1045 lines
39 KiB
Rust
1045 lines
39 KiB
Rust
// Bitcoin Dev Kit
|
|
// Written in 2020 by Alekos Filini <alekos.filini@gmail.com>
|
|
//
|
|
// Copyright (c) 2020-2021 Bitcoin Dev Kit Developers
|
|
//
|
|
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
|
|
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
|
|
// You may not use this file except in accordance with one or both of these
|
|
// licenses.
|
|
|
|
//! Descriptors DSL
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! impl_top_level_sh {
|
|
// disallow `sortedmulti` in `bare()`
|
|
( Bare, new, new, Legacy, sortedmulti $( $inner:tt )* ) => {
|
|
compile_error!("`bare()` descriptors can't contain any `sortedmulti()` operands");
|
|
};
|
|
( Bare, new, new, Legacy, sortedmulti_vec $( $inner:tt )* ) => {
|
|
compile_error!("`bare()` descriptors can't contain any `sortedmulti_vec()` operands");
|
|
};
|
|
|
|
( $inner_struct:ident, $constructor:ident, $sortedmulti_constructor:ident, $ctx:ident, sortedmulti $( $inner:tt )* ) => {{
|
|
use std::marker::PhantomData;
|
|
|
|
use $crate::miniscript::descriptor::{$inner_struct, Descriptor, DescriptorPublicKey};
|
|
use $crate::miniscript::$ctx;
|
|
|
|
let build_desc = |k, pks| {
|
|
Ok((Descriptor::<DescriptorPublicKey>::$inner_struct($inner_struct::$sortedmulti_constructor(k, pks)?), PhantomData::<$ctx>))
|
|
};
|
|
|
|
$crate::impl_sortedmulti!(build_desc, sortedmulti $( $inner )*)
|
|
}};
|
|
( $inner_struct:ident, $constructor:ident, $sortedmulti_constructor:ident, $ctx:ident, sortedmulti_vec $( $inner:tt )* ) => {{
|
|
use std::marker::PhantomData;
|
|
|
|
use $crate::miniscript::descriptor::{$inner_struct, Descriptor, DescriptorPublicKey};
|
|
use $crate::miniscript::$ctx;
|
|
|
|
let build_desc = |k, pks| {
|
|
Ok((Descriptor::<DescriptorPublicKey>::$inner_struct($inner_struct::$sortedmulti_constructor(k, pks)?), PhantomData::<$ctx>))
|
|
};
|
|
|
|
$crate::impl_sortedmulti!(build_desc, sortedmulti_vec $( $inner )*)
|
|
}};
|
|
|
|
( $inner_struct:ident, $constructor:ident, $sortedmulti_constructor:ident, $ctx:ident, $( $minisc:tt )* ) => {{
|
|
use $crate::miniscript::descriptor::{$inner_struct, Descriptor, DescriptorPublicKey};
|
|
|
|
$crate::fragment!($( $minisc )*)
|
|
.and_then(|(minisc, keymap, networks)| Ok(($inner_struct::$constructor(minisc)?, keymap, networks)))
|
|
.and_then(|(inner, key_map, valid_networks)| Ok((Descriptor::<DescriptorPublicKey>::$inner_struct(inner), key_map, valid_networks)))
|
|
}};
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! impl_top_level_pk {
|
|
( $inner_type:ident, $ctx:ty, $key:expr ) => {{
|
|
use $crate::miniscript::descriptor::$inner_type;
|
|
|
|
#[allow(unused_imports)]
|
|
use $crate::keys::{DescriptorKey, IntoDescriptorKey};
|
|
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
|
|
|
|
$key.into_descriptor_key()
|
|
.and_then(|key: DescriptorKey<$ctx>| key.extract(&secp))
|
|
.map_err($crate::descriptor::DescriptorError::Key)
|
|
.map(|(pk, key_map, valid_networks)| ($inner_type::new(pk), key_map, valid_networks))
|
|
}};
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! impl_leaf_opcode {
|
|
( $terminal_variant:ident ) => {{
|
|
use $crate::descriptor::CheckMiniscript;
|
|
|
|
$crate::miniscript::Miniscript::from_ast(
|
|
$crate::miniscript::miniscript::decode::Terminal::$terminal_variant,
|
|
)
|
|
.map_err($crate::descriptor::DescriptorError::Miniscript)
|
|
.and_then(|minisc| {
|
|
minisc.check_minsicript()?;
|
|
Ok(minisc)
|
|
})
|
|
.map(|minisc| {
|
|
(
|
|
minisc,
|
|
$crate::miniscript::descriptor::KeyMap::default(),
|
|
$crate::keys::any_network(),
|
|
)
|
|
})
|
|
}};
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! impl_leaf_opcode_value {
|
|
( $terminal_variant:ident, $value:expr ) => {{
|
|
use $crate::descriptor::CheckMiniscript;
|
|
|
|
$crate::miniscript::Miniscript::from_ast(
|
|
$crate::miniscript::miniscript::decode::Terminal::$terminal_variant($value),
|
|
)
|
|
.map_err($crate::descriptor::DescriptorError::Miniscript)
|
|
.and_then(|minisc| {
|
|
minisc.check_minsicript()?;
|
|
Ok(minisc)
|
|
})
|
|
.map(|minisc| {
|
|
(
|
|
minisc,
|
|
$crate::miniscript::descriptor::KeyMap::default(),
|
|
$crate::keys::any_network(),
|
|
)
|
|
})
|
|
}};
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! impl_leaf_opcode_value_two {
|
|
( $terminal_variant:ident, $one:expr, $two:expr ) => {{
|
|
use $crate::descriptor::CheckMiniscript;
|
|
|
|
$crate::miniscript::Miniscript::from_ast(
|
|
$crate::miniscript::miniscript::decode::Terminal::$terminal_variant($one, $two),
|
|
)
|
|
.map_err($crate::descriptor::DescriptorError::Miniscript)
|
|
.and_then(|minisc| {
|
|
minisc.check_minsicript()?;
|
|
Ok(minisc)
|
|
})
|
|
.map(|minisc| {
|
|
(
|
|
minisc,
|
|
$crate::miniscript::descriptor::KeyMap::default(),
|
|
$crate::keys::any_network(),
|
|
)
|
|
})
|
|
}};
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! impl_node_opcode_two {
|
|
( $terminal_variant:ident, $( $inner:tt )* ) => ({
|
|
use $crate::descriptor::CheckMiniscript;
|
|
|
|
let inner = $crate::fragment_internal!( @t $( $inner )* );
|
|
let (a, b) = $crate::descriptor::dsl::TupleTwo::from(inner).flattened();
|
|
|
|
a
|
|
.and_then(|a| Ok((a, b?)))
