2023-03-15 13:00:45 +08:00

646 lines
23 KiB
Rust

use super::*;
/// Strategy in which we should branch.
pub enum BranchStrategy {
/// We continue exploring subtrees of this node, starting with the inclusion branch.
Continue,
/// We continue exploring ONLY the omission branch of this node, skipping the inclusion branch.
SkipInclusion,
/// We skip both the inclusion and omission branches of this node.
SkipBoth,
}
impl BranchStrategy {
pub fn will_continue(&self) -> bool {
matches!(self, Self::Continue | Self::SkipInclusion)
}
}
/// Closure to decide the branching strategy, alongside a score (if the current selection is a
/// candidate solution).
pub type DecideStrategy<'c, S> = dyn Fn(&Bnb<'c, S>) -> (BranchStrategy, Option<S>);
/// [`Bnb`] represents the current state of the BnB algorithm.
pub struct Bnb<'c, S> {
pub pool: Vec<(usize, &'c WeightedValue)>,
pub pool_pos: usize,
pub best_score: S,
pub selection: CoinSelector<'c>,
pub rem_abs: u64,
pub rem_eff: i64,
}
impl<'c, S: Ord> Bnb<'c, S> {
/// Creates a new [`Bnb`].
pub fn new(selector: CoinSelector<'c>, pool: Vec<(usize, &'c WeightedValue)>, max: S) -> Self {
let (rem_abs, rem_eff) = pool.iter().fold((0, 0), |(abs, eff), (_, c)| {
(
abs + c.value,
eff + c.effective_value(selector.opts.target_feerate),
)
});
Self {
pool,
pool_pos: 0,
best_score: max,
selection: selector,
rem_abs,
rem_eff,
}
}
/// Turns our [`Bnb`] state into an iterator.
///
/// `strategy` should assess our current selection/node and determine the branching strategy and
/// whether this selection is a candidate solution (if so, return the selection score).
pub fn into_iter<'f>(self, strategy: &'f DecideStrategy<'c, S>) -> BnbIter<'c, 'f, S> {
BnbIter {
state: self,
done: false,
strategy,
}
}
/// Attempt to backtrack to the previously selected node's omission branch, return false
/// otherwise (no more solutions).
pub fn backtrack(&mut self) -> bool {
(0..self.pool_pos).rev().any(|pos| {
let (index, candidate) = self.pool[pos];
if self.selection.is_selected(index) {
// deselect the last `pos`, so the next round will check the omission branch
self.pool_pos = pos;
self.selection.deselect(index);
true
} else {
self.rem_abs += candidate.value;
self.rem_eff += candidate.effective_value(self.selection.opts.target_feerate);
false
}
})
}
/// Continue down this branch and skip the inclusion branch if specified.
pub fn forward(&mut self, skip: bool) {
let (index, candidate) = self.pool[self.pool_pos];
self.rem_abs -= candidate.value;
self.rem_eff -= candidate.effective_value(self.selection.opts.target_feerate);
if !skip {
self.selection.select(index);
}
}
/// Compare the advertised score with the current best. The new best will be the smaller value. Return true
/// if best is replaced.
pub fn advertise_new_score(&mut self, score: S) -> bool {
if score <= self.best_score {
self.best_score = score;
return true;
}
false
}
}
pub struct BnbIter<'c, 'f, S> {
state: Bnb<'c, S>,
done: bool,
/// Check our current selection (node) and returns the branching strategy alongside a score
/// (if the current selection is a candidate solution).
strategy: &'f DecideStrategy<'c, S>,
}
impl<'c, 'f, S: Ord + Copy + Display> Iterator for BnbIter<'c, 'f, S> {
type Item = Option<CoinSelector<'c>>;
fn next(&mut self) -> Option<Self::Item> {
if self.done {
return None;
}
let (strategy, score) = (self.strategy)(&self.state);
let mut found_best = Option::<CoinSelector>::None;
if let Some(score) = score {
if self.state.advertise_new_score(score) {
found_best = Some(self.state.selection.clone());
}
}
debug_assert!(
!strategy.will_continue() || self.state.pool_pos < self.state.pool.len(),
"Faulty strategy implementation! Strategy suggested that we continue traversing, however, we have already reached the end of the candidates pool! pool_len={}, pool_pos={}",
self.state.pool.len(), self.state.pool_pos,
);
match strategy {
BranchStrategy::Continue => {
self.state.forward(false);
}
BranchStrategy::SkipInclusion => {
self.state.forward(true);
}
BranchStrategy::SkipBoth => {
if !self.state.backtrack() {
self.done = true;
}
}
};
// increment selection pool position for next round
self.state.pool_pos += 1;
if found_best.is_some() || !self.done {
Some(found_best)
} else {
// we have traversed all branches
None
}
}
}
/// Determines how we should limit rounds of branch and bound.
