use crate::{ collections::*, indexed_tx_graph::Indexer, miniscript::{Descriptor, DescriptorPublicKey}, spk_iter::BIP32_MAX_INDEX, DescriptorExt, DescriptorId, SpkIterator, SpkTxOutIndex, }; use bitcoin::{hashes::Hash, Amount, OutPoint, Script, SignedAmount, Transaction, TxOut, Txid}; use core::{ fmt::Debug, ops::{Bound, RangeBounds}, }; use crate::Append; /// Represents updates to the derivation index of a [`KeychainTxOutIndex`]. /// It maps each keychain `K` to a descriptor and its last revealed index. /// /// It can be applied to [`KeychainTxOutIndex`] with [`apply_changeset`]. [`ChangeSet] are /// monotone in that they will never decrease the revealed derivation index. /// /// [`KeychainTxOutIndex`]: crate::keychain::KeychainTxOutIndex /// [`apply_changeset`]: crate::keychain::KeychainTxOutIndex::apply_changeset #[derive(Clone, Debug, PartialEq)] #[cfg_attr( feature = "serde", derive(serde::Deserialize, serde::Serialize), serde( crate = "serde_crate", bound( deserialize = "K: Ord + serde::Deserialize<'de>", serialize = "K: Ord + serde::Serialize" ) ) )] #[must_use] pub struct ChangeSet { /// Contains the keychains that have been added and their respective descriptor pub keychains_added: BTreeMap>, /// Contains for each descriptor_id the last revealed index of derivation pub last_revealed: BTreeMap, } impl Append for ChangeSet { /// Append another [`ChangeSet`] into self. /// /// For each keychain in `keychains_added` in the given [`ChangeSet`]: /// If the keychain already exist with a different descriptor, we overwrite the old descriptor. /// /// For each `last_revealed` in the given [`ChangeSet`]: /// If the keychain already exists, increase the index when the other's index > self's index. fn append(&mut self, other: Self) { // We use `extend` instead of `BTreeMap::append` due to performance issues with `append`. // Refer to https://github.com/rust-lang/rust/issues/34666#issuecomment-675658420 self.keychains_added.extend(other.keychains_added); // for `last_revealed`, entries of `other` will take precedence ONLY if it is greater than // what was originally in `self`. for (desc_id, index) in other.last_revealed { use crate::collections::btree_map::Entry; match self.last_revealed.entry(desc_id) { Entry::Vacant(entry) => { entry.insert(index); } Entry::Occupied(mut entry) => { if *entry.get() < index { entry.insert(index); } } } } } /// Returns whether the changeset are empty. fn is_empty(&self) -> bool { self.last_revealed.is_empty() && self.keychains_added.is_empty() } } impl Default for ChangeSet { fn default() -> Self { Self { last_revealed: BTreeMap::default(), keychains_added: BTreeMap::default(), } } } const DEFAULT_LOOKAHEAD: u32 = 25; /// [`KeychainTxOutIndex`] controls how script pubkeys are revealed for multiple keychains, and /// indexes [`TxOut`]s with them. /// /// A single keychain is a chain of script pubkeys derived from a single [`Descriptor`]. Keychains /// are identified using the `K` generic. Script pubkeys are identified by the keychain that they /// are derived from `K`, as well as the derivation index `u32`. /// /// # Revealed script pubkeys /// /// Tracking how script pubkeys are revealed is useful for collecting chain data. For example, if /// the user has requested 5 script pubkeys (to receive money with), we only need to use those /// script pubkeys to scan for chain data. /// /// Call [`reveal_to_target`] or [`reveal_next_spk`] to reveal more script pubkeys. /// Call [`revealed_keychain_spks`] or [`revealed_spks`] to iterate through revealed script pubkeys. /// /// # Lookahead script pubkeys /// /// When an user first recovers a wallet (i.e. from a recovery phrase and/or descriptor), we will /// NOT have knowledge of which script pubkeys are revealed. So when we index a transaction or /// txout (using [`index_tx`]/[`index_txout`]) we scan the txouts against script pubkeys derived /// above the last revealed index. These additionally-derived script pubkeys are called the /// lookahead. /// /// The [`KeychainTxOutIndex`] is constructed with the `lookahead` and cannot be altered. The /// default `lookahead` count is 1000. Use [`new`] to set a custom `lookahead`. /// /// # Unbounded script pubkey iterator /// /// For script-pubkey-based chain sources (such as Electrum/Esplora), an initial scan is best done /// by iterating though derived script pubkeys one by one and requesting transaction histories for /// each script pubkey. We will stop after x-number of script pubkeys have empty histories. An /// unbounded script pubkey iterator is useful to pass to such a chain source. /// /// Call [`unbounded_spk_iter`] to get an unbounded script pubkey iterator for a given keychain. /// Call [`all_unbounded_spk_iters`] to get unbounded script pubkey iterators for all keychains. /// /// # Change sets /// /// Methods