|
|
.and_then(|((a_minisc, mut a_keymap, a_networks), (b_minisc, b_keymap, b_networks))| {
|
|
// join key_maps
|
|
a_keymap.extend(b_keymap.into_iter());
|
|
|
|
let minisc = $crate::miniscript::Miniscript::from_ast($crate::miniscript::miniscript::decode::Terminal::$terminal_variant(
|
|
std::sync::Arc::new(a_minisc),
|
|
std::sync::Arc::new(b_minisc),
|
|
))?;
|
|
|
|
minisc.check_minsicript()?;
|
|
|
|
Ok((minisc, a_keymap, $crate::keys::merge_networks(&a_networks, &b_networks)))
|
|
})
|
|
});
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! impl_node_opcode_three {
|
|
( $terminal_variant:ident, $( $inner:tt )* ) => {
|
|
use $crate::descriptor::CheckMiniscript;
|
|
|
|
let inner = $crate::fragment_internal!( @t $( $inner )* );
|
|
let (a, b, c) = $crate::descriptor::dsl::TupleThree::from(inner).flattened();
|
|
|
|
a
|
|
.and_then(|a| Ok((a, b?, c?)))
|
|
.and_then(|((a_minisc, mut a_keymap, a_networks), (b_minisc, b_keymap, b_networks), (c_minisc, c_keymap, c_networks))| {
|
|
// join key_maps
|
|
a_keymap.extend(b_keymap.into_iter());
|
|
a_keymap.extend(c_keymap.into_iter());
|
|
|
|
let networks = $crate::keys::merge_networks(&a_networks, &b_networks);
|
|
let networks = $crate::keys::merge_networks(&networks, &c_networks);
|
|
|
|
let minisc = $crate::miniscript::Miniscript::from_ast($crate::miniscript::miniscript::decode::Terminal::$terminal_variant(
|
|
std::sync::Arc::new(a_minisc),
|
|
std::sync::Arc::new(b_minisc),
|
|
std::sync::Arc::new(c_minisc),
|
|
))?;
|
|
|
|
minisc.check_minsicript()?;
|
|
|
|
Ok((minisc, a_keymap, networks))
|
|
})
|
|
};
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! impl_sortedmulti {
|
|
( $build_desc:expr, sortedmulti_vec ( $thresh:expr, $keys:expr ) ) => ({
|
|
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
|
|
$crate::keys::make_sortedmulti($thresh, $keys, $build_desc, &secp)
|
|
});
|
|
( $build_desc:expr, sortedmulti ( $thresh:expr $(, $key:expr )+ ) ) => ({
|
|
use $crate::keys::IntoDescriptorKey;
|
|
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
|
|
|
|
let keys = vec![
|
|
$(
|
|
$key.into_descriptor_key(),
|
|
)*
|
|
];
|
|
|
|
keys.into_iter().collect::<Result<Vec<_>, _>>()
|
|
.map_err($crate::descriptor::DescriptorError::Key)
|
|
.and_then(|keys| $crate::keys::make_sortedmulti($thresh, keys, $build_desc, &secp))
|
|
});
|
|
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! apply_modifier {
|
|
( $terminal_variant:ident, $inner:expr ) => {{
|
|
use $crate::descriptor::CheckMiniscript;
|
|
|
|
$inner
|
|
.map_err(|e| -> $crate::descriptor::DescriptorError { e.into() })
|
|
.and_then(|(minisc, keymap, networks)| {
|
|
let minisc = $crate::miniscript::Miniscript::from_ast(
|
|
$crate::miniscript::miniscript::decode::Terminal::$terminal_variant(
|
|
std::sync::Arc::new(minisc),
|
|
),
|
|
)?;
|
|
|
|
minisc.check_minsicript()?;
|
|
|
|
Ok((minisc, keymap, networks))
|
|
})
|
|
}};
|
|
|
|
( a: $inner:expr ) => {{
|
|
$crate::apply_modifier!(Alt, $inner)
|
|
}};
|
|
( s: $inner:expr ) => {{
|
|
$crate::apply_modifier!(Swap, $inner)
|
|
}};
|
|
( c: $inner:expr ) => {{
|
|
$crate::apply_modifier!(Check, $inner)
|
|
}};
|
|
( d: $inner:expr ) => {{
|
|
$crate::apply_modifier!(DupIf, $inner)
|
|
}};
|
|
( v: $inner:expr ) => {{
|
|
$crate::apply_modifier!(Verify, $inner)
|
|
}};
|
|
( j: $inner:expr ) => {{
|
|
$crate::apply_modifier!(NonZero, $inner)
|
|
}};
|
|
( n: $inner:expr ) => {{
|
|
$crate::apply_modifier!(ZeroNotEqual, $inner)
|
|
}};
|
|
|
|
// Modifiers expanded to other operators
|
|
( t: $inner:expr ) => {{
|
|
$inner.and_then(|(a_minisc, a_keymap, a_networks)| {
|
|
$crate::impl_leaf_opcode_value_two!(
|
|
AndV,
|
|
std::sync::Arc::new(a_minisc),
|
|
std::sync::Arc::new($crate::fragment!(true).unwrap().0)
|
|
)
|
|
.map(|(minisc, _, _)| (minisc, a_keymap, a_networks))
|
|
})
|
|
}};
|
|
( l: $inner:expr ) => {{
|
|
$inner.and_then(|(a_minisc, a_keymap, a_networks)| {
|
|
$crate::impl_leaf_opcode_value_two!(
|
|
OrI,
|
|
std::sync::Arc::new($crate::fragment!(false).unwrap().0),
|
|
std::sync::Arc::new(a_minisc)
|
|
)
|
|
.map(|(minisc, _, _)| (minisc, a_keymap, a_networks))
|
|
})
|
|
}};
|
|
( u: $inner:expr ) => {{
|
|
$inner.and_then(|(a_minisc, a_keymap, a_networks)| {
|
|
$crate::impl_leaf_opcode_value_two!(
|
|
OrI,
|
|
std::sync::Arc::new(a_minisc),
|
|
std::sync::Arc::new($crate::fragment!(false).unwrap().0)
|
|
)
|
|
.map(|(minisc, _, _)| (minisc, a_keymap, a_networks))
|
|
})
|
|
}};
|
|
}
|
|
|
|
/// Macro to write full descriptors with code
|
|
///
|
|
/// This macro expands to a `Result` of
|
|
/// [`DescriptorTemplateOut`](super::template::DescriptorTemplateOut) and [`DescriptorError`](crate::descriptor::DescriptorError)
|
|
///
|
|
/// The syntax is very similar to the normal descriptor syntax, with the exception that modifiers
|
|
/// cannot be grouped together. For instance, a descriptor fragment like `sdv:older(144)` has to be
|
|
/// broken up to `s:d:v:older(144)`.
