// Magical Bitcoin Library // Written in 2020 by // Alekos Filini // // Copyright (c) 2020 Magical Bitcoin // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //! Descriptors DSL #[doc(hidden)] #[macro_export] macro_rules! impl_top_level_sh { // disallow `sortedmulti` in `bare()` ( Bare, Bare, sortedmulti $( $inner:tt )* ) => { compile_error!("`bare()` descriptors can't contain any `sortedmulti` operands"); }; ( Bare, Bare, sortedmulti_vec $( $inner:tt )* ) => { compile_error!("`bare()` descriptors can't contain any `sortedmulti_vec` operands"); }; ( $descriptor_variant:ident, $sortedmulti_variant:ident, sortedmulti $( $inner:tt )* ) => { $crate::impl_sortedmulti!(sortedmulti $( $inner )*) .and_then(|(inner, key_map, valid_networks)| Ok(($crate::miniscript::Descriptor::$sortedmulti_variant(inner), key_map, valid_networks))) }; ( $descriptor_variant:ident, $sortedmulti_variant:ident, sortedmulti_vec $( $inner:tt )* ) => { $crate::impl_sortedmulti!(sortedmulti_vec $( $inner )*) .and_then(|(inner, key_map, valid_networks)| Ok(($crate::miniscript::Descriptor::$sortedmulti_variant(inner), key_map, valid_networks))) }; ( $descriptor_variant:ident, $sortedmulti_variant:ident, $( $minisc:tt )* ) => { $crate::fragment!($( $minisc )*) .map(|(minisc, keymap, networks)|($crate::miniscript::Descriptor::<$crate::miniscript::descriptor::DescriptorPublicKey>::$descriptor_variant(minisc), keymap, networks)) }; } #[doc(hidden)] #[macro_export] macro_rules! impl_top_level_pk { ( $descriptor_variant:ident, $ctx:ty, $key:expr ) => {{ #[allow(unused_imports)] use $crate::keys::{DescriptorKey, ToDescriptorKey}; let secp = $crate::bitcoin::secp256k1::Secp256k1::new(); $key.to_descriptor_key() .and_then(|key: DescriptorKey<$ctx>| key.extract(&secp)) .map(|(pk, key_map, valid_networks)| { ( $crate::miniscript::Descriptor::< $crate::miniscript::descriptor::DescriptorPublicKey, >::$descriptor_variant(pk), key_map, valid_networks, ) }) }}; } #[doc(hidden)] #[macro_export] macro_rules! impl_modifier { ( $terminal_variant:ident, $( $inner:tt )* ) => { $crate::fragment!($( $inner )*) .map_err(|e| -> $crate::Error { e.into() }) .and_then(|(minisc, keymap, networks)| Ok(($crate::miniscript::Miniscript::from_ast($crate::miniscript::miniscript::decode::Terminal::$terminal_variant(std::sync::Arc::new(minisc)))?, keymap, networks))) }; } #[doc(hidden)] #[macro_export] macro_rules! impl_leaf_opcode { ( $terminal_variant:ident ) => { $crate::miniscript::Miniscript::from_ast( $crate::miniscript::miniscript::decode::Terminal::$terminal_variant, ) .map_err($crate::Error::Miniscript) .map(|minisc| { ( minisc, $crate::miniscript::descriptor::KeyMap::default(), $crate::keys::any_network(), ) }) }; } #[doc(hidden)] #[macro_export] macro_rules! impl_leaf_opcode_value { ( $terminal_variant:ident, $value:expr ) => { $crate::miniscript::Miniscript::from_ast( $crate::miniscript::miniscript::decode::Terminal::$terminal_variant($value), ) .map_err($crate::Error::Miniscript) .map(|minisc| { ( minisc, $crate::miniscript::descriptor::KeyMap::default(), $crate::keys::any_network(), ) }) }; } #[doc(hidden)] #[macro_export] macro_rules! impl_leaf_opcode_value_two { ( $terminal_variant:ident, $one:expr, $two:expr ) => { $crate::miniscript::Miniscript::from_ast( $crate::miniscript::miniscript::decode::Terminal::$terminal_variant($one, $two), ) .map_err($crate::Error::Miniscript) .map(|minisc| { ( minisc, $crate::miniscript::descriptor::KeyMap::default(), $crate::keys::any_network(), ) }) }; } #[doc(hidden)] #[macro_export] macro_rules! impl_node_opcode_two { ( $terminal_variant:ident, ( $( $a:tt )* ), ( $( $b:tt )* ) ) => { $crate::fragment!($( $a )*) .and_then(|a| Ok((a, $crate::fragment!($( $b )*)?))) .and_then(|((a_minisc, mut a_keymap, a_networks), (b_minisc, b_keymap, b_networks))| { // join key_maps a_keymap.extend(b_keymap.into_iter()); Ok(($crate::miniscript::Miniscript::from_ast($crate::miniscript::miniscript::decode::Terminal::$terminal_variant( std::sync::Arc::new(a_minisc), std::sync::Arc::new(b_minisc), ))?, a_keymap, $crate::keys::merge_networks(&a_networks, &b_networks))) }) }; } #[doc(hidden)] #[macro_export] macro_rules! impl_node_opcode_three { ( $terminal_variant:ident, ( $( $a:tt )* ), ( $( $b:tt )* ), ( $( $c:tt )* ) ) => { $crate::fragment!($( $a )*) .and_then(|a| Ok((a, $crate::fragment!($( $b )*)?, $crate::fragment!($( $c )*)?))) .and_then(|((a_minisc, mut a_keymap, a_networks), (b_minisc, b_keymap, b_networks), (c_minisc, c_keymap, c_networks))| { // join key_maps a_keymap.extend(b_keymap.into_iter()); a_keymap.extend(c_keymap.into_iter()); let networks = $crate::keys::merge_networks(&a_networks, &b_networks); let networks = $crate::keys::merge_networks(&networks, &c_networks); Ok(($crate::miniscript::Miniscript::from_ast($crate::miniscript::miniscript::decode::Terminal::$terminal_variant( std::sync::Arc::new(a_minisc), std::sync::Arc::new(b_minisc), std::sync::Arc::new(c_minisc), ))?, a_keymap, networks)) }) }; } #[doc(hidden)] #[macro_export] macro_rules! impl_sortedmulti { ( sortedmulti_vec $thresh:expr, $keys:expr ) => ({ let secp = $crate::bitcoin::secp256k1::Secp256k1::new(); $crate::keys::make_sortedmulti_inner($thresh, $keys, &secp) }); ( sortedmulti $thresh:expr $(, $key:expr )+ ) => ({ use $crate::keys::ToDescriptorKey; let secp = $crate::bitcoin::secp256k1::Secp256k1::new(); let mut keys = vec![]; $( keys.push($key.to_descriptor_key()); )* keys.into_iter().collect::, _>>() .and_then(|keys| $crate::keys::make_sortedmulti_inner($thresh, keys, &secp)) }); } /// Macro to write full descriptors with code /// /// This macro expands to an object of type `Result<(Descriptor, KeyMap, ValidNetworks), Error>`. /// /// ## Example /// /// Signature plus timelock, equivalent to: `sh(wsh(and_v(v:pk(...), older(...))))` /// /// ``` /// # use std::str::FromStr; /// let my_key = bitcoin::PublicKey::from_str("02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c")?; /// let my_timelock = 50; /// let (my_descriptor, my_keys_map, networks) = bdk::descriptor!(sh ( wsh ( and_v (+v pk my_key), ( older my_timelock ))))?; /// # Ok::<(), Box>(()) /// ``` /// /// ------- /// /// 2-of-3 that becomes a 1-of-3 after a timelock has expired. Both `descriptor_a` and `descriptor_b` are equivalent: the first /// syntax is more suitable for a fixed number of items known at compile time, while the other accepts a /// [`Vec`] of items, which makes it more suitable for writing dynamic descriptors. /// /// They both produce the descriptor: `wsh(thresh(2,pk(...),s:pk(...),sdv:older(...)))