait.
///
/// Defaults to the [`Legacy`](miniscript::Legacy) context.
pub enum ExtendedKey<Ctx: ScriptContext = miniscript::Legacy> {
/// A private extended key, aka an `xprv`
Private((bip32::ExtendedPrivKey, PhantomData<Ctx>)),
/// A public extended key, aka an `xpub`
Public((bip32::ExtendedPubKey, PhantomData<Ctx>)),
}
impl<Ctx: ScriptContext> ExtendedKey<Ctx> {
/// Return whether or not the key contains the private data
pub fn has_secret(&self) -> bool {
match self {
ExtendedKey::Private(_) => true,
ExtendedKey::Public(_) => false,
}
}
/// Transform the [`ExtendedKey`] into an [`ExtendedPrivKey`](bip32::ExtendedPrivKey) for the
/// given [`Network`], if the key contains the private data
pub fn into_xprv(self, network: Network) -> Option<bip32::ExtendedPrivKey> {
match self {
ExtendedKey::Private((mut xprv, _)) => {
xprv.network = network;
Some(xprv)
}
ExtendedKey::Public(_) => None,
}
}
/// Transform the [`ExtendedKey`] into an [`ExtendedPubKey`](bip32::ExtendedPubKey) for the
/// given [`Network`]
pub fn into_xpub<C: Signing>(
self,
network: bitcoin::Network,
secp: &Secp256k1<C>,
) -> bip32::ExtendedPubKey {
let mut xpub = match self {
ExtendedKey::Private((xprv, _)) => bip32::ExtendedPubKey::from_private(secp, &xprv),
ExtendedKey::Public((xpub, _)) => xpub,
};
xpub.network = network;
xpub
}
}
impl<Ctx: ScriptContext> From<bip32::ExtendedPubKey> for ExtendedKey<Ctx> {
fn from(xpub: bip32::ExtendedPubKey) -> Self {
ExtendedKey::Public((xpub, PhantomData))
}
}
impl<Ctx: ScriptContext> From<bip32::ExtendedPrivKey> for ExtendedKey<Ctx> {
fn from(xprv: bip32::ExtendedPrivKey) -> Self {
ExtendedKey::Private((xprv, PhantomData))
}
}
/// Trait for keys that can be derived.
///
/// When extra metadata are provided, a [`DerivableKey`] can be transofrmed into a
/// [`DescriptorKey`]: the trait [`ToDescriptorKey`] is automatically implemented
/// for `(DerivableKey, DerivationPath)` and
/// `(DerivableKey, KeySource, DerivationPath)` tuples.
///
/// For key types that don't encode any indication about the path to use (like bip39), it's
/// generally recommended to implemented this trait instead of [`ToDescriptorKey`]. The same
/// rules regarding script context and valid networks apply.
///
/// ## Examples
///
/// Key types that can be directly converted into an [`ExtendedPrivKey`] or
/// an [`ExtendedPubKey`] can implement only the required `into_extended_key()` method.
///
/// ```
/// use bdk::bitcoin;
/// use bdk::bitcoin::util::bip32;
/// use bdk::keys::{DerivableKey, ExtendedKey, KeyError, ScriptContext};
///
/// struct MyCustomKeyType {
/// key_data: bitcoin::PrivateKey,
/// chain_code: Vec<u8>,
/// network: bitcoin::Network,
/// }
///
/// impl<Ctx: ScriptContext> DerivableKey<Ctx> for MyCustomKeyType {
/// fn into_extended_key(self) -> Result<ExtendedKey<Ctx>, KeyError> {
/// let xprv = bip32::ExtendedPrivKey {
/// network: self.network,
/// depth: 0,
/// parent_fingerprint: bip32::Fingerprint::default(),
/// private_key: self.key_data,
/// chain_code: bip32::ChainCode::from(self.chain_code.as_ref()),
/// child_number: bip32::ChildNumber::Normal { index: 0 },
/// };
///
/// xprv.into_extended_key()
/// }
/// }
/// ```
///
/// Types that don't internally encode the [`Network`](bitcoin::Network) in which they are valid need some extra
/// steps to override the set of valid networks, otherwise only the network specified in the
/// [`ExtendedPrivKey`] or [`ExtendedPubKey`] will be considered valid.