|
|
///
|
|
/// The `pk()`, `pk_k()` and `pk_h()` operands can take as argument any type that implements
|
|
/// [`IntoDescriptorKey`]. This means that keys can also be written inline as strings, but in that
|
|
/// case they must be wrapped in quotes, which is another difference compared to the standard
|
|
/// descriptor syntax.
|
|
///
|
|
/// [`IntoDescriptorKey`]: crate::keys::IntoDescriptorKey
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// Signature plus timelock descriptor:
|
|
///
|
|
/// ```
|
|
/// # use std::str::FromStr;
|
|
/// let (my_descriptor, my_keys_map, networks) = bdk::descriptor!(sh(wsh(and_v(v:pk("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy"),older(50)))))?;
|
|
/// # Ok::<(), Box<dyn std::error::Error>>(())
|
|
/// ```
|
|
///
|
|
/// -------
|
|
///
|
|
/// 2-of-3 that becomes a 1-of-3 after a timelock has expired. Both `descriptor_a` and `descriptor_b` are equivalent: the first
|
|
/// syntax is more suitable for a fixed number of items known at compile time, while the other accepts a
|
|
/// [`Vec`] of items, which makes it more suitable for writing dynamic descriptors.
|
|
///
|
|
/// They both produce the descriptor: `wsh(thresh(2,pk(...),s:pk(...),sdv:older(...)))`
|
|
///
|
|
/// ```
|
|
/// # use std::str::FromStr;
|
|
/// let my_key_1 = bitcoin::PublicKey::from_str(
|
|
/// "02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c",
|
|
/// )?;
|
|
/// let my_key_2 =
|
|
/// bitcoin::PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy")?;
|
|
/// let my_timelock = 50;
|
|
///
|
|
/// let (descriptor_a, key_map_a, networks) = bdk::descriptor! {
|
|
/// wsh (
|
|
/// thresh(2, pk(my_key_1), s:pk(my_key_2), s:d:v:older(my_timelock))
|
|
/// )
|
|
/// }?;
|
|
///
|
|
/// #[rustfmt::skip]
|
|
/// let b_items = vec![
|
|
/// bdk::fragment!(pk(my_key_1))?,
|
|
/// bdk::fragment!(s:pk(my_key_2))?,
|
|
/// bdk::fragment!(s:d:v:older(my_timelock))?,
|
|
/// ];
|
|
/// let (descriptor_b, mut key_map_b, networks) = bdk::descriptor!(wsh(thresh_vec(2, b_items)))?;
|
|
///
|
|
/// assert_eq!(descriptor_a, descriptor_b);
|
|
/// assert_eq!(key_map_a.len(), key_map_b.len());
|
|
/// # Ok::<(), Box<dyn std::error::Error>>(())
|
|
/// ```
|
|
///
|
|
/// ------
|
|
///
|
|
/// Simple 2-of-2 multi-signature, equivalent to: `wsh(multi(2, ...))`
|
|
///
|
|
/// ```
|
|
/// # use std::str::FromStr;
|
|
/// let my_key_1 = bitcoin::PublicKey::from_str(
|
|
/// "02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c",
|
|
/// )?;
|
|
/// let my_key_2 =
|
|
/// bitcoin::PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy")?;
|
|
///
|
|
/// let (descriptor, key_map, networks) = bdk::descriptor! {
|
|
/// wsh (
|
|
/// multi(2, my_key_1, my_key_2)
|
|
/// )
|
|
/// }?;
|
|
/// # Ok::<(), Box<dyn std::error::Error>>(())
|
|
/// ```
|
|
///
|
|
/// ------
|
|
///
|
|
/// Native-Segwit single-sig, equivalent to: `wpkh(...)`
|
|
///
|
|
/// ```
|
|
/// let my_key =
|
|
/// bitcoin::PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy")?;
|
|
///
|
|
/// let (descriptor, key_map, networks) = bdk::descriptor!(wpkh(my_key))?;
|
|
/// # Ok::<(), Box<dyn std::error::Error>>(())
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! descriptor {
|
|
( bare ( $( $minisc:tt )* ) ) => ({
|
|
$crate::impl_top_level_sh!(Bare, new, new, Legacy, $( $minisc )*)
|
|
});
|
|
( sh ( wsh ( $( $minisc:tt )* ) ) ) => ({
|
|
$crate::descriptor!(shwsh ($( $minisc )*))
|
|
});
|
|
( shwsh ( $( $minisc:tt )* ) ) => ({
|
|
$crate::impl_top_level_sh!(Sh, new_wsh, new_wsh_sortedmulti, Segwitv0, $( $minisc )*)
|
|
});
|
|
( pk ( $key:expr ) ) => ({
|
|
// `pk()` is actually implemented as `bare(pk())`
|
|
$crate::descriptor!( bare ( pk ( $key ) ) )
|
|
});
|
|
( pkh ( $key:expr ) ) => ({
|
|
use $crate::miniscript::descriptor::{Descriptor, DescriptorPublicKey};
|
|
|
|
$crate::impl_top_level_pk!(Pkh, $crate::miniscript::Legacy, $key)
|
|
.map(|(a, b, c)| (Descriptor::<DescriptorPublicKey>::Pkh(a), b, c))
|
|
});
|
|
( wpkh ( $key:expr ) ) => ({
|
|
use $crate::miniscript::descriptor::{Descriptor, DescriptorPublicKey};
|
|
|
|
$crate::impl_top_level_pk!(Wpkh, $crate::miniscript::Segwitv0, $key)
|
|
.and_then(|(a, b, c)| Ok((a?, b, c)))
|
|
.map(|(a, b, c)| (Descriptor::<DescriptorPublicKey>::Wpkh(a), b, c))
|
|
});
|
|
( sh ( wpkh ( $key:expr ) ) ) => ({
|
|
$crate::descriptor!(shwpkh ( $key ))