` /// /// ``` /// # use std::str::FromStr; /// let my_key_1 = bitcoin::PublicKey::from_str("02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c")?; /// let my_key_2 = bitcoin::PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy")?; /// let my_timelock = 50; /// /// let (descriptor_a, key_map_a, networks) = bdk::descriptor! { /// wsh ( /// thresh 2, (pk my_key_1), (+s pk my_key_2), (+s+d+v older my_timelock) /// ) /// }?; /// /// let b_items = vec![ /// bdk::fragment!(pk my_key_1)?, /// bdk::fragment!(+s pk my_key_2)?, /// bdk::fragment!(+s+d+v older my_timelock)?, /// ]; /// let (descriptor_b, mut key_map_b, networks) = bdk::descriptor!( wsh ( thresh_vec 2, b_items ) )?; /// /// assert_eq!(descriptor_a, descriptor_b); /// assert_eq!(key_map_a.len(), key_map_b.len()); /// # Ok::<(), Box>(()) /// ``` /// /// ------ /// /// Simple 2-of-2 multi-signature, equivalent to: `wsh(multi(2, ...))` /// /// ``` /// # use std::str::FromStr; /// let my_key_1 = bitcoin::PublicKey::from_str("02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c")?; /// let my_key_2 = bitcoin::PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy")?; /// /// let (descriptor, key_map, networks) = bdk::descriptor! { /// wsh ( /// multi 2, my_key_1, my_key_2 /// ) /// }?; /// # Ok::<(), Box>(()) /// ``` /// /// ------ /// /// Native-Segwit single-sig, equivalent to: `wpkh(...)` /// /// ``` /// let my_key = bitcoin::PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy")?; /// /// let (descriptor, key_map, networks) = bdk::descriptor!(wpkh ( my_key ) )?; /// # Ok::<(), Box>(()) /// ``` #[macro_export] macro_rules! descriptor { ( bare ( $( $minisc:tt )* ) ) => ({ $crate::impl_top_level_sh!(Bare, Bare, $( $minisc )*) }); ( sh ( wsh ( $( $minisc:tt )* ) ) ) => ({ $crate::descriptor!(shwsh ($( $minisc )*)) }); ( shwsh ( $( $minisc:tt )* ) ) => ({ $crate::impl_top_level_sh!(ShWsh, ShWshSortedMulti, $( $minisc )*) }); ( pk $key:expr ) => ({ $crate::impl_top_level_pk!(Pk, $crate::miniscript::Legacy, $key) }); ( pkh $key:expr ) => ({ $crate::impl_top_level_pk!(Pkh,$crate::miniscript::Legacy, $key) }); ( wpkh $key:expr ) => ({ $crate::impl_top_level_pk!(Wpkh, $crate::miniscript::Segwitv0, $key) }); ( sh ( wpkh ( $key:expr ) ) ) => ({ $crate::descriptor!(shwpkh ( $key )) }); ( shwpkh ( $key:expr ) ) => ({ $crate::impl_top_level_pk!(ShWpkh, $crate::miniscript::Segwitv0, $key) }); ( sh ( $( $minisc:tt )* ) ) => ({ $crate::impl_top_level_sh!(Sh, ShSortedMulti, $( $minisc )*) }); ( wsh ( $( $minisc:tt )* ) ) => ({ $crate::impl_top_level_sh!(Wsh, WshSortedMulti, $( $minisc )*) }); } /// Macro to write descriptor fragments with code /// /// This macro will be expanded to an object of type `Result<(Miniscript, KeyMap, ValidNetworks), Error>`. It allows writing /// fragments of larger descriptors that can be pieced together using `fragment!(thresh_vec ...)`. #[macro_export] macro_rules! fragment { // Modifiers ( +a $( $inner:tt )* ) => ({ $crate::impl_modifier!