bdk/nursery/coin_select/src/coin_selector.rs
2023-03-15 13:00:45 +08:00

616 lines
21 KiB
Rust

use super::*;
/// A [`WeightedValue`] represents an input candidate for [`CoinSelector`]. This can either be a
/// single UTXO, or a group of UTXOs that should be spent together.
#[derive(Debug, Clone, Copy)]
pub struct WeightedValue {
/// Total value of the UTXO(s) that this [`WeightedValue`] represents.
pub value: u64,
/// Total weight of including this/these UTXO(s).
/// `txin` fields: `prevout`, `nSequence`, `scriptSigLen`, `scriptSig`, `scriptWitnessLen`,
/// `scriptWitness` should all be included.
pub weight: u32,
/// The total number of inputs; so we can calculate extra `varint` weight due to `vin` length changes.
pub input_count: usize,
/// Whether this [`WeightedValue`] contains at least one segwit spend.
pub is_segwit: bool,
}
impl WeightedValue {
/// Create a new [`WeightedValue`] that represents a single input.
///
/// `satisfaction_weight` is the weight of `scriptSigLen + scriptSig + scriptWitnessLen +
/// scriptWitness`.
pub fn new(value: u64, satisfaction_weight: u32, is_segwit: bool) -> WeightedValue {
let weight = TXIN_BASE_WEIGHT + satisfaction_weight;
WeightedValue {
value,
weight,
input_count: 1,
is_segwit,
}
}
/// Effective value of this input candidate: `actual_value - input_weight * feerate (sats/wu)`.
pub fn effective_value(&self, effective_feerate: f32) -> i64 {
// We prefer undershooting the candidate's effective value (so we over-estimate the fee of a
// candidate). If we overshoot the candidate's effective value, it may be possible to find a
// solution which does not meet the target feerate.
self.value as i64 - (self.weight as f32 * effective_feerate).ceil() as i64
}
}
#[derive(Debug, Clone, Copy)]
pub struct CoinSelectorOpt {
/// The value we need to select.
/// If the value is `None`, then the selection will be complete if it can pay for the drain
/// output and satisfy the other constraints (e.g., minimum fees).
pub target_value: Option<u64>,
/// Additional leeway for the target value.
pub max_extra_target: u64, // TODO: Maybe out of scope here?
/// The feerate we should try and achieve in sats per weight unit.
pub target_feerate: f32,
/// The feerate
pub long_term_feerate: Option<f32>, // TODO: Maybe out of scope? (waste)
/// The minimum absolute fee. I.e., needed for RBF.
pub min_absolute_fee: u64,
/// The weight of the template transaction, including fixed fields and outputs.
pub base_weight: u32,
/// Additional weight if we include the drain (change) output.
pub drain_weight: u32,
/// Weight of spending the drain (change) output in the future.
pub spend_drain_weight: u32, // TODO: Maybe out of scope? (waste)
/// Minimum value allowed for a drain (change) output.
pub min_drain_value: u64,
}
impl CoinSelectorOpt {
fn from_weights(base_weight: u32, drain_weight: u32, spend_drain_weight: u32) -> Self {
// 0.25 sats/wu == 1 sat/vb
let target_feerate = 0.25_f32;
// set `min_drain_value` to dust limit
let min_drain_value =
3 * ((drain_weight + spend_drain_weight) as f32 * target_feerate) as u64;
Self {
target_value: None,
max_extra_target: 0,
target_feerate,
long_term_feerate: None,
min_absolute_fee: 0,
base_weight,
drain_weight,
spend_drain_weight,
min_drain_value,
}
}
pub fn fund_outputs(
txouts: &[TxOut],
drain_output: &TxOut,
drain_satisfaction_weight: u32,
) -> Self {
let mut tx = Transaction {
input: vec![],
version: 1,
lock_time: LockTime::ZERO.into(),
output: txouts.to_vec(),
};
let base_weight = tx.weight();
// this awkward calculation is necessary since TxOut doesn't have \.weight()
let drain_weight = {
tx.output.push(drain_output.clone());
tx.weight() - base_weight
};
Self {
target_value: if txouts.is_empty() {
None
} else {
Some(txouts.iter().map(|txout| txout.value).sum())
},
..Self::from_weights(
base_weight as u32,
drain_weight as u32,
TXIN_BASE_WEIGHT + drain_satisfaction_weight,
)
}
}
pub fn long_term_feerate(&self) -> f32 {
self.long_term_feerate.unwrap_or(self.target_feerate)
}
pub fn drain_waste(&self) -> i64 {
(self.drain_weight as f32 * self.target_feerate
+ self.spend_drain_weight as f32 * self.long_term_feerate()) as i64
}
}
/// [`CoinSelector`] selects and deselects from a set of candidates.