///
/// ```
/// use bdk::bitcoin;
/// use bdk::bitcoin::util::bip32;
/// use bdk::keys::{
/// any_network, DerivableKey, DescriptorKey, ExtendedKey, KeyError, ScriptContext,
/// };
///
/// struct MyCustomKeyType {
/// key_data: bitcoin::PrivateKey,
/// chain_code: Vec<u8>,
/// }
///
/// impl<Ctx: ScriptContext> DerivableKey<Ctx> for MyCustomKeyType {
/// fn into_extended_key(self) -> Result<ExtendedKey<Ctx>, KeyError> {
/// let xprv = bip32::ExtendedPrivKey {
/// network: bitcoin::Network::Bitcoin, // pick an arbitrary network here
/// depth: 0,
/// parent_fingerprint: bip32::Fingerprint::default(),
/// private_key: self.key_data,
/// chain_code: bip32::ChainCode::from(self.chain_code.as_ref()),
/// child_number: bip32::ChildNumber::Normal { index: 0 },
/// };
///
/// xprv.into_extended_key()
/// }
///
/// fn into_descriptor_key(
/// self,
/// source: Option<bip32::KeySource>,
/// derivation_path: bip32::DerivationPath,
/// ) -> Result<DescriptorKey<Ctx>, KeyError> {
/// let descriptor_key = self
/// .into_extended_key()?
/// .into_descriptor_key(source, derivation_path)?;
///
/// // Override the set of valid networks here
/// Ok(descriptor_key.override_valid_networks(any_network()))
/// }
/// }
/// ```
///
/// [`DerivationPath`]: (bip32::DerivationPath)
/// [`ExtendedPrivKey`]: (bip32::ExtendedPrivKey)
/// [`ExtendedPubKey`]: (bip32::ExtendedPubKey)
pub trait DerivableKey<Ctx: ScriptContext = miniscript::Legacy>: Sized {
/// Consume `self` and turn it into an [`ExtendedKey`]
///
/// This can be used to get direct access to `xprv`s and `xpub`s for types that implement this trait,
/// like [`Mnemonic`](bip39::Mnemonic) when the `keys-bip39` feature is enabled.
#[cfg_attr(
feature = "keys-bip39",
doc = r##"
```rust
use bdk::bitcoin::Network;
use bdk::keys::{DerivableKey, ExtendedKey};
use bdk::keys::bip39::{Mnemonic, Language};
# fn main() -> Result<(), Box<dyn std::error::Error>> {
let xkey: ExtendedKey =
Mnemonic::from_phrase(
"jelly crash boy whisper mouse ecology tuna soccer memory million news short",
Language::English
)?
.into_extended_key()?;
let xprv = xkey.into_xprv(Network::Bitcoin).unwrap();
# Ok(()) }
```
"##
)]
fn into_extended_key(self) -> Result<ExtendedKey<Ctx>, KeyError>;
/// Consume `self` and turn it into a [`DescriptorKey`] by adding the extra metadata, such as
/// key origin and derivation path
fn into_descriptor_key(
self,
origin: Option<bip32::KeySource>,
derivation_path: bip32::DerivationPath,
) -> Result<DescriptorKey<Ctx>, KeyError> {
match self.into_extended_key()? {
ExtendedKey::Private((xprv, _)) => DescriptorSecretKey::XPrv(DescriptorXKey {
origin,
xkey: xprv,
derivation_path,
is_wildcard: true,
})
.to_descriptor_key(),
ExtendedKey::Public((xpub, _)) => DescriptorPublicKey::XPub(DescriptorXKey {
origin,
xkey: xpub,
derivation_path,
is_wildcard: true,
})
.to_descriptor_key(),
}
}
}
/// Identity conversion
impl<Ctx: ScriptContext> DerivableKey<Ctx> for ExtendedKey<Ctx> {
fn into_extended_key(self) -> Result<ExtendedKey<Ctx>, KeyError> {
Ok(self)
}
}
impl<Ctx: ScriptContext> DerivableKey<Ctx> for bip32::ExtendedPubKey {
fn into_extended_key(self) -> Result<ExtendedKey<Ctx>, KeyError> {
Ok(self.into())
}
}
impl<Ctx: ScriptContext> DerivableKey<Ctx> for bip32::ExtendedPrivKey {
fn into_extended_key(self) -> Result<ExtendedKey<Ctx>, KeyError> {
Ok(self.into())
}
}
/// Output of a [`GeneratableKey`] key generation
pub struct GeneratedKey<K, Ctx: ScriptContext> {
key: K,
valid_networks: ValidNetworks,
phantom: PhantomData<Ctx>,
}
impl<K, Ctx: ScriptContext> GeneratedKey<K, Ctx> {
fn new(key: K, valid_networks: ValidNetworks) -> Self {
GeneratedKey {
key,
valid_networks,
phantom: PhantomData,
}
}
/// Consumes `self` and returns the key
pub fn into_key(self) -> K {
self.key
}
}
impl<K, Ctx: ScriptContext> Deref for GeneratedKey<K, Ctx> {
type Target = K;
fn deref(&self) -> &Self::Target {
&self.key
}
}
// Make generated "derivable" keys themselves "derivable". Also make sure they are assigned the
// right `valid_networks`.