(Alt, $( $inner )*) }); ( +s $( $inner:tt )* ) => ({ $crate::impl_modifier!(Swap, $( $inner )*) }); ( +c $( $inner:tt )* ) => ({ $crate::impl_modifier!(Check, $( $inner )*) }); ( +d $( $inner:tt )* ) => ({ $crate::impl_modifier!(DupIf, $( $inner )*) }); ( +v $( $inner:tt )* ) => ({ $crate::impl_modifier!(Verify, $( $inner )*) }); ( +j $( $inner:tt )* ) => ({ $crate::impl_modifier!(NonZero, $( $inner )*) }); ( +n $( $inner:tt )* ) => ({ $crate::impl_modifier!(ZeroNotEqual, $( $inner )*) }); ( +t $( $inner:tt )* ) => ({ $crate::fragment!(and_v ( $( $inner )* ), ( true ) ) }); ( +l $( $inner:tt )* ) => ({ $crate::fragment!(or_i ( false ), ( $( $inner )* ) ) }); ( +u $( $inner:tt )* ) => ({ $crate::fragment!(or_i ( $( $inner )* ), ( false ) ) }); // Miniscript ( true ) => ({ $crate::impl_leaf_opcode!(True) }); ( false ) => ({ $crate::impl_leaf_opcode!(False) }); ( pk_k $key:expr ) => ({ let secp = $crate::bitcoin::secp256k1::Secp256k1::new(); $crate::keys::make_pk($key, &secp) }); ( pk $key:expr ) => ({ $crate::fragment!(+c pk_k $key) }); ( pk_h $key_hash:expr ) => ({ $crate::impl_leaf_opcode_value!(PkH, $key_hash) }); ( after $value:expr ) => ({ $crate::impl_leaf_opcode_value!(After, $value) }); ( older $value:expr ) => ({ $crate::impl_leaf_opcode_value!(Older, $value) }); ( sha256 $hash:expr ) => ({ $crate::impl_leaf_opcode_value!(Sha256, $hash) }); ( hash256 $hash:expr ) => ({ $crate::impl_leaf_opcode_value!(Hash256, $hash) }); ( ripemd160 $hash:expr ) => ({ $crate::impl_leaf_opcode_value!(Ripemd160, $hash) }); ( hash160 $hash:expr ) => ({ $crate::impl_leaf_opcode_value!(Hash160, $hash) }); ( and_v ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({ $crate::impl_node_opcode_two!(AndV, ( $( $a )* ), ( $( $b )* )) }); ( and_b ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({ $crate::impl_node_opcode_two!(AndB, ( $( $a )* ), ( $( $b )* )) }); ( and_or ( $( $a:tt )* ), ( $( $b:tt )* ), ( $( $c:tt )* ) ) => ({ $crate::impl_node_opcode_three!(AndOr, ( $( $a )* ), ( $( $b )* ), ( $( $c )* )) }); ( or_b ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({ $crate::impl_node_opcode_two!(OrB, ( $( $a )* ), ( $( $b )* )) }); ( or_d ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({ $crate::impl_node_opcode_two!(OrD, ( $( $a )* ), ( $( $b )* )) }); ( or_c ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({ $crate::impl_node_opcode_two!(OrC, ( $( $a )* ), ( $( $b )* )) }); ( or_i ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({ $crate::impl_node_opcode_two!(OrI, ( $( $a )* ), ( $( $b )* )) }); ( thresh_vec $thresh:expr, $items:expr ) => ({ use $crate::miniscript::descriptor::KeyMap; let (items, key_maps_networks): (Vec<_>, Vec<_>) = $items.into_iter().map(|(a, b, c)| (a, (b, c))).unzip(); let items = items.into_iter().map(std::sync::Arc::new).collect(); let (key_maps, valid_networks) = key_maps_networks.into_iter().fold((KeyMap::default(), $crate::keys::any_network()), |(mut keys_acc, net_acc), (key, net)| { keys_acc.extend(key.into_iter()); let net_acc = $crate::keys::merge_networks(&net_acc, &net); (keys_acc, net_acc) }); $crate::impl_leaf_opcode_value_two!