#[derive(Debug, Clone)]
pub struct CoinSelector<'a> {
pub opts: &'a CoinSelectorOpt,
pub candidates: &'a Vec<WeightedValue>,
selected: BTreeSet<usize>,
}
impl<'a> CoinSelector<'a> {
pub fn candidate(&self, index: usize) -> &WeightedValue {
&self.candidates[index]
}
pub fn new(candidates: &'a Vec<WeightedValue>, opts: &'a CoinSelectorOpt) -> Self {
Self {
candidates,
selected: Default::default(),
opts,
}
}
pub fn select(&mut self, index: usize) -> bool {
assert!(index < self.candidates.len());
self.selected.insert(index)
}
pub fn deselect(&mut self, index: usize) -> bool {
self.selected.remove(&index)
}
pub fn is_selected(&self, index: usize) -> bool {
self.selected.contains(&index)
}
pub fn is_empty(&self) -> bool {
self.selected.is_empty()
}
/// Weight sum of all selected inputs.
pub fn selected_weight(&self) -> u32 {
self.selected
.iter()
.map(|&index| self.candidates[index].weight)
.sum()
}
/// Effective value sum of all selected inputs.
pub fn selected_effective_value(&self) -> i64 {
self.selected
.iter()
.map(|&index| self.candidates[index].effective_value(self.opts.target_feerate))
.sum()
}
/// Absolute value sum of all selected inputs.
pub fn selected_absolute_value(&self) -> u64 {
self.selected
.iter()
.map(|&index| self.candidates[index].value)
.sum()
}
/// Waste sum of all selected inputs.
pub fn selected_waste(&self) -> i64 {
(self.selected_weight() as f32 * (self.opts.target_feerate - self.opts.long_term_feerate()))
as i64
}
/// Current weight of template tx + selected inputs.
pub fn current_weight(&self) -> u32 {
let witness_header_extra_weight = self
.selected()
.find(|(_, wv)| wv.is_segwit)
.map(|_| 2)
.unwrap_or(0);
let vin_count_varint_extra_weight = {
let input_count = self.selected().map(|(_, wv)| wv.input_count).sum::<usize>();
(varint_size(input_count) - 1) * 4
};
self.opts.base_weight
+ self.selected_weight()
+ witness_header_extra_weight
+ vin_count_varint_extra_weight
}
/// Current excess.
pub fn current_excess(&self) -> i64 {
self.selected_effective_value() - self.effective_target()
}
/// This is the effective target value.
pub fn effective_target(&self) -> i64 {
let (has_segwit, max_input_count) = self
.candidates
.iter()
.fold((false, 0_usize), |(is_segwit, input_count), c| {
(is_segwit || c.is_segwit, input_count + c.input_count)
});
let effective_base_weight = self.opts.base_weight
+ if has_segwit { 2_u32 } else { 0_u32 }
+ (varint_size(max_input_count) - 1) * 4;
self.opts.target_value.unwrap_or(0) as i64
+ (effective_base_weight as f32 * self.opts.target_feerate).ceil() as i64
}
pub fn selected_count(&self) -> usize {
self.selected.len()
}
pub fn selected(&self) -> impl Iterator<Item = (usize, &'a WeightedValue)> + '_ {
self.selected
.iter()
.map(move |&index| (index, &self.candidates[index]))
}
pub fn unselected(&self) -> impl Iterator<Item = (usize, &'a WeightedValue)> + '_ {
self.candidates
.iter()
.enumerate()
.filter(move |(index, _)| !self.selected.contains(index))
}
pub fn selected_indexes(&self) -> impl Iterator<Item = usize> + '_ {
self.selected.iter().cloned()
}
pub fn unselected_indexes(&self) -> impl Iterator<Item = usize> + '_ {
(0..self.candidates.len()).filter(move |index| !self.selected.contains(index))
}
pub fn all_selected(&self) -> bool {
self.selected.len() == self.candidates.len()
}
pub fn select_all(&mut self) {
self.selected = (0..self.candidates.len()).collect();
}
pub fn select_until_finished(&mut self) -> Result<Selection, SelectionError> {
let mut selection = self.finish();
if selection.is_ok() {
return selection;
}
let unselected = self.unselected_indexes().collect::<Vec<_>>();
for index in unselected {
self.select(index);
selection = self.finish();