impl<Ctx, K> DerivableKey<Ctx> for GeneratedKey<K, Ctx>
where
Ctx: ScriptContext,
K: DerivableKey<Ctx>,
{
fn into_extended_key(self) -> Result<ExtendedKey<Ctx>, KeyError> {
self.key.into_extended_key()
}
fn into_descriptor_key(
self,
origin: Option<bip32::KeySource>,
derivation_path: bip32::DerivationPath,
) -> Result<DescriptorKey<Ctx>, KeyError> {
let descriptor_key = self.key.into_descriptor_key(origin, derivation_path)?;
Ok(descriptor_key.override_valid_networks(self.valid_networks))
}
}
// Make generated keys directly usable in descriptors, and make sure they get assigned the right
// `valid_networks`.
impl<Ctx, K> ToDescriptorKey<Ctx> for GeneratedKey<K, Ctx>
where
Ctx: ScriptContext,
K: ToDescriptorKey<Ctx>,
{
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
let desc_key = self.key.to_descriptor_key()?;
Ok(desc_key.override_valid_networks(self.valid_networks))
}
}
/// Trait for keys that can be generated
///
/// The same rules about [`ScriptContext`] and [`ValidNetworks`] from [`ToDescriptorKey`] apply.
///
/// This trait is particularly useful when combined with [`DerivableKey`]: if `Self`
/// implements it, the returned [`GeneratedKey`] will also implement it. The same is true for
/// [`ToDescriptorKey`]: the generated keys can be directly used in descriptors if `Self` is also
/// [`ToDescriptorKey`].
pub trait GeneratableKey<Ctx: ScriptContext>: Sized {
/// Type specifying the amount of entropy required e.g. `[u8;32]`
type Entropy: AsMut<[u8]> + Default;
/// Extra options required by the `generate_with_entropy`
type Options;
/// Returned error in case of failure
type Error: std::fmt::Debug;
/// Generate a key given the extra options and the entropy
fn generate_with_entropy(
options: Self::Options,
entropy: Self::Entropy,
) -> Result<GeneratedKey<Self, Ctx>, Self::Error>;
/// Generate a key given the options with a random entropy
fn generate(options: Self::Options) -> Result<GeneratedKey<Self, Ctx>, Self::Error> {
use rand::{thread_rng, Rng};
let mut entropy = Self::Entropy::default();
thread_rng().fill(entropy.as_mut());
Self::generate_with_entropy(options, entropy)
}
}
/// Trait that allows generating a key with the default options
///
/// This trait is automatically implemented if the [`GeneratableKey::Options`] implements [`Default`].