(Thresh, $thresh, items) .map(|(minisc, _, _)| (minisc, key_maps, valid_networks)) }); ( thresh $thresh:expr $(, ( $( $item:tt )* ) )+ ) => ({ let mut items = vec![]; $( items.push($crate::fragment!($( $item )*)); )* items.into_iter().collect::, _>>() .and_then(|items| $crate::fragment!(thresh_vec $thresh, items)) }); ( multi_vec $thresh:expr, $keys:expr ) => ({ $crate::keys::make_multi($thresh, $keys) }); ( multi $thresh:expr $(, $key:expr )+ ) => ({ use $crate::keys::ToDescriptorKey; let secp = $crate::bitcoin::secp256k1::Secp256k1::new(); let mut keys = vec![]; $( keys.push($key.to_descriptor_key()); )* keys.into_iter().collect::, _>>() .and_then(|keys| $crate::keys::make_multi($thresh, keys, &secp)) }); // `sortedmulti()` is handled separately ( sortedmulti $( $inner:tt )* ) => ({ compile_error!("`sortedmulti` can only be used as the root operand of a descriptor"); }); ( sortedmulti_vec $( $inner:tt )* ) => ({ compile_error!("`sortedmulti_vec` can only be used as the root operand of a descriptor"); }); } #[cfg(test)] mod test { use bitcoin::hashes::hex::ToHex; use bitcoin::secp256k1::Secp256k1; use miniscript::descriptor::{DescriptorPublicKey, DescriptorPublicKeyCtx, KeyMap}; use miniscript::{Descriptor, Legacy, Segwitv0}; use std::str::FromStr; use crate::descriptor::DescriptorMeta; use crate::keys::{DescriptorKey, KeyError, ToDescriptorKey, ValidNetworks}; use bitcoin::network::constants::Network::{Bitcoin, Regtest, Testnet}; use bitcoin::util::bip32; use bitcoin::util::bip32::ChildNumber; // test the descriptor!() macro // verify descriptor generates expected script(s) (if bare or pk) or address(es) fn check( desc: Result<(Descriptor, KeyMap, ValidNetworks), KeyError>, is_witness: bool, is_fixed: bool, expected: &[&str], ) { let secp = Secp256k1::new(); let deriv_ctx = DescriptorPublicKeyCtx::new(&secp, ChildNumber::Normal { index: 0 }); let (desc, _key_map, _networks) = desc.unwrap(); assert_eq!(desc.is_witness(), is_witness); assert_eq!(desc.is_fixed(), is_fixed); for i in 0..expected.len() { let index = i as u32; let child_desc = if desc.is_fixed() { desc.clone() } else { desc.derive(ChildNumber::from_normal_idx(index).unwrap()) }; let address = child_desc.address(Regtest, deriv_ctx); if let Some(address) = address { assert_eq!(address.to_string(), *expected.get(i).unwrap()); } else { let script = child_desc.script_pubkey(deriv_ctx); assert_eq!(script.to_hex().as_str(), *expected.get(i).unwrap()); } } } // - at least one of each "type" of operator; ie. one modifier, one leaf_opcode, one leaf_opcode_value, etc. // - mixing up key types that implement ToDescriptorKey in multi() or thresh() // expected script for pk and bare manually created // expected addresses created with `bitcoin-cli getdescriptorinfo` (for hash) and `bitcoin-cli deriveaddresses` #[test] fn test_fixed_legacy_descriptors() { let pubkey1 = bitcoin::PublicKey::from_str( "03a34b99f22c790c4e36b2b3c2c35a36db06226e41c692fc82b8b56ac1c540c5bd", ) .unwrap(); let pubkey2 = bitcoin::PublicKey::from_str( "032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af", ) .unwrap(); check( descriptor!