|
|
});
|
|
( shwpkh ( $key:expr ) ) => ({
|
|
use $crate::miniscript::descriptor::{Descriptor, DescriptorPublicKey, Sh};
|
|
|
|
$crate::impl_top_level_pk!(Wpkh, $crate::miniscript::Segwitv0, $key)
|
|
.and_then(|(a, b, c)| Ok((a?, b, c)))
|
|
.and_then(|(a, b, c)| Ok((Descriptor::<DescriptorPublicKey>::Sh(Sh::new_wpkh(a.into_inner())?), b, c)))
|
|
});
|
|
( sh ( $( $minisc:tt )* ) ) => ({
|
|
$crate::impl_top_level_sh!(Sh, new, new_sortedmulti, Legacy, $( $minisc )*)
|
|
});
|
|
( wsh ( $( $minisc:tt )* ) ) => ({
|
|
$crate::impl_top_level_sh!(Wsh, new, new_sortedmulti, Segwitv0, $( $minisc )*)
|
|
});
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
pub struct TupleTwo<A, B> {
|
|
pub a: A,
|
|
pub b: B,
|
|
}
|
|
|
|
impl<A, B> TupleTwo<A, B> {
|
|
pub fn flattened(self) -> (A, B) {
|
|
(self.a, self.b)
|
|
}
|
|
}
|
|
|
|
impl<A, B> From<(A, (B, ()))> for TupleTwo<A, B> {
|
|
fn from((a, (b, _)): (A, (B, ()))) -> Self {
|
|
TupleTwo { a, b }
|
|
}
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
pub struct TupleThree<A, B, C> {
|
|
pub a: A,
|
|
pub b: B,
|
|
pub c: C,
|
|
}
|
|
|
|
impl<A, B, C> TupleThree<A, B, C> {
|
|
pub fn flattened(self) -> (A, B, C) {
|
|
(self.a, self.b, self.c)
|
|
}
|
|
}
|
|
|
|
impl<A, B, C> From<(A, (B, (C, ())))> for TupleThree<A, B, C> {
|
|
fn from((a, (b, (c, _))): (A, (B, (C, ())))) -> Self {
|
|
TupleThree { a, b, c }
|
|
}
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
#[macro_export]
|
|
macro_rules! fragment_internal {
|
|
// The @v prefix is used to parse a sequence of operands and return them in a vector. This is
|
|
// used by operands that take a variable number of arguments, like `thresh()` and `multi()`.
|
|
( @v $op:ident ( $( $args:tt )* ) $( $tail:tt )* ) => ({
|
|
let mut v = vec![$crate::fragment!( $op ( $( $args )* ) )];
|
|
v.append(&mut $crate::fragment_internal!( @v $( $tail )* ));
|
|
|
|
v
|
|
});
|
|
// Match modifiers
|
|
( @v $modif:tt : $( $tail:tt )* ) => ({
|
|
let mut v = $crate::fragment_internal!( @v $( $tail )* );
|
|
let first = v.drain(..1).next().unwrap();
|
|
|
|
let first = $crate::apply_modifier!($modif:first);
|
|
|
|
let mut v_final = vec![first];
|
|
v_final.append(&mut v);
|
|
|
|
v_final
|
|
});
|
|
// Remove commas between operands
|
|
( @v , $( $tail:tt )* ) => ({
|
|
$crate::fragment_internal!( @v $( $tail )* )
|
|
});
|
|
( @v ) => ({
|
|
vec![]
|
|
});
|
|
|
|
// The @t prefix is used to parse a sequence of operands and return them in a tuple. This
|
|
// allows checking at compile-time the number of arguments passed to an operand. For this
|
|
// reason it's used by `and_*()`, `or_*()`, etc.
|
|
//
|
|
// Unfortunately, due to the fact that concatenating tuples is pretty hard, the final result
|
|
// adds in the first spot the parsed operand and in the second spot the result of parsing
|
|
// all the following ones. For two operands the type then corresponds to: (X, (X, ())). For
|
|
// three operands it's (X, (X, (X, ()))), etc.
|
|
//
|
|
// To check that the right number of arguments has been passed we can "cast" those tuples to
|
|
// more convenient structures like `TupleTwo`. If the conversion succedes, the right number of
|
|
// args was passed. Otherwise the compilation fails entirely.
|
|
( @t $op:ident ( $( $args:tt )* ) $( $tail:tt )* ) => ({
|
|
($crate::fragment!( $op ( $( $args )* ) ), $crate::fragment_internal!( @t $( $tail )* ))
|
|
});
|
|
// Match modifiers
|
|
( @t $modif:tt : $( $tail:tt )* ) => ({
|
|
let (first, tail) = $crate::fragment_internal!( @t $( $tail )* );
|
|
($crate::apply_modifier!($modif:first), tail)
|
|
});
|
|
// Remove commas between operands
|
|
( @t , $( $tail:tt )* ) => ({
|
|
$crate::fragment_internal!( @t $( $tail )* )
|
|
});
|
|
( @t ) => ({
|
|
()
|
|
});
|
|
|
|
// Fallback to calling `fragment!()`
|
|
( $( $tokens:tt )* ) => ({
|
|
$crate::fragment!($( $tokens )*)
|
|
});
|
|
}
|
|
|
|
/// Macro to write descriptor fragments with code
|
|
///
|
|
/// This macro will be expanded to an object of type `Result<(Miniscript<DescriptorPublicKey, _>, KeyMap, ValidNetworks), DescriptorError>`. It allows writing
|
|
/// fragments of larger descriptors that can be pieced together using `fragment!(thresh_vec(m, ...))`.
|
|
///
|
|
/// The syntax to write macro fragment is the same as documented for the [`descriptor`] macro.