pub trait GeneratableDefaultOptions<Ctx>: GeneratableKey<Ctx>
where
Ctx: ScriptContext,
<Self as GeneratableKey<Ctx>>::Options: Default,
{
/// Generate a key with the default options and a given entropy
fn generate_with_entropy_default(
entropy: Self::Entropy,
) -> Result<GeneratedKey<Self, Ctx>, Self::Error> {
Self::generate_with_entropy(Default::default(), entropy)
}
/// Generate a key with the default options and a random entropy
fn generate_default() -> Result<GeneratedKey<Self, Ctx>, Self::Error> {
Self::generate(Default::default())
}
}
/// Automatic implementation of [`GeneratableDefaultOptions`] for [`GeneratableKey`]s where
/// `Options` implements `Default`
impl<Ctx, K> GeneratableDefaultOptions<Ctx> for K
where
Ctx: ScriptContext,
K: GeneratableKey<Ctx>,
<K as GeneratableKey<Ctx>>::Options: Default,
{
}
impl<Ctx: ScriptContext> GeneratableKey<Ctx> for bip32::ExtendedPrivKey {
type Entropy = [u8; 32];
type Options = ();
type Error = bip32::Error;
fn generate_with_entropy(
_: Self::Options,
entropy: Self::Entropy,
) -> Result<GeneratedKey<Self, Ctx>, Self::Error> {
// pick a arbitrary network here, but say that we support all of them
let xprv = bip32::ExtendedPrivKey::new_master(Network::Bitcoin, entropy.as_ref())?;
Ok(GeneratedKey::new(xprv, any_network()))
}
}
/// Options for generating a [`PrivateKey`]
///
/// Defaults to creating compressed keys, which save on-chain bytes and fees
#[derive(Debug, Copy, Clone)]
pub struct PrivateKeyGenerateOptions {
/// Whether the generated key should be "compressed" or not
pub compressed: bool,
}
impl Default for PrivateKeyGenerateOptions {
fn default() -> Self {
PrivateKeyGenerateOptions { compressed: true }
}
}
impl<Ctx: ScriptContext> GeneratableKey<Ctx> for PrivateKey {
type Entropy = [u8; secp256k1::constants::SECRET_KEY_SIZE];
type Options = PrivateKeyGenerateOptions;
type Error = bip32::Error;
fn generate_with_entropy(
options: Self::Options,
entropy: Self::Entropy,
) -> Result<GeneratedKey<Self, Ctx>, Self::Error> {
// pick a arbitrary network here, but say that we support all of them
let key = secp256k1::SecretKey::from_slice(&entropy)?;
let private_key = PrivateKey {
compressed: options.compressed,
network: Network::Bitcoin,
key,
};
Ok(GeneratedKey::new(private_key, any_network()))
}
}
impl<Ctx: ScriptContext, T: DerivableKey<Ctx>> ToDescriptorKey<Ctx> for (T, bip32::DerivationPath) {
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
self.0.into_descriptor_key(None, self.1)
}
}
impl<Ctx: ScriptContext, T: DerivableKey<Ctx>> ToDescriptorKey<Ctx>
for (T, bip32::KeySource, bip32::DerivationPath)
{
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
self.0.into_descriptor_key(Some(self.1), self.2)
}
}
fn expand_multi_keys<Pk: ToDescriptorKey<Ctx>, Ctx: ScriptContext>(
pks: Vec<Pk>,
secp: &SecpCtx,
) -> Result<(Vec<DescriptorPublicKey>, KeyMap, ValidNetworks), KeyError> {
let (pks, key_maps_networks): (Vec<_>, Vec<_>) = pks
.into_iter()
.map(|key| Ok::<_, KeyError>(key.to_descriptor_key()?.extract(secp)?))
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.map(|(a, b, c)| (a, (b, c)))
.unzip();
let (key_map, valid_networks) = key_maps_networks.into_iter().fold(
(KeyMap::default(), any_network()),
|(mut keys_acc, net_acc), (key, net)| {
keys_acc.extend(key.into_iter());
let net_acc = merge_networks(&net_acc, &net);
(keys_acc, net_acc)
},
);
Ok((pks, key_map, valid_networks))
}
// Used internally by `bdk::fragment!` to build `pk_k()` fragments
#[doc(hidden)]
pub fn make_pk<Pk: ToDescriptorKey<Ctx>, Ctx: ScriptContext>(
descriptor_key: Pk,
secp: &SecpCtx,
) -> Result<(Miniscript<DescriptorPublicKey, Ctx>, KeyMap, ValidNetworks), DescriptorError> {
let (key, key_map, valid_networks) = descriptor_key.to_descriptor_key()?.extract(secp)?;
let minisc = Miniscript::from_ast(Terminal::PkK(key))?;
minisc.check_minsicript()?;
Ok((minisc, key_map, valid_networks))
}
// Used internally by `bdk::fragment!` to build `multi()` fragments
#[doc(hidden)]
pub fn make_multi<Pk: ToDescriptorKey<Ctx>, Ctx: ScriptContext>(
thresh: usize,
pks: Vec<Pk>,
secp: &SecpCtx,
) -> Result<(Miniscript<DescriptorPublicKey, Ctx>, KeyMap, ValidNetworks), DescriptorError> {
let (pks, key_map, valid_networks) = expand_multi_keys(pks, secp)?;
let minisc = Miniscript::from_ast(Terminal::Multi(thresh, pks))?;
minisc.check_minsicript()?;
Ok((minisc, key_map, valid_networks))
}
// Used internally by `bdk::descriptor!` to build `sortedmulti()` fragments
#[doc(hidden)]
pub fn make_sortedmulti_inner<Pk: ToDescriptorKey<Ctx>, Ctx: ScriptContext>(
thresh: usize,
pks: Vec<Pk>,
secp: &SecpCtx,
) -> Result<
(
SortedMultiVec<DescriptorPublicKey, Ctx>,
KeyMap,
ValidNetworks,
),
DescriptorError,
> {
let (pks, key_map, valid_networks) = expand_multi_keys(pks, secp)?;
let minisc = SortedMultiVec::new(thresh, pks)?;
// TODO: should we apply the checks here as well?