pub enum BnbLimit {
Rounds(usize),
#[cfg(feature = "std")]
Duration(core::time::Duration),
}
impl From<usize> for BnbLimit {
fn from(v: usize) -> Self {
Self::Rounds(v)
}
}
#[cfg(feature = "std")]
impl From<core::time::Duration> for BnbLimit {
fn from(v: core::time::Duration) -> Self {
Self::Duration(v)
}
}
/// This is a variation of the Branch and Bound Coin Selection algorithm designed by Murch (as seen
/// in Bitcoin Core).
///
/// The differences are as follows:
/// * In addition to working with effective values, we also work with absolute values.
/// This way, we can use bounds of the absolute values to enforce `min_absolute_fee` (which is used by
/// RBF), and `max_extra_target` (which can be used to increase the possible solution set, given
/// that the sender is okay with sending extra to the receiver).
///
/// Murch's Master Thesis: <https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf>
/// Bitcoin Core Implementation: <https://github.com/bitcoin/bitcoin/blob/23.x/src/wallet/coinselection.cpp#L65>
///
/// TODO: Another optimization we could do is figure out candidates with the smallest waste, and
/// if we find a result with waste equal to this, we can just break.
pub fn coin_select_bnb<L>(limit: L, selector: CoinSelector) -> Option<CoinSelector>
where
L: Into<BnbLimit>,
{
let opts = selector.opts;
// prepare the pool of candidates to select from:
// * filter out candidates with negative/zero effective values
// * sort candidates by descending effective value
let pool = {
let mut pool = selector
.unselected()
.filter(|(_, c)| c.effective_value(opts.target_feerate) > 0)
.collect::<Vec<_>>();
pool.sort_unstable_by(|(_, a), (_, b)| {
let a = a.effective_value(opts.target_feerate);
let b = b.effective_value(opts.target_feerate);
b.cmp(&a)
});
pool
};
let feerate_decreases = opts.target_feerate > opts.long_term_feerate();
let target_abs = opts.target_value.unwrap_or(0) + opts.min_absolute_fee;
let target_eff = selector.effective_target();
let upper_bound_abs = target_abs + (opts.drain_weight as f32 * opts.target_feerate) as u64;
let upper_bound_eff = target_eff + opts.drain_waste();
let strategy = move |bnb: &Bnb<i64>| -> (BranchStrategy, Option<i64>) {
let selected_abs = bnb.selection.selected_absolute_value();
let selected_eff = bnb.selection.selected_effective_value();
// backtrack if the remaining value is not enough to reach the target
if selected_abs + bnb.rem_abs < target_abs || selected_eff + bnb.rem_eff < target_eff {
return (BranchStrategy::SkipBoth, None);
}
// backtrack if the selected value has already surpassed upper bounds
if selected_abs > upper_bound_abs && selected_eff > upper_bound_eff {
return (BranchStrategy::SkipBoth, None);
}
let selected_waste = bnb.selection.selected_waste();
// when feerate decreases, waste without excess is guaranteed to increase with each
// selection. So if we have already surpassed the best score, we can backtrack.
if feerate_decreases && selected_waste > bnb.best_score {
return (BranchStrategy::SkipBoth, None);
}
// solution?
if selected_abs >= target_abs && selected_eff >= target_eff {
let waste = selected_waste + bnb.selection.current_excess();
return (BranchStrategy::SkipBoth, Some(waste));
}
// early bailout optimization:
// If the candidate at the previous position is NOT selected and has the same weight and
// value as the current candidate, we can skip selecting the current candidate.