|
|
#[macro_export]
|
|
macro_rules! fragment {
|
|
// Modifiers
|
|
( $modif:tt : $( $tail:tt )* ) => ({
|
|
let op = $crate::fragment!( $( $tail )* );
|
|
$crate::apply_modifier!($modif:op)
|
|
});
|
|
|
|
// Miniscript
|
|
( true ) => ({
|
|
$crate::impl_leaf_opcode!(True)
|
|
});
|
|
( false ) => ({
|
|
$crate::impl_leaf_opcode!(False)
|
|
});
|
|
( pk_k ( $key:expr ) ) => ({
|
|
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
|
|
$crate::keys::make_pk($key, &secp)
|
|
});
|
|
( pk ( $key:expr ) ) => ({
|
|
$crate::fragment!(c:pk_k ( $key ))
|
|
});
|
|
( pk_h ( $key_hash:expr ) ) => ({
|
|
$crate::impl_leaf_opcode_value!(PkH, $key_hash)
|
|
});
|
|
( after ( $value:expr ) ) => ({
|
|
$crate::impl_leaf_opcode_value!(After, $value)
|
|
});
|
|
( older ( $value:expr ) ) => ({
|
|
$crate::impl_leaf_opcode_value!(Older, $value)
|
|
});
|
|
( sha256 ( $hash:expr ) ) => ({
|
|
$crate::impl_leaf_opcode_value!(Sha256, $hash)
|
|
});
|
|
( hash256 ( $hash:expr ) ) => ({
|
|
$crate::impl_leaf_opcode_value!(Hash256, $hash)
|
|
});
|
|
( ripemd160 ( $hash:expr ) ) => ({
|
|
$crate::impl_leaf_opcode_value!(Ripemd160, $hash)
|
|
});
|
|
( hash160 ( $hash:expr ) ) => ({
|
|
$crate::impl_leaf_opcode_value!(Hash160, $hash)
|
|
});
|
|
( and_v ( $( $inner:tt )* ) ) => ({
|
|
$crate::impl_node_opcode_two!(AndV, $( $inner )*)
|
|
});
|
|
( and_b ( $( $inner:tt )* ) ) => ({
|
|
$crate::impl_node_opcode_two!(AndB, $( $inner )*)
|
|
});
|
|
( and_or ( $( $inner:tt )* ) ) => ({
|
|
$crate::impl_node_opcode_three!(AndOr, $( $inner )*)
|
|
});
|
|
( or_b ( $( $inner:tt )* ) ) => ({
|
|
$crate::impl_node_opcode_two!(OrB, $( $inner )*)
|
|
});
|
|
( or_d ( $( $inner:tt )* ) ) => ({
|
|
$crate::impl_node_opcode_two!(OrD, $( $inner )*)
|
|
});
|
|
( or_c ( $( $inner:tt )* ) ) => ({
|
|
$crate::impl_node_opcode_two!(OrC, $( $inner )*)
|
|
});
|
|
( or_i ( $( $inner:tt )* ) ) => ({
|
|
$crate::impl_node_opcode_two!(OrI, $( $inner )*)
|
|
});
|
|
( thresh_vec ( $thresh:expr, $items:expr ) ) => ({
|
|
use $crate::miniscript::descriptor::KeyMap;
|
|
|
|
let (items, key_maps_networks): (Vec<_>, Vec<_>) = $items.into_iter().map(|(a, b, c)| (a, (b, c))).unzip();
|
|
let items = items.into_iter().map(std::sync::Arc::new).collect();
|
|
|
|
let (key_maps, valid_networks) = key_maps_networks.into_iter().fold((KeyMap::default(), $crate::keys::any_network()), |(mut keys_acc, net_acc), (key, net)| {
|
|
keys_acc.extend(key.into_iter());
|
|
let net_acc = $crate::keys::merge_networks(&net_acc, &net);
|
|
|
|
(keys_acc, net_acc)
|
|
});
|
|
|
|
$crate::impl_leaf_opcode_value_two!(Thresh, $thresh, items)
|
|
.map(|(minisc, _, _)| (minisc, key_maps, valid_networks))
|
|
});
|
|
( thresh ( $thresh:expr, $( $inner:tt )* ) ) => ({
|
|
let items = $crate::fragment_internal!( @v $( $inner )* );
|
|
|
|
items.into_iter().collect::<Result<Vec<_>, _>>()
|
|
.and_then(|items| $crate::fragment!(thresh_vec($thresh, items)))
|
|
});
|
|
( multi_vec ( $thresh:expr, $keys:expr ) ) => ({
|
|
$crate::keys::make_multi($thresh, $keys)
|
|
});
|
|
( multi ( $thresh:expr $(, $key:expr )+ ) ) => ({
|
|
use $crate::keys::IntoDescriptorKey;
|
|
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
|
|
|
|
let keys = vec![
|
|
$(
|
|
$key.into_descriptor_key(),
|
|
)*
|
|
];
|
|
|
|
keys.into_iter().collect::<Result<Vec<_>, _>>()
|
|
.map_err($crate::descriptor::DescriptorError::Key)
|
|
.and_then(|keys| $crate::keys::make_multi($thresh, keys, &secp))
|
|
});
|
|
|
|
// `sortedmulti()` is handled separately
|
|
( sortedmulti ( $( $inner:tt )* ) ) => ({
|
|
compile_error!("`sortedmulti` can only be used as the root operand of a descriptor");
|
|
});
|
|
( sortedmulti_vec ( $( $inner:tt )* ) ) => ({
|
|
compile_error!("`sortedmulti_vec` can only be used as the root operand of a descriptor");
|
|
});
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use bitcoin::hashes::hex::ToHex;
|
|
use bitcoin::secp256k1::Secp256k1;
|
|
use miniscript::descriptor::{DescriptorPublicKey, DescriptorTrait, KeyMap};
|
|
use miniscript::{Descriptor, Legacy, Segwitv0};
|
|
|
|
use std::str::FromStr;
|
|
|
|
use crate::descriptor::{DescriptorError, DescriptorMeta};
|
|
use crate::keys::{DescriptorKey, IntoDescriptorKey, ValidNetworks};
|
|
use bitcoin::network::constants::Network::{Bitcoin, Regtest, Signet, Testnet};
|
|
use bitcoin::util::bip32;
|
|
use bitcoin::PrivateKey;
|
|
|
|
use crate::descriptor::derived::AsDerived;
|
|
|
|
// test the descriptor!() macro
|
|
|
|
// verify descriptor generates expected script(s) (if bare or pk) or address(es)
|
|
fn check(
|
|
desc: Result<(Descriptor<DescriptorPublicKey>, KeyMap, ValidNetworks), DescriptorError>,
|
|
is_witness: bool,
|
|
is_fixed: bool,
|
|
expected: &[&str],
|
|
) {
|
|
let secp = Secp256k1::new();
|
|
|
|
let (desc, _key_map, _networks) = desc.unwrap();
|
|
assert_eq!(desc.is_witness(), is_witness);
|
|
assert_eq!(!desc.is_deriveable(), is_fixed);
|
|
for i in 0..expected.len() {
|
|
let index = i as u32;
|
|
let child_desc = if !desc.is_deriveable() {
|
|
desc.as_derived_fixed(&secp)
|
|
} else {
|
|
desc.as_derived(index, &secp)
|
|
};
|
|
let address = child_desc.address(Regtest);
|
|
if let Ok(address) = address {
|
|
assert_eq!(address.to_string(), *expected.get(i).unwrap());
|
|
} else {
|
|
let script = child_desc.script_pubkey();
|
|
assert_eq!(script.to_hex().as_str(), *expected.get(i).unwrap());
|
|
}
|
|
}
|
|
}
|
|
|
|
// - at least one of each "type" of operator; ie. one modifier, one leaf_opcode, one leaf_opcode_value, etc.