if selection.is_ok() {
break;
}
}
selection
}
pub fn finish(&self) -> Result<Selection, SelectionError> {
let weight_without_drain = self.current_weight();
let weight_with_drain = weight_without_drain + self.opts.drain_weight;
let fee_without_drain =
(weight_without_drain as f32 * self.opts.target_feerate).ceil() as u64;
let fee_with_drain = (weight_with_drain as f32 * self.opts.target_feerate).ceil() as u64;
let inputs_minus_outputs = {
let target_value = self.opts.target_value.unwrap_or(0);
let selected = self.selected_absolute_value();
// find the largest unsatisfied constraint (if any), and return the error of that constraint
// "selected" should always be greater than or equal to these selected values
[
(
SelectionConstraint::TargetValue,
target_value.saturating_sub(selected),
),
(
SelectionConstraint::TargetFee,
(target_value + fee_without_drain).saturating_sub(selected),
),
(
SelectionConstraint::MinAbsoluteFee,
(target_value + self.opts.min_absolute_fee).saturating_sub(selected),
),
(
SelectionConstraint::MinDrainValue,
// when we have no target value (hence no recipient txouts), we need to ensure
// the selected amount can satisfy requirements for a drain output (so we at least have one txout)
if self.opts.target_value.is_none() {
(fee_with_drain + self.opts.min_drain_value).saturating_sub(selected)
} else {
0
},
),
]
.iter()
.filter(|&(_, v)| v > &0)
.max_by_key(|&(_, v)| v)
.map_or(Ok(()), |(constraint, missing)| {
Err(SelectionError {
selected,
missing: *missing,
constraint: *constraint,
})
})?;
selected - target_value
};
let fee_without_drain = fee_without_drain.max(self.opts.min_absolute_fee);
let fee_with_drain = fee_with_drain.max(self.opts.min_absolute_fee);
let excess_without_drain = inputs_minus_outputs - fee_without_drain;
let input_waste = self.selected_waste();
// begin preparing excess strategies for final selection
let mut excess_strategies = HashMap::new();
// only allow `ToFee` and `ToRecipient` excess strategies when we have a `target_value`,
// otherwise, we will result in a result with no txouts, or attempt to add value to an output
// that does not exist.
if self.opts.target_value.is_some() {
// no drain, excess to fee
excess_strategies.insert(
ExcessStrategyKind::ToFee,
ExcessStrategy {
recipient_value: self.opts.target_value,
drain_value: None,
fee: fee_without_drain + excess_without_drain,
weight: weight_without_drain,
waste: input_waste + excess_without_drain as i64,
},
);
// no drain, send the excess to the recipient
// if `excess == 0`, this result will be the same as the previous, so don't consider it
// if `max_extra_target == 0`, there is no leeway for this strategy
if excess_without_drain > 0 && self.opts.max_extra_target > 0 {
let extra_recipient_value =
core::cmp::min(self.opts.max_extra_target, excess_without_drain);
let extra_fee = excess_without_drain - extra_recipient_value;
excess_strategies.insert(
ExcessStrategyKind::ToRecipient,
ExcessStrategy {
recipient_value: self.opts.target_value.map(|v| v + extra_recipient_value),
drain_value: None,
fee: fee_without_drain + extra_fee,
weight: weight_without_drain,
waste: input_waste + extra_fee as i64,
},
);
}
}
// with drain
if fee_with_drain >= self.opts.min_absolute_fee
&& inputs_minus_outputs >= fee_with_drain + self.opts.min_drain_value
{
excess_strategies.insert(
ExcessStrategyKind::ToDrain,
ExcessStrategy {
recipient_value: self.opts.target_value,
drain_value: Some(inputs_minus_outputs.saturating_sub(fee_with_drain)),
fee: fee_with_drain,
weight: weight_with_drain,
waste: input_waste + self.opts.drain_waste(),
},
);
}
debug_assert!(
!excess_strategies.is_empty(),
"should have at least one excess strategy."