if bnb.pool_pos > 0 && !bnb.selection.is_empty() {
let (_, candidate) = bnb.pool[bnb.pool_pos];
let (prev_index, prev_candidate) = bnb.pool[bnb.pool_pos - 1];
if !bnb.selection.is_selected(prev_index)
&& candidate.value == prev_candidate.value
&& candidate.weight == prev_candidate.weight
{
return (BranchStrategy::SkipInclusion, None);
}
}
// check out the inclusion branch first
(BranchStrategy::Continue, None)
};
// determine the sum of absolute and effective values for the current selection
let (selected_abs, selected_eff) = selector.selected().fold((0, 0), |(abs, eff), (_, c)| {
(
abs + c.value,
eff + c.effective_value(selector.opts.target_feerate),
)
});
let bnb = Bnb::new(selector, pool, i64::MAX);
// not enough to select anyway
if selected_abs + bnb.rem_abs < target_abs || selected_eff + bnb.rem_eff < target_eff {
return None;
}
match limit.into() {
BnbLimit::Rounds(rounds) => {
bnb.into_iter(&strategy)
.take(rounds)
.reduce(|b, c| if c.is_some() { c } else { b })
}
#[cfg(feature = "std")]
BnbLimit::Duration(duration) => {
let start = std::time::SystemTime::now();
bnb.into_iter(&strategy)
.take_while(|_| start.elapsed().expect("failed to get system time") <= duration)
.reduce(|b, c| if c.is_some() { c } else { b })
}
}?
}
#[cfg(all(test, feature = "miniscript"))]
mod test {
use bitcoin::secp256k1::Secp256k1;
use crate::coin_select::{evaluate_cs::evaluate, ExcessStrategyKind};
use super::{
coin_select_bnb,
evaluate_cs::{Evaluation, EvaluationError},
tester::Tester,
CoinSelector, CoinSelectorOpt, Vec, WeightedValue,
};
fn tester() -> Tester {
const DESC_STR: &str = "tr(xprv9uBuvtdjghkz8D1qzsSXS9Vs64mqrUnXqzNccj2xcvnCHPpXKYE1U2Gbh9CDHk8UPyF2VuXpVkDA7fk5ZP4Hd9KnhUmTscKmhee9Dp5sBMK)";
Tester::new(&Secp256k1::default(), DESC_STR)
}
fn evaluate_bnb(
initial_selector: CoinSelector,
max_tries: usize,
) -> Result<Evaluation, EvaluationError> {
evaluate(initial_selector, |cs| {
coin_select_bnb(max_tries, cs.clone()).map_or(false, |new_cs| {
*cs = new_cs;
true
})
})
}
#[test]
fn not_enough_coins() {
let t = tester();
let candidates: Vec<WeightedValue> = vec![
t.gen_candidate(0, 100_000).into(),
t.gen_candidate(1, 100_000).into(),
];
let opts = t.gen_opts(200_000);
let selector = CoinSelector::new(&candidates, &opts);
assert!(!coin_select_bnb(10_000, selector).is_some());
}
#[test]
fn exactly_enough_coins_preselected() {
let t = tester();
let candidates: Vec<WeightedValue> = vec![
t.gen_candidate(0, 100_000).into(), // to preselect
t.gen_candidate(1, 100_000).into(), // to preselect
t.gen_candidate(2, 100_000).into(),
];
let opts = CoinSelectorOpt {
target_feerate: 0.0,
..t.gen_opts(200_000)
};
let selector = {
let mut selector = CoinSelector::new(&candidates, &opts);
selector.select(0); // preselect
selector.select(1); // preselect
selector
};
let evaluation = evaluate_bnb(selector, 10_000).expect("eval failed");
println!("{}", evaluation);
assert_eq!(evaluation.solution.selected, (0..=1).collect());
assert_eq!(evaluation.solution.excess_strategies.len(), 1);
assert_eq!(
evaluation.feerate_offset(ExcessStrategyKind::ToFee).floor(),
0.0
);
}
/// `cost_of_change` acts as the upper-bound in Bnb; we check whether these boundaries are
/// enforced in code
#[test]
fn cost_of_change() {
let t = tester();
let candidates: Vec<WeightedValue> = vec![
t.gen_candidate(0, 200_000).into(),
t.gen_candidate(1, 200_000).into(),
t.gen_candidate(2, 200_000).into(),
];
// lowest and highest possible `recipient_value` opts for derived `drain_waste`, assuming
// that we want 2 candidates selected
let (lowest_opts, highest_opts) = {
let opts = t.gen_opts(0);