Ok((minisc, key_map, valid_networks))
}
/// The "identity" conversion is used internally by some `bdk::fragment`s
impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for DescriptorKey<Ctx> {
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
Ok(self)
}
}
impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for DescriptorPublicKey {
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
let networks = match self {
DescriptorPublicKey::SinglePub(_) => any_network(),
DescriptorPublicKey::XPub(DescriptorXKey { xkey, .. })
if xkey.network == Network::Bitcoin =>
{
mainnet_network()
}
_ => test_networks(),
};
Ok(DescriptorKey::from_public(self, networks))
}
}
impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for PublicKey {
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
DescriptorPublicKey::SinglePub(DescriptorSinglePub {
key: self,
origin: None,
})
.to_descriptor_key()
}
}
impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for DescriptorSecretKey {
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
let networks = match &self {
DescriptorSecretKey::SinglePriv(sk) if sk.key.network == Network::Bitcoin => {
mainnet_network()
}
DescriptorSecretKey::XPrv(DescriptorXKey { xkey, .. })
if xkey.network == Network::Bitcoin =>
{
mainnet_network()
}
_ => test_networks(),
};
Ok(DescriptorKey::from_secret(self, networks))
}
}
impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for &'_ str {
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
DescriptorSecretKey::from_str(self)
.map_err(|e| KeyError::Message(e.to_string()))?
.to_descriptor_key()
}
}
impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for PrivateKey {
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
DescriptorSecretKey::SinglePriv(DescriptorSinglePriv {
key: self,
origin: None,
})
.to_descriptor_key()
}
}
/// Errors thrown while working with [`keys`](crate::keys)
#[derive(Debug)]
pub enum KeyError {
/// The key cannot exist in the given script context
InvalidScriptContext,
/// The key is not valid for the given network
InvalidNetwork,
/// The key has an invalid checksum
InvalidChecksum,
/// Custom error message
Message(String),
/// BIP32 error
BIP32(bitcoin::util::bip32::Error),
/// Miniscript error
Miniscript(miniscript::Error),
}
impl_error!(miniscript::Error, Miniscript, KeyError);
impl_error!(bitcoin::util::bip32::Error, BIP32, KeyError);
impl std::fmt::Display for KeyError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", self)
}
}
impl std::error::Error for KeyError {}
#[cfg(test)]
pub mod test {
use bitcoin::util::bip32;
use super::*;
pub const TEST_ENTROPY: [u8; 32] = [0xAA; 32];
#[test]
fn test_keys_generate_xprv() {
let generated_xprv: GeneratedKey<_, miniscript::Segwitv0> =
bip32::ExtendedPrivKey::generate_with_entropy_default(TEST_ENTROPY).unwrap();
assert_eq!(generated_xprv.valid_networks, any_network());
assert_eq!(generated_xprv.to_string(), "xprv9s21ZrQH143K4Xr1cJyqTvuL2FWR8eicgY9boWqMBv8MDVUZ65AXHnzBrK1nyomu6wdcabRgmGTaAKawvhAno1V5FowGpTLVx3jxzE5uk3Q");
}
#[test]
fn test_keys_generate_wif() {
let generated_wif: GeneratedKey<_, miniscript::Segwitv0> =
bitcoin::PrivateKey::generate_with_entropy_default(TEST_ENTROPY).unwrap();
assert_eq!(generated_wif.valid_networks, any_network());
assert_eq!(
generated_wif.to_string(),
"L2wTu6hQrnDMiFNWA5na6jB12ErGQqtXwqpSL7aWquJaZG8Ai3ch"
);
}
}