(bare(multi 1,pubkey1,pubkey2)), false, true, &["512103a34b99f22c790c4e36b2b3c2c35a36db06226e41c692fc82b8b56ac1c540c5bd21032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af52ae"], ); check( descriptor!(pk(pubkey1)), false, true, &["2103a34b99f22c790c4e36b2b3c2c35a36db06226e41c692fc82b8b56ac1c540c5bdac"], ); check( descriptor!(pkh(pubkey1)), false, true, &["muZpTpBYhxmRFuCjLc7C6BBDF32C8XVJUi"], ); check( descriptor!(sh(multi 1,pubkey1,pubkey2)), false, true, &["2MymURoV1bzuMnWMGiXzyomDkeuxXY7Suey"], ); } #[test] fn test_fixed_segwitv0_descriptors() { let pubkey1 = bitcoin::PublicKey::from_str( "03a34b99f22c790c4e36b2b3c2c35a36db06226e41c692fc82b8b56ac1c540c5bd", ) .unwrap(); let pubkey2 = bitcoin::PublicKey::from_str( "032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af", ) .unwrap(); check( descriptor!(wpkh(pubkey1)), true, true, &["bcrt1qngw83fg8dz0k749cg7k3emc7v98wy0c7azaa6h"], ); check( descriptor!(sh(wpkh(pubkey1))), true, true, &["2N5LiC3CqzxDamRTPG1kiNv1FpNJQ7x28sb"], ); check( descriptor!(wsh(multi 1,pubkey1,pubkey2)), true, true, &["bcrt1qgw8jvv2hsrvjfa6q66rk6har7d32lrqm5unnf5cl63q9phxfvgps5fyfqe"], ); check( descriptor!(sh(wsh(multi 1,pubkey1,pubkey2))), true, true, &["2NCidRJysy7apkmE6JF5mLLaJFkrN3Ub9iy"], ); } #[test] fn test_bip32_legacy_descriptors() { let xprv = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap(); let path = bip32::DerivationPath::from_str("m/0").unwrap(); let desc_key = (xprv, path.clone()).to_descriptor_key().unwrap(); check( descriptor!(pk(desc_key)), false, false, &[ "2102363ad03c10024e1b597a5b01b9982807fb638e00b06f3b2d4a89707de3b93c37ac", "2102063a21fd780df370ed2fc8c4b86aa5ea642630609c203009df631feb7b480dd2ac", "2102ba2685ad1fa5891cb100f1656b2ce3801822ccb9bac0336734a6f8c1b93ebbc0ac", ], ); let desc_key = (xprv, path.clone()).to_descriptor_key().unwrap(); check( descriptor!(pkh(desc_key)), false, false, &[ "muvBdsVpJxpFuTHMKA47htJPdCvdt4F9DP", "mxQSHK7DL2t1DN3xFxov1janCoXSSkrSPj", "mfz43r15GiWo4nizmyzMNubsnkDpByFFAn", ], ); let path2 = bip32::DerivationPath::from_str("m/2147483647'/0").unwrap(); let desc_key1 = (xprv, path).to_descriptor_key().unwrap(); let desc_key2 = (xprv, path2).to_descriptor_key().unwrap(); check( descriptor!(sh(multi 1,desc_key1,desc_key2)), false, false, &[ "2MtMDXsfwefZkEEhVViEPidvcKRUtJamJJ8", "2MwAUZ1NYyWjhVvGTethFL6n7nZhS8WE6At", "2MuT6Bj66HLwZd7s4SoD8XbK4GwriKEA6Gr", ], ); } #[test] fn test_bip32_segwitv0_descriptors() { let xprv = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap(); let path = bip32::DerivationPath::from_str("m/0").unwrap(); let desc_key = (xprv, path.clone()).to_descriptor_key().unwrap(); check( descriptor!(wpkh(desc_key)), true, false, &[ "bcrt1qnhm8w9fhc8cxzgqsmqdf9fyjccyvc0gltnymu0", "bcrt1qhylfd55rn75w9fj06zspctad5w4hz33rf0ttad", "bcrt1qq5sq3a6k9av9d8cne0k9wcldy4nqey5yt6889r", ], ); let desc_key = (xprv, path.clone()).to_descriptor_key().unwrap(); check( descriptor!(sh(wpkh(desc_key))), true, false, &[ "2MxvjQCaLqZ5QxZ7XotZDQ63hZw3NPss763", "2NDUoevN4QMzhvHDMGhKuiT2fN9HXbFRMwn", "2NF4BEAY2jF1Fu8vqfN3NVKoFtom77pUxrx", ], ); let path2 = bip32::DerivationPath::from_str("m/2147483647'/0").unwrap(); let desc_key1 = (xprv, path.clone()).to_descriptor_key().unwrap(); let desc_key2 = (xprv, path2.clone()).to_descriptor_key().unwrap(); check( descriptor!