let fee_from_inputs =
(candidates[0].weight as f32 * opts.target_feerate).ceil() as u64 * 2;
let fee_from_template =
((opts.base_weight + 2) as f32 * opts.target_feerate).ceil() as u64;
let lowest_opts = CoinSelectorOpt {
target_value: Some(
400_000 - fee_from_inputs - fee_from_template - opts.drain_waste() as u64,
),
..opts
};
let highest_opts = CoinSelectorOpt {
target_value: Some(400_000 - fee_from_inputs - fee_from_template),
..opts
};
(lowest_opts, highest_opts)
};
// test lowest possible target we can select
let lowest_eval = evaluate_bnb(CoinSelector::new(&candidates, &lowest_opts), 10_000);
assert!(lowest_eval.is_ok());
let lowest_eval = lowest_eval.unwrap();
println!("LB {}", lowest_eval);
assert_eq!(lowest_eval.solution.selected.len(), 2);
assert_eq!(lowest_eval.solution.excess_strategies.len(), 1);
assert_eq!(
lowest_eval
.feerate_offset(ExcessStrategyKind::ToFee)
.floor(),
0.0
);
// test the highest possible target we can select
let highest_eval = evaluate_bnb(CoinSelector::new(&candidates, &highest_opts), 10_000);
assert!(highest_eval.is_ok());
let highest_eval = highest_eval.unwrap();
println!("UB {}", highest_eval);
assert_eq!(highest_eval.solution.selected.len(), 2);
assert_eq!(highest_eval.solution.excess_strategies.len(), 1);
assert_eq!(
highest_eval
.feerate_offset(ExcessStrategyKind::ToFee)
.floor(),
0.0
);
// test lower out of bounds
let loob_opts = CoinSelectorOpt {
target_value: lowest_opts.target_value.map(|v| v - 1),
..lowest_opts
};
let loob_eval = evaluate_bnb(CoinSelector::new(&candidates, &loob_opts), 10_000);
assert!(loob_eval.is_err());
println!("Lower OOB: {}", loob_eval.unwrap_err());
// test upper out of bounds
let uoob_opts = CoinSelectorOpt {
target_value: highest_opts.target_value.map(|v| v + 1),
..highest_opts
};
let uoob_eval = evaluate_bnb(CoinSelector::new(&candidates, &uoob_opts), 10_000);
assert!(uoob_eval.is_err());
println!("Upper OOB: {}", uoob_eval.unwrap_err());
}
#[test]
fn try_select() {
let t = tester();
let candidates: Vec<WeightedValue> = vec![
t.gen_candidate(0, 300_000).into(),
t.gen_candidate(1, 300_000).into(),
t.gen_candidate(2, 300_000).into(),
t.gen_candidate(3, 200_000).into(),
t.gen_candidate(4, 200_000).into(),
];
let make_opts = |v: u64| -> CoinSelectorOpt {
CoinSelectorOpt {
target_feerate: 0.0,
..t.gen_opts(v)
}
};
let test_cases = vec![
(make_opts(100_000), false, 0),
(make_opts(200_000), true, 1),
(make_opts(300_000), true, 1),
(make_opts(500_000), true, 2),
(make_opts(1_000_000), true, 4),
(make_opts(1_200_000), false, 0),
(make_opts(1_300_000), true, 5),
(make_opts(1_400_000), false, 0),
];
for (opts, expect_solution, expect_selected) in test_cases {
let res = evaluate_bnb(CoinSelector::new(&candidates, &opts), 10_000);
assert_eq!(res.is_ok(), expect_solution);
match res {
Ok(eval) => {
println!("{}", eval);
assert_eq!(eval.feerate_offset(ExcessStrategyKind::ToFee), 0.0);
assert_eq!(eval.solution.selected.len(), expect_selected as _);
}
Err(err) => println!("expected failure: {}", err),
}
}
}
#[test]
fn early_bailout_optimization() {
let t = tester();
// target: 300_000
// candidates: 2x of 125_000, 1000x of 100_000, 1x of 50_000
// expected solution: 2x 125_000, 1x 50_000
// set bnb max tries: 1100, should succeed
let candidates = {
let mut candidates: Vec<WeightedValue> = vec![
t.gen_candidate(0, 125_000).into(),
t.gen_candidate(1, 125_000).into(),
t.gen_candidate(2, 50_000).into(),
];
(3..3 + 1000_u32)
.for_each(|index| candidates.push(t.gen_candidate(index, 100_000).into()));
candidates
};
let opts = CoinSelectorOpt {
target_feerate: 0.0,
..t.gen_opts(300_000)
};
