bdk/crates/chain/src/tx_data_traits.rs
志宇 b3db5ca9df
feat(chain): add AnchorFromBlockPosition trait
This is useful for block-by-block chain sources. We can determine the
tx's anchor based on the block, block height and tx position in the
block.
2023-10-09 22:14:03 +08:00

158 lines
5.3 KiB
Rust

use crate::collections::BTreeMap;
use crate::collections::BTreeSet;
use crate::BlockId;
use alloc::vec::Vec;
/// Trait that "anchors" blockchain data to a specific block of height and hash.
///
/// [`Anchor`] implementations must be [`Ord`] by the anchor block's [`BlockId`] first.
///
/// I.e. If transaction A is anchored in block B, then if block B is in the best chain, we can
/// assume that transaction A is also confirmed in the best chain. This does not necessarily mean
/// that transaction A is confirmed in block B. It could also mean transaction A is confirmed in a
/// parent block of B.
///
/// ```
/// # use bdk_chain::local_chain::LocalChain;
/// # use bdk_chain::tx_graph::TxGraph;
/// # use bdk_chain::BlockId;
/// # use bdk_chain::ConfirmationHeightAnchor;
/// # use bdk_chain::example_utils::*;
/// # use bitcoin::hashes::Hash;
///
/// // Initialize the local chain with two blocks.
/// let chain = LocalChain::from_blocks(
/// [
/// (1, Hash::hash("first".as_bytes())),
/// (2, Hash::hash("second".as_bytes())),
/// ]
/// .into_iter()
/// .collect(),
/// );
///
/// // Transaction to be inserted into `TxGraph`s with different anchor types.
/// let tx = tx_from_hex(RAW_TX_1);
///
/// // Insert `tx` into a `TxGraph` that uses `BlockId` as the anchor type.
/// // When a transaction is anchored with `BlockId`, the anchor block and the confirmation block of
/// // the transaction is the same block.
/// let mut graph_a = TxGraph::<BlockId>::default();
/// let _ = graph_a.insert_tx(tx.clone());
/// graph_a.insert_anchor(
/// tx.txid(),
/// BlockId {
/// height: 1,
/// hash: Hash::hash("first".as_bytes()),
/// },
/// );
///
/// // Insert `tx` into a `TxGraph` that uses `ConfirmationHeightAnchor` as the anchor type.
/// // When a transaction is anchored with `ConfirmationHeightAnchor`, the anchor block and
/// // confirmation block can be different. However, the confirmation block cannot be higher than
/// // the anchor block and both blocks must be in the same chain for the anchor to be valid.
/// let mut graph_b = TxGraph::<ConfirmationHeightAnchor>::default();
/// let _ = graph_b.insert_tx(tx.clone());
/// graph_b.insert_anchor(
/// tx.txid(),
/// ConfirmationHeightAnchor {
/// anchor_block: BlockId {
/// height: 2,
/// hash: Hash::hash("second".as_bytes()),
/// },
/// confirmation_height: 1,
/// },
/// );
/// ```
pub trait Anchor: core::fmt::Debug + Clone + Eq + PartialOrd + Ord + core::hash::Hash {
/// Returns the [`BlockId`] that the associated blockchain data is "anchored" in.
fn anchor_block(&self) -> BlockId;
/// Get the upper bound of the chain data's confirmation height.
///
/// The default definition gives a pessimistic answer. This can be overridden by the `Anchor`
/// implementation for a more accurate value.
fn confirmation_height_upper_bound(&self) -> u32 {
self.anchor_block().height
}
}
impl<'a, A: Anchor> Anchor for &'a A {
fn anchor_block(&self) -> BlockId {
<A as Anchor>::anchor_block(self)
}
}
/// An [`Anchor`] that can be constructed from a given block, block height and transaction position
/// within the block.
pub trait AnchorFromBlockPosition: Anchor {
/// Construct the anchor from a given `block`, block height and `tx_pos` within the block.
fn from_block_position(block: &bitcoin::Block, block_id: BlockId, tx_pos: usize) -> Self;
}
/// Trait that makes an object appendable.
pub trait Append {
/// Append another object of the same type onto `self`.
fn append(&mut self, other: Self);
/// Returns whether the structure is considered empty.
fn is_empty(&self) -> bool;
}
impl<K: Ord, V> Append for BTreeMap<K, V> {
fn append(&mut self, mut other: Self) {
BTreeMap::append(self, &mut other)
}
fn is_empty(&self) -> bool {
BTreeMap::is_empty(self)
}
}
impl<T: Ord> Append for BTreeSet<T> {
fn append(&mut self, mut other: Self) {
BTreeSet::append(self, &mut other)
}
fn is_empty(&self) -> bool {
BTreeSet::is_empty(self)
}
}
impl<T> Append for Vec<T> {
fn append(&mut self, mut other: Self) {
Vec::append(self, &mut other)
}
fn is_empty(&self) -> bool {
Vec::is_empty(self)
}
}
macro_rules! impl_append_for_tuple {
($($a:ident $b:tt)*) => {
impl<$($a),*> Append for ($($a,)*) where $($a: Append),* {
fn append(&mut self, _other: Self) {
$(Append::append(&mut self.$b, _other.$b) );*
}
fn is_empty(&self) -> bool {
$(Append::is_empty(&self.$b) && )* true
}
}
}
}
impl_append_for_tuple!();
impl_append_for_tuple!(T0 0);
impl_append_for_tuple!(T0 0 T1 1);
impl_append_for_tuple!(T0 0 T1 1 T2 2);
impl_append_for_tuple!(T0 0 T1 1 T2 2 T3 3);
impl_append_for_tuple!(T0 0 T1 1 T2 2 T3 3 T4 4);
impl_append_for_tuple!(T0 0 T1 1 T2 2 T3 3 T4 4 T5 5);
impl_append_for_tuple!(T0 0 T1 1 T2 2 T3 3 T4 4 T5 5 T6 6);
impl_append_for_tuple!(T0 0 T1 1 T2 2 T3 3 T4 4 T5 5 T6 6 T7 7);
impl_append_for_tuple!(T0 0 T1 1 T2 2 T3 3 T4 4 T5 5 T6 6 T7 7 T8 8);
impl_append_for_tuple!(T0 0 T1 1 T2 2 T3 3 T4 4 T5 5 T6 6 T7 7 T8 8 T9 9);
impl_append_for_tuple!(T0 0 T1 1 T2 2 T3 3 T4 4 T5 5 T6 6 T7 7 T8 8 T9 9 T10 10);