(wsh(multi 1,desc_key1,desc_key2)), true, false, &[ "bcrt1qfxv8mxmlv5sz8q2mnuyaqdfe9jr4vvmx0csjhn092p6f4qfygfkq2hng49", "bcrt1qerj85g243e6jlcdxpmn9spk0gefcwvu7nw7ee059d5ydzpdhkm2qwfkf5k", "bcrt1qxkl2qss3k58q9ktc8e89pwr4gnptfpw4hju4xstxcjc0hkcae3jstluty7", ], ); let desc_key1 = (xprv, path).to_descriptor_key().unwrap(); let desc_key2 = (xprv, path2).to_descriptor_key().unwrap(); check( descriptor!(sh(wsh(multi 1,desc_key1,desc_key2))), true, false, &[ "2NFCtXvx9q4ci2kvKub17iSTgvRXGctCGhz", "2NB2PrFPv5NxWCpygas8tPrGJG2ZFgeuwJw", "2N79ZAGo5cMi5Jt7Wo9L5YmF5GkEw7sjWdC", ], ); } #[test] fn test_dsl_sortedmulti() { let key_1 = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap(); let path_1 = bip32::DerivationPath::from_str("m/0").unwrap(); let key_2 = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPegBHHnq7YEgM815dG24M2Jk5RVqipgDxF1HJ1tsnT815X5Fd5FRfMVUs8NZs9XCb6y9an8hRPThnhfwfXJ36intaekySHGF").unwrap(); let path_2 = bip32::DerivationPath::from_str("m/1").unwrap(); let desc_key1 = (key_1, path_1); let desc_key2 = (key_2, path_2); check( descriptor!(sh(sortedmulti 1, desc_key1.clone(), desc_key2.clone())), false, false, &[ "2MsxzPEJDBzpGffJXPaDpfXZAUNnZhaMh2N", "2My3x3DLPK3UbGWGpxrXr1RnbD8MNC4FpgS", "2NByEuiQT7YLqHCTNxL5KwYjvtuCYcXNBSC", "2N1TGbP81kj2VUKTSWgrwxoMfuWjvfUdyu7", "2N3Bomq2fpAcLRNfZnD3bCWK9quan28CxCR", "2N9nrZaEzEFDqEAU9RPvDnXGT6AVwBDKAQb", ], ); check( descriptor!(sh(wsh(sortedmulti 1, desc_key1.clone(), desc_key2.clone()))), true, false, &[ "2NCogc5YyM4N6ruv1hUa7WLMW1BPeCK7N9B", "2N6mkSAKi1V2oaBXby7XHdvBMKEDRQcFpNe", "2NFmTSttm9v6bXeoWaBvpMcgfPQcZhNn3Eh", "2Mvib87RBPUHXNEpX5S5Kv1qqrhBfgBGsJM", "2MtMv5mcK2EjcLsH8Txpx2JxLLzHr4ttczL", "2MsWCB56rb4T6yPv8QudZGHERTwNgesE4f6", ], ); check( descriptor!(wsh(sortedmulti_vec 1, vec![desc_key1, desc_key2])), true, false, &[ "bcrt1qcvq0lg8q7a47ytrd7zk5y7uls7mulrenjgvflwylpppgwf8029es4vhpnj", "bcrt1q80yn8sdt6l7pjvkz25lglyaqctlmsq9ugk80rmxt8yu0npdsj97sc7l4de", "bcrt1qrvf6024v9s50qhffe3t2fr2q9ckdhx2g6jz32chm2pp24ymgtr5qfrdmct", "bcrt1q6srfmra0ynypym35c7jvsxt2u4yrugeajq95kg2ps7lk6h2gaunsq9lzxn", "bcrt1qhl8rrzzcdpu7tcup3lcg7tge52sqvwy5fcv4k78v6kxtwmqf3v6qpvyjza", "bcrt1ql2elz9mhm9ll27ddpewhxs732xyl2fk2kpkqz9gdyh33wgcun4vstrd49k", ], ); } // - verify the valid_networks returned is correctly computed based on the keys present in the descriptor #[test] fn test_valid_networks() { let xprv = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap(); let path = bip32::DerivationPath::from_str("m/0").unwrap(); let desc_key = (xprv, path.clone()).to_descriptor_key().unwrap(); let (_desc, _key_map, valid_networks) = descriptor!(pkh(desc_key)).unwrap(); assert_eq!(valid_networks, [Testnet, Regtest].iter().cloned().collect()); let xprv = bip32::ExtendedPrivKey::from_str("xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jPPqjiChkVvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi").unwrap(); let path = bip32::DerivationPath::from_str("m/10/20/30/40").unwrap(); let desc_key = (xprv, path.clone()).to_descriptor_key().unwrap(); let (_desc, _key_map, valid_networks) = descriptor!