let result = evaluate_bnb(CoinSelector::new(&candidates, &opts), 1100);
assert!(result.is_ok());
let eval = result.unwrap();
println!("{}", eval);
assert_eq!(eval.solution.selected, (0..=2).collect());
}
#[test]
fn should_exhaust_iteration() {
static MAX_TRIES: usize = 1000;
let t = tester();
let candidates = (0..MAX_TRIES + 1)
.map(|index| t.gen_candidate(index as _, 10_000).into())
.collect::<Vec<WeightedValue>>();
let opts = t.gen_opts(10_001 * MAX_TRIES as u64);
let result = evaluate_bnb(CoinSelector::new(&candidates, &opts), MAX_TRIES);
assert!(result.is_err());
println!("error as expected: {}", result.unwrap_err());
}
/// Solution should have fee >= min_absolute_fee (or no solution at all)
#[test]
fn min_absolute_fee() {
let t = tester();
let candidates = {
let mut candidates = Vec::new();
t.gen_weighted_values(&mut candidates, 5, 10_000);
t.gen_weighted_values(&mut candidates, 5, 20_000);
t.gen_weighted_values(&mut candidates, 5, 30_000);
t.gen_weighted_values(&mut candidates, 10, 10_300);
t.gen_weighted_values(&mut candidates, 10, 10_500);
t.gen_weighted_values(&mut candidates, 10, 10_700);
t.gen_weighted_values(&mut candidates, 10, 10_900);
t.gen_weighted_values(&mut candidates, 10, 11_000);
t.gen_weighted_values(&mut candidates, 10, 12_000);
t.gen_weighted_values(&mut candidates, 10, 13_000);
candidates
};
let mut opts = CoinSelectorOpt {
min_absolute_fee: 1,
..t.gen_opts(100_000)
};
(1..=120_u64).for_each(|fee_factor| {
opts.min_absolute_fee = fee_factor * 31;
let result = evaluate_bnb(CoinSelector::new(&candidates, &opts), 21_000);
match result {
Ok(result) => {
println!("Solution {}", result);
let fee = result.solution.excess_strategies[&ExcessStrategyKind::ToFee].fee;
assert!(fee >= opts.min_absolute_fee);
assert_eq!(result.solution.excess_strategies.len(), 1);
}
Err(err) => {
println!("No Solution: {}", err);
}
}
});
}
/// For a decreasing feerate (long-term feerate is lower than effective feerate), we should
/// select less. For increasing feerate (long-term feerate is higher than effective feerate), we
/// should select more.
#[test]
fn feerate_difference() {
let t = tester();
let candidates = {
let mut candidates = Vec::new();
t.gen_weighted_values(&mut candidates, 10, 2_000);
t.gen_weighted_values(&mut candidates, 10, 5_000);
t.gen_weighted_values(&mut candidates, 10, 20_000);
candidates
};
let decreasing_feerate_opts = CoinSelectorOpt {
target_feerate: 1.25,
long_term_feerate: Some(0.25),
..t.gen_opts(100_000)
};
let increasing_feerate_opts = CoinSelectorOpt {
target_feerate: 0.25,
long_term_feerate: Some(1.25),
..t.gen_opts(100_000)
};
let decreasing_res = evaluate_bnb(
CoinSelector::new(&candidates, &decreasing_feerate_opts),
21_000,
)
.expect("no result");
let decreasing_len = decreasing_res.solution.selected.len();
let increasing_res = evaluate_bnb(
CoinSelector::new(&candidates, &increasing_feerate_opts),
21_000,
)
.expect("no result");
let increasing_len = increasing_res.solution.selected.len();
println!("decreasing_len: {}", decreasing_len);
println!("increasing_len: {}", increasing_len);
assert!(decreasing_len < increasing_len);
}
/// TODO: UNIMPLEMENTED TESTS:
/// * Excess strategies:
/// * We should always have `ExcessStrategy::ToFee`.
/// * We should only have `ExcessStrategy::ToRecipient` when `max_extra_target > 0`.
/// * We should only have `ExcessStrategy::ToDrain` when `drain_value >= min_drain_value`.
/// * Fuzz
/// * Solution feerate should never be lower than target feerate
/// * Solution fee should never be lower than `min_absolute_fee`.
/// * Preselected should always remain selected
fn _todo() {}
}