|
|
// - mixing up key types that implement IntoDescriptorKey in multi() or thresh()
|
|
|
|
// expected script for pk and bare manually created
|
|
// expected addresses created with `bitcoin-cli getdescriptorinfo` (for hash) and `bitcoin-cli deriveaddresses`
|
|
|
|
#[test]
|
|
fn test_fixed_legacy_descriptors() {
|
|
let pubkey1 = bitcoin::PublicKey::from_str(
|
|
"03a34b99f22c790c4e36b2b3c2c35a36db06226e41c692fc82b8b56ac1c540c5bd",
|
|
)
|
|
.unwrap();
|
|
let pubkey2 = bitcoin::PublicKey::from_str(
|
|
"032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af",
|
|
)
|
|
.unwrap();
|
|
|
|
check(
|
|
descriptor!(bare(multi(1,pubkey1,pubkey2))),
|
|
false,
|
|
true,
|
|
&["512103a34b99f22c790c4e36b2b3c2c35a36db06226e41c692fc82b8b56ac1c540c5bd21032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af52ae"],
|
|
);
|
|
check(
|
|
descriptor!(pk(pubkey1)),
|
|
false,
|
|
true,
|
|
&["2103a34b99f22c790c4e36b2b3c2c35a36db06226e41c692fc82b8b56ac1c540c5bdac"],
|
|
);
|
|
check(
|
|
descriptor!(pkh(pubkey1)),
|
|
false,
|
|
true,
|
|
&["muZpTpBYhxmRFuCjLc7C6BBDF32C8XVJUi"],
|
|
);
|
|
check(
|
|
descriptor!(sh(multi(1, pubkey1, pubkey2))),
|
|
false,
|
|
true,
|
|
&["2MymURoV1bzuMnWMGiXzyomDkeuxXY7Suey"],
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_fixed_segwitv0_descriptors() {
|
|
let pubkey1 = bitcoin::PublicKey::from_str(
|
|
"03a34b99f22c790c4e36b2b3c2c35a36db06226e41c692fc82b8b56ac1c540c5bd",
|
|
)
|
|
.unwrap();
|
|
let pubkey2 = bitcoin::PublicKey::from_str(
|
|
"032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af",
|
|
)
|
|
.unwrap();
|
|
|
|
check(
|
|
descriptor!(wpkh(pubkey1)),
|
|
true,
|
|
true,
|
|
&["bcrt1qngw83fg8dz0k749cg7k3emc7v98wy0c7azaa6h"],
|
|
);
|
|
check(
|
|
descriptor!(sh(wpkh(pubkey1))),
|
|
true,
|
|
true,
|
|
&["2N5LiC3CqzxDamRTPG1kiNv1FpNJQ7x28sb"],
|
|
);
|
|
check(
|
|
descriptor!(wsh(multi(1, pubkey1, pubkey2))),
|
|
true,
|
|
true,
|
|
&["bcrt1qgw8jvv2hsrvjfa6q66rk6har7d32lrqm5unnf5cl63q9phxfvgps5fyfqe"],
|
|
);
|
|
check(
|
|
descriptor!(sh(wsh(multi(1, pubkey1, pubkey2)))),
|
|
true,
|
|
true,
|
|
&["2NCidRJysy7apkmE6JF5mLLaJFkrN3Ub9iy"],
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_bip32_legacy_descriptors() {
|
|
let xprv = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap();
|
|
|
|
let path = bip32::DerivationPath::from_str("m/0").unwrap();
|
|
let desc_key = (xprv, path.clone()).into_descriptor_key().unwrap();
|
|
check(
|
|
descriptor!(pk(desc_key)),
|
|
false,
|
|
false,
|
|
&[
|
|
"2102363ad03c10024e1b597a5b01b9982807fb638e00b06f3b2d4a89707de3b93c37ac",
|
|
"2102063a21fd780df370ed2fc8c4b86aa5ea642630609c203009df631feb7b480dd2ac",
|
|
"2102ba2685ad1fa5891cb100f1656b2ce3801822ccb9bac0336734a6f8c1b93ebbc0ac",
|
|
],
|
|
);
|
|
|
|
let desc_key = (xprv, path.clone()).into_descriptor_key().unwrap();
|
|
check(
|
|
descriptor!(pkh(desc_key)),
|
|
false,
|
|
false,
|
|
&[
|
|
"muvBdsVpJxpFuTHMKA47htJPdCvdt4F9DP",
|
|
"mxQSHK7DL2t1DN3xFxov1janCoXSSkrSPj",
|
|
"mfz43r15GiWo4nizmyzMNubsnkDpByFFAn",
|
|
],
|
|
);
|
|
|
|
let path2 = bip32::DerivationPath::from_str("m/2147483647'/0").unwrap();
|
|
let desc_key1 = (xprv, path).into_descriptor_key().unwrap();
|
|
let desc_key2 = (xprv, path2).into_descriptor_key().unwrap();
|
|
|
|
check(
|
|
descriptor!(sh(multi(1, desc_key1, desc_key2))),
|
|
false,
|
|
false,
|
|
&[
|
|
"2MtMDXsfwefZkEEhVViEPidvcKRUtJamJJ8",
|
|
"2MwAUZ1NYyWjhVvGTethFL6n7nZhS8WE6At",
|
|
"2MuT6Bj66HLwZd7s4SoD8XbK4GwriKEA6Gr",
|
|
],
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_bip32_segwitv0_descriptors() {
|
|
let xprv = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap();
|
|
|
|
let path = bip32::DerivationPath::from_str("m/0").unwrap();
|
|
let desc_key = (xprv, path.clone()).into_descriptor_key().unwrap();
|
|
check(
|
|
descriptor!(wpkh(desc_key)),
|
|
true,
|
|
false,
|
|
&[
|
|
"bcrt1qnhm8w9fhc8cxzgqsmqdf9fyjccyvc0gltnymu0",
|
|
"bcrt1qhylfd55rn75w9fj06zspctad5w4hz33rf0ttad",
|
|
"bcrt1qq5sq3a6k9av9d8cne0k9wcldy4nqey5yt6889r",
|
|
],
|
|
);
|
|
|
|
let desc_key = (xprv, path.clone()).into_descriptor_key().unwrap();