);
Ok(Selection {
selected: self.selected.clone(),
excess: excess_without_drain,
excess_strategies,
})
}
}
#[derive(Clone, Debug)]
pub struct SelectionError {
selected: u64,
missing: u64,
constraint: SelectionConstraint,
}
impl core::fmt::Display for SelectionError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let SelectionError {
selected,
missing,
constraint,
} = self;
write!(
f,
"insufficient coins selected; selected={}, missing={}, unsatisfied_constraint={:?}",
selected, missing, constraint
)
}
}
#[cfg(feature = "std")]
impl std::error::Error for SelectionError {}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum SelectionConstraint {
/// The target is not met
TargetValue,
/// The target fee (given the feerate) is not met
TargetFee,
/// Min absolute fee is not met
MinAbsoluteFee,
/// Min drain value is not met
MinDrainValue,
}
impl core::fmt::Display for SelectionConstraint {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
SelectionConstraint::TargetValue => core::write!(f, "target_value"),
SelectionConstraint::TargetFee => core::write!(f, "target_fee"),
SelectionConstraint::MinAbsoluteFee => core::write!(f, "min_absolute_fee"),
SelectionConstraint::MinDrainValue => core::write!(f, "min_drain_value"),
}
}
}
#[derive(Clone, Debug)]
pub struct Selection {
pub selected: BTreeSet<usize>,
pub excess: u64,
pub excess_strategies: HashMap<ExcessStrategyKind, ExcessStrategy>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, core::hash::Hash)]
pub enum ExcessStrategyKind {
ToFee,
ToRecipient,
ToDrain,
}
#[derive(Clone, Copy, Debug)]
pub struct ExcessStrategy {
pub recipient_value: Option<u64>,
pub drain_value: Option<u64>,
pub fee: u64,
pub weight: u32,
pub waste: i64,
}
impl Selection {
pub fn apply_selection<'a, T>(
&'a self,
candidates: &'a [T],
) -> impl Iterator<Item = &'a T> + 'a {
self.selected.iter().map(move |i| &candidates[*i])
}
/// Returns the [`ExcessStrategy`] that results in the least waste.
pub fn best_strategy(&self) -> (&ExcessStrategyKind, &ExcessStrategy) {
self.excess_strategies
.iter()
.min_by_key(|&(_, a)| a.waste)
.expect("selection has no excess strategy")
}
}
impl core::fmt::Display for ExcessStrategyKind {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
ExcessStrategyKind::ToFee => core::write!(f, "to_fee"),
ExcessStrategyKind::ToRecipient => core::write!(f, "to_recipient"),
ExcessStrategyKind::ToDrain => core::write!(f, "to_drain"),
}
}
}
impl ExcessStrategy {
/// Returns feerate in sats/wu.
pub fn feerate(&self) -> f32 {
self.fee as f32 / self.weight as f32
}
}
#[cfg(test)]
mod test {
use crate::{ExcessStrategyKind, SelectionConstraint};
use super::{CoinSelector, CoinSelectorOpt, WeightedValue};
/// Ensure `target_value` is respected. Can't have any disrespect.
#[test]
fn target_value_respected() {
let target_value = 1000_u64;
let candidates = (500..1500_u64)
.map(|value| WeightedValue {
value,
weight: 100,
input_count: 1,
is_segwit: false,
})
.collect::<super::Vec<_>>();
let opts = CoinSelectorOpt {
target_value: Some(target_value),
max_extra_target: 0,
target_feerate: 0.00,
long_term_feerate: None,
min_absolute_fee: 0,
base_weight: 10,
drain_weight: 10,
spend_drain_weight: 10,
min_drain_value: 10,
};
for (index, v) in candidates.iter().enumerate() {
let mut selector = CoinSelector::new(&candidates, &opts);
assert!(selector.select(index));
let res = selector.finish();
if v.value < opts.target_value.unwrap_or(0) {
let err = res.expect_err("should have failed");
assert_eq!(err.selected, v.value);
assert_eq!(err.missing, target_value - v.value);
assert_eq!(err.constraint, SelectionConstraint::MinAbsoluteFee);
} else {
let sel = res.expect("should have succeeded");
assert_eq!(sel.excess, v.value - opts.target_value.unwrap_or(0));
}
}
}
#[test]
fn drain_all() {
let candidates = (0..100)
.map(|_| WeightedValue {
value: 666,
weight: 166,
input_count: 1,
is_segwit: false,
})
.collect::<super::Vec<_>>();
let opts = CoinSelectorOpt {
target_value: None,
max_extra_target: 0,
target_feerate: 0.25,
long_term_feerate: None,
min_absolute_fee: 0,
base_weight: 10,
drain_weight: 100,
spend_drain_weight: 66,
min_drain_value: 1000,
};
let selection = CoinSelector::new(&candidates, &opts)
.select_until_finished()
.expect("should succeed");
assert!(selection.selected.len() > 1);
assert_eq!(selection.excess_strategies.len(), 1);
let (kind, strategy) = selection.best_strategy();
assert_eq!(*kind, ExcessStrategyKind::ToDrain);
assert!(strategy.recipient_value.is_none());
assert!(strategy.drain_value.is_some());
}
/// TODO: Tests to add:
/// * `finish` should ensure at least `target_value` is selected.
/// * actual feerate should be equal or higher than `target_feerate`.
/// * actual drain value should be equal to or higher than `min_drain_value` (or else no drain).
fn _todo() {}
}