(wpkh(desc_key)).unwrap(); assert_eq!(valid_networks, [Bitcoin].iter().cloned().collect()); } // - verify the key_maps are correctly merged together #[test] fn test_key_maps_merged() { let secp = Secp256k1::new(); let xprv1 = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap(); let path1 = bip32::DerivationPath::from_str("m/0").unwrap(); let desc_key1 = (xprv1, path1.clone()).to_descriptor_key().unwrap(); let xprv2 = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPegBHHnq7YEgM815dG24M2Jk5RVqipgDxF1HJ1tsnT815X5Fd5FRfMVUs8NZs9XCb6y9an8hRPThnhfwfXJ36intaekySHGF").unwrap(); let path2 = bip32::DerivationPath::from_str("m/2147483647'/0").unwrap(); let desc_key2 = (xprv2, path2.clone()).to_descriptor_key().unwrap(); let xprv3 = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPdZXrcHNLf5JAJWFAoJ2TrstMRdSKtEggz6PddbuSkvHKM9oKJyFgZV1B7rw8oChspxyYbtmEXYyg1AjfWbL3ho3XHDpHRZf").unwrap(); let path3 = bip32::DerivationPath::from_str("m/10/20/30/40").unwrap(); let desc_key3 = (xprv3, path3.clone()).to_descriptor_key().unwrap(); let (_desc, key_map, _valid_networks) = descriptor!(sh(wsh(multi 2,desc_key1,desc_key2,desc_key3))).unwrap(); assert_eq!(key_map.len(), 3); let desc_key1: DescriptorKey = (xprv1, path1.clone()).to_descriptor_key().unwrap(); let desc_key2: DescriptorKey = (xprv2, path2.clone()).to_descriptor_key().unwrap(); let desc_key3: DescriptorKey = (xprv3, path3.clone()).to_descriptor_key().unwrap(); let (key1, _key_map, _valid_networks) = desc_key1.extract(&secp).unwrap(); let (key2, _key_map, _valid_networks) = desc_key2.extract(&secp).unwrap(); let (key3, _key_map, _valid_networks) = desc_key3.extract(&secp).unwrap(); assert_eq!(key_map.get(&key1).unwrap().to_string(), "tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy/0/*"); assert_eq!(key_map.get(&key2).unwrap().to_string(), "tprv8ZgxMBicQKsPegBHHnq7YEgM815dG24M2Jk5RVqipgDxF1HJ1tsnT815X5Fd5FRfMVUs8NZs9XCb6y9an8hRPThnhfwfXJ36intaekySHGF/2147483647'/0/*"); assert_eq!(key_map.get(&key3).unwrap().to_string(), "tprv8ZgxMBicQKsPdZXrcHNLf5JAJWFAoJ2TrstMRdSKtEggz6PddbuSkvHKM9oKJyFgZV1B7rw8oChspxyYbtmEXYyg1AjfWbL3ho3XHDpHRZf/10/20/30/40/*"); } // - verify the ScriptContext is correctly validated (i.e. passing a type that only impl ToDescriptorKey to a pkh() descriptor should throw a compilation error #[test] fn test_script_context_validation() { // this compiles let xprv = bip32::ExtendedPrivKey::from_str("tprv8ZgxMBicQKsPcx5nBGsR63Pe8KnRUqmbJNENAfGftF3yuXoMMoVJJcYeUw5eVkm9WBPjWYt6HMWYJNesB5HaNVBaFc1M6dRjWSYnmewUMYy").unwrap(); let path = bip32::DerivationPath::from_str("m/0").unwrap(); let desc_key: DescriptorKey = (xprv, path.clone()).to_descriptor_key().unwrap(); let (desc, _key_map, _valid_networks) = descriptor!(pkh(desc_key)).unwrap(); assert_eq!(desc.to_string(), "pkh(tpubD6NzVbkrYhZ4WR7a4vY1VT3khMJMeAxVsfq9TBJyJWrNk247zCJtV7AWf6UJP7rAVsn8NNKdJi3gFyKPTmWZS9iukb91xbn2HbFSMQm2igY/0/*)"); // as expected this does not compile due to invalid context //let desc_key:DescriptorKey = (xprv, path.clone()).to_descriptor_key().unwrap(); //let (desc, _key_map, _valid_networks) = descriptor!(pkh(desc_key)).unwrap(); } }