|
|
check(
|
|
descriptor!(sh(wpkh(desc_key))),
|
|
true,
|
|
false,
|
|
&[
|
|
"2MxvjQCaLqZ5QxZ7XotZDQ63hZw3NPss763",
|
|
"2NDUoevN4QMzhvHDMGhKuiT2fN9HXbFRMwn",
|
|
"2NF4BEAY2jF1Fu8vqfN3NVKoFtom77pUxrx",
|
|
],
|
|
);
|
|
|
|
let path2 = bip32::DerivationPath::from_str("m/2147483647'/0").unwrap();
|
|
let desc_key1 = (xprv, path.clone()).into_descriptor_key().unwrap();
|
|
let desc_key2 = (xprv, path2.clone()).into_descriptor_key().unwrap();
|
|
check(
|
|
descriptor!(wsh(multi(1, desc_key1, desc_key2))),
|
|
true,
|
|
false,
|
|
&[
|
|
"bcrt1qfxv8mxmlv5sz8q2mnuyaqdfe9jr4vvmx0csjhn092p6f4qfygfkq2hng49",
|
|
"bcrt1qerj85g243e6jlcdxpmn9spk0gefcwvu7nw7ee059d5ydzpdhkm2qwfkf5k",
|
|
"bcrt1qxkl2qss3k58q9ktc8e89pwr4gnptfpw4hju4xstxcjc0hkcae3jstluty7",
|
|
],
|
|
);
|
|
|
|
let desc_key1 = (xprv, path).into_descriptor_key().unwrap();
|
|
let desc_key2 = (xprv, path2).into_descriptor_key().unwrap();
|
|
check(
|
|
descriptor!(sh(wsh(multi(1, desc_key1, desc_key2)))),
|
|
true,
|
|
false,
|
|
&[
|
|
"2NFCtXvx9q4ci2kvKub17iSTgvRXGctCGhz",
|
|
"2NB2PrFPv5NxWCpygas8tPrGJG2ZFgeuwJw",
|
|
"2N79ZAGo5cMi5Jt7Wo9L5YmF5GkEw7sjWdC",
|
|
],
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_dsl_sortedmulti() {
|
|
let key_1 = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap();
|
|
let path_1 = bip32::DerivationPath::from_str("m/0").unwrap();
|
|
|
|
let key_2 = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPegBHHnq7YEgM815dG24M2Jk5RVqipgDxF1HJ1tsnT815X5Fd5FRfMVUs8NZs9XCb6y9an8hRPThnhfwfXJ36intaekySHGF").unwrap();
|
|
let path_2 = bip32::DerivationPath::from_str("m/1").unwrap();
|
|
|
|
let desc_key1 = (key_1, path_1);
|
|
let desc_key2 = (key_2, path_2);
|
|
|
|
check(
|
|
descriptor!(sh(sortedmulti(1, desc_key1.clone(), desc_key2.clone()))),
|
|
false,
|
|
false,
|
|
&[
|
|
"2MsxzPEJDBzpGffJXPaDpfXZAUNnZhaMh2N",
|
|
"2My3x3DLPK3UbGWGpxrXr1RnbD8MNC4FpgS",
|
|
"2NByEuiQT7YLqHCTNxL5KwYjvtuCYcXNBSC",
|
|
"2N1TGbP81kj2VUKTSWgrwxoMfuWjvfUdyu7",
|
|
"2N3Bomq2fpAcLRNfZnD3bCWK9quan28CxCR",
|
|
"2N9nrZaEzEFDqEAU9RPvDnXGT6AVwBDKAQb",
|
|
],
|
|
);
|
|
|
|
check(
|
|
descriptor!(sh(wsh(sortedmulti(
|
|
1,
|
|
desc_key1.clone(),
|
|
desc_key2.clone()
|
|
)))),
|
|
true,
|
|
false,
|
|
&[
|
|
"2NCogc5YyM4N6ruv1hUa7WLMW1BPeCK7N9B",
|
|
"2N6mkSAKi1V2oaBXby7XHdvBMKEDRQcFpNe",
|
|
"2NFmTSttm9v6bXeoWaBvpMcgfPQcZhNn3Eh",
|
|
"2Mvib87RBPUHXNEpX5S5Kv1qqrhBfgBGsJM",
|
|
"2MtMv5mcK2EjcLsH8Txpx2JxLLzHr4ttczL",
|
|
"2MsWCB56rb4T6yPv8QudZGHERTwNgesE4f6",
|
|
],
|
|
);
|
|
|
|
check(
|
|
descriptor!(wsh(sortedmulti_vec(1, vec![desc_key1, desc_key2]))),
|
|
true,
|
|
false,
|
|
&[
|
|
"bcrt1qcvq0lg8q7a47ytrd7zk5y7uls7mulrenjgvflwylpppgwf8029es4vhpnj",
|
|
"bcrt1q80yn8sdt6l7pjvkz25lglyaqctlmsq9ugk80rmxt8yu0npdsj97sc7l4de",
|
|
"bcrt1qrvf6024v9s50qhffe3t2fr2q9ckdhx2g6jz32chm2pp24ymgtr5qfrdmct",
|
|
"bcrt1q6srfmra0ynypym35c7jvsxt2u4yrugeajq95kg2ps7lk6h2gaunsq9lzxn",
|
|
"bcrt1qhl8rrzzcdpu7tcup3lcg7tge52sqvwy5fcv4k78v6kxtwmqf3v6qpvyjza",
|
|
"bcrt1ql2elz9mhm9ll27ddpewhxs732xyl2fk2kpkqz9gdyh33wgcun4vstrd49k",
|
|
],
|
|
);
|
|
}
|
|
|
|
// - verify the valid_networks returned is correctly computed based on the keys present in the descriptor
|
|
#[test]
|
|
fn test_valid_networks() {
|
|
let xprv = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap();
|
|
let path = bip32::DerivationPath::from_str("m/0").unwrap();
|
|
let desc_key = (xprv, path).into_descriptor_key().unwrap();
|
|
|
|
let (_desc, _key_map, valid_networks) = descriptor!(pkh(desc_key)).unwrap();
|
|
assert_eq!(
|
|
valid_networks,
|
|
[Testnet, Regtest, Signet].iter().cloned().collect()
|
|
);
|
|
|
|
let xprv = bip32::ExtendedPrivKey::from_str("xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jPPqjiChkVvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi").unwrap();
|
|
let path = bip32::DerivationPath::from_str("m/10/20/30/40").unwrap();
|
|
let desc_key = (xprv, path).into_descriptor_key().unwrap();
|
|
|
|
let (_desc, _key_map, valid_networks) = descriptor!(wpkh(desc_key)).unwrap();
|
|
assert_eq!(valid_networks, [Bitcoin].iter().cloned().collect());
|
|
}
|
|
|
|
// - verify the key_maps are correctly merged together
|
|
#[test]
|
|
fn test_key_maps_merged() {
|
|
let secp = Secp256k1::new();
|
|
|
|
let xprv1 = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap();
|
|
let path1 = bip32::DerivationPath::from_str("m/0").unwrap();
|
|
let desc_key1 = (xprv1, path1.clone()).into_descriptor_key().unwrap();
|
|
|
|
let xprv2 = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPegBHHnq7YEgM815dG24M2Jk5RVqipgDxF1HJ1tsnT815X5Fd5FRfMVUs8NZs9XCb6y9an8hRPThnhfwfXJ36intaekySHGF").unwrap();
|
|
let path2 = bip32::DerivationPath::from_str("m/2147483647'/0").unwrap();
|
|
let desc_key2 = (xprv2, path2.clone()).into_descriptor_key().unwrap();
|
|
|
|
let xprv3 = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPdZXrcHNLf5JAJWFAoJ2TrstMRdSKtEggz6PddbuSkvHKM9oKJyFgZV1B7rw8oChspxyYbtmEXYyg1AjfWbL3ho3XHDpHRZf").unwrap();
|
|
let path3 = bip32::DerivationPath::from_str("m/10/20/30/40").unwrap();
|
|
let desc_key3 = (xprv3, path3.clone()).into_descriptor_key().unwrap();
|
|
|
|
let (_desc, key_map, _valid_networks) =
|
|
descriptor!(sh(wsh(multi(2, desc_key1, desc_key2, desc_key3)))).unwrap();
|
|
assert_eq!(key_map.len(), 3);
|
|
|
|
let desc_key1: DescriptorKey<Segwitv0> = (xprv1, path1).into_descriptor_key().unwrap();
|
|
let desc_key2: DescriptorKey<Segwitv0> = (xprv2, path2).into_descriptor_key().unwrap();
|
|
let desc_key3: DescriptorKey<Segwitv0> = (xprv3, path3).into_descriptor_key().unwrap();
|
|
|
|
let (key1, _key_map, _valid_networks) = desc_key1.extract(&secp).unwrap();
|
|
let (key2, _key_map, _valid_networks) = desc_key2.extract(&secp).unwrap();
|
|
let (key3, _key_map, _valid_networks) = desc_key3.extract(&secp).unwrap();
|
|
assert_eq!(key_map.get(&key1).unwrap().to_string(), "tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy/0/*");
|
|
assert_eq!(key_map.get(&key2).unwrap().to_string(), "tprv8ZgxMBicQKsPegBHHnq7YEgM815dG24M2Jk5RVqipgDxF1HJ1tsnT815X5Fd5FRfMVUs8NZs9XCb6y9an8hRPThnhfwfXJ36intaekySHGF/2147483647'/0/*");
|
|
assert_eq!(key_map.get(&key3).unwrap().to_string(), "tprv8ZgxMBicQKsPdZXrcHNLf5JAJWFAoJ2TrstMRdSKtEggz6PddbuSkvHKM9oKJyFgZV1B7rw8oChspxyYbtmEXYyg1AjfWbL3ho3XHDpHRZf/10/20/30/40/*");
|
|
}
|
|
|
|
// - verify the ScriptContext is correctly validated (i.e. passing a type that only impl IntoDescriptorKey<Segwitv0> to a pkh() descriptor should throw a compilation error
|
|
#[test]
|
|
fn test_script_context_validation() {
|
|
// this compiles
|
|
let xprv = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap();
|
|
let path = bip32::DerivationPath::from_str("m/0").unwrap();
|
|
let desc_key: DescriptorKey<Legacy> = (xprv, path).into_descriptor_key().unwrap();
|
|
|
|
let (desc, _key_map, _valid_networks) = descriptor!(pkh(desc_key)).unwrap();
|
|
assert_eq!(desc.to_string(), "pkh(tpubD6NzVbkrYhZ4WR7a4vY1VT3khMJMeAxVsfq9TBJyJWrNk247zCJtV7AWf6UJP7rAVsn8NNKdJi3gFyKPTmWZS9iukb91xbn2HbFSMQm2igY/0/*)#yrnz9pp2");
|
|
|
|
// as expected this does not compile due to invalid context
|
|
//let desc_key:DescriptorKey<Segwitv0> = (xprv, path.clone()).into_descriptor_key().unwrap();
|
|
//let (desc, _key_map, _valid_networks) = descriptor!(pkh(desc_key)).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_dsl_modifiers() {
|
|
let private_key =
|
|
PrivateKey::from_wif("cSQPHDBwXGjVzWRqAHm6zfvQhaTuj1f2bFH58h55ghbjtFwvmeXR").unwrap();
|
|
let (descriptor, _, _) =
|
|
descriptor!(wsh(thresh(2,d:v:older(1),s:pk(private_key),s:pk(private_key)))).unwrap();
|
|
|
|
assert_eq!(descriptor.to_string(), "wsh(thresh(2,dv:older(1),s:pk(02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c),s:pk(02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c)))#cfdcqs3s")
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "Miniscript(ContextError(CompressedOnly))")]
|
|
fn test_dsl_miniscript_checks() {
|
|
let mut uncompressed_pk =
|
|
PrivateKey::from_wif("L5EZftvrYaSudiozVRzTqLcHLNDoVn7H5HSfM9BAN6tMJX8oTWz6").unwrap();
|
|
uncompressed_pk.compressed = false;
|
|
|
|
descriptor!(wsh(v: pk(uncompressed_pk))).unwrap();
|
|
}
|
|
}
|