that can update the last revealed index or add keychains will return [`super::ChangeSet`] to report /// these changes. This can be persisted for future recovery. /// /// ## Synopsis /// /// ``` /// use bdk_chain::keychain::KeychainTxOutIndex; /// # use bdk_chain::{ miniscript::{Descriptor, DescriptorPublicKey} }; /// # use core::str::FromStr; /// /// // imagine our service has internal and external addresses but also addresses for users /// #[derive(Clone, Debug, PartialEq, Eq, Ord, PartialOrd)] /// enum MyKeychain { /// External, /// Internal, /// MyAppUser { /// user_id: u32 /// } /// } /// /// let mut txout_index = KeychainTxOutIndex::::default(); /// /// # let secp = bdk_chain::bitcoin::secp256k1::Secp256k1::signing_only(); /// # let (external_descriptor,_) = Descriptor::::parse_descriptor(&secp, "tr([73c5da0a/86'/0'/0']xprv9xgqHN7yz9MwCkxsBPN5qetuNdQSUttZNKw1dcYTV4mkaAFiBVGQziHs3NRSWMkCzvgjEe3n9xV8oYywvM8at9yRqyaZVz6TYYhX98VjsUk/0/*)").unwrap(); /// # let (internal_descriptor,_) = Descriptor::::parse_descriptor(&secp, "tr([73c5da0a/86'/0'/0']xprv9xgqHN7yz9MwCkxsBPN5qetuNdQSUttZNKw1dcYTV4mkaAFiBVGQziHs3NRSWMkCzvgjEe3n9xV8oYywvM8at9yRqyaZVz6TYYhX98VjsUk/1/*)").unwrap(); /// # let (descriptor_42, _) = Descriptor::::parse_descriptor(&secp, "tr([73c5da0a/86'/0'/0']xprv9xgqHN7yz9MwCkxsBPN5qetuNdQSUttZNKw1dcYTV4mkaAFiBVGQziHs3NRSWMkCzvgjEe3n9xV8oYywvM8at9yRqyaZVz6TYYhX98VjsUk/2/*)").unwrap(); /// let _ = txout_index.insert_descriptor(MyKeychain::External, external_descriptor); /// let _ = txout_index.insert_descriptor(MyKeychain::Internal, internal_descriptor); /// let _ = txout_index.insert_descriptor(MyKeychain::MyAppUser { user_id: 42 }, descriptor_42); /// /// let new_spk_for_user = txout_index.reveal_next_spk(&MyKeychain::MyAppUser{ user_id: 42 }); /// ``` /// /// # Non-recommend keychain to descriptor assignments /// /// A keychain (`K`) is used to identify a descriptor. However, the following keychain to descriptor /// arrangements result in behavior that is harder to reason about and is not recommended. /// /// ## Multiple keychains identifying the same descriptor /// /// Although a single keychain variant can only identify a single descriptor, multiple keychain /// variants can identify the same descriptor. /// /// If multiple keychains identify the same descriptor: /// 1. Methods that take in a keychain (such as [`reveal_next_spk`]) will work normally when any /// keychain (that identifies that descriptor) is passed in. /// 2. Methods that return data which associates with a descriptor (such as [`outpoints`], /// [`txouts`], [`unused_spks`], etc.) the method will return the highest-ranked keychain variant /// that identifies the descriptor. Rank is determined by the [`Ord`] implementation of the keychain /// type. /// /// This arrangement is not recommended since some methods will return a single keychain variant /// even though multiple keychain variants identify the same descriptor. /// /// ## Reassigning the descriptor of a single keychain /// /// Descriptors added to [`KeychainTxOutIndex`] are never removed. However, a keychain that /// identifies a descriptor can be reassigned to identify a different descriptor. This may result in /// a situation where a descriptor has no associated keychain(s), and relevant [`TxOut`]s, /// [`OutPoint`]s and [`Script`]s (of that descriptor) will not be return by [`KeychainTxOutIndex`]. /// Therefore, reassigning the descriptor of a single keychain is not recommended. /// /// [`Ord`]: core::cmp::Ord /// [`SpkTxOutIndex`]: crate::spk_txout_index::SpkTxOutIndex /// [`Descriptor`]: crate::miniscript::Descriptor /// [`reveal_to_target`]: KeychainTxOutIndex::reveal_to_target /// [`reveal_next_spk`]: KeychainTxOutIndex::reveal_next_spk /// [`revealed_keychain_spks`]: KeychainTxOutIndex::revealed_keychain_spks /// [`revealed_spks`]: KeychainTxOutIndex::revealed_spks /// [`index_tx`]: KeychainTxOutIndex::index_tx /// [`index_txout`]: KeychainTxOutIndex::index_txout /// [`new`]: KeychainTxOutIndex::new /// [`unbounded_spk_iter`]: KeychainTxOutIndex::unbounded_spk_iter /// [`all_unbounded_spk_iters`]: KeychainTxOutIndex::all_unbounded_spk_iters /// [`outpoints`]: KeychainTxOutIndex::outpoints /// [`txouts`]: KeychainTxOutIndex::txouts /// [`unused_spks`]: KeychainTxOutIndex::unused_spks #[derive(Clone, Debug)] pub struct KeychainTxOutIndex { inner: SpkTxOutIndex<(DescriptorId, u32)>, // keychain -> (descriptor, descriptor id) map keychains_to_descriptors: BTreeMap)>, // descriptor id -> keychain set // Because different keychains can have the same descriptor, we rank keychains by `Ord` so that // that the first keychain variant (according to `Ord`) has the highest rank. When associated // data (such as spks, outpoints) are returned with a keychain, we return the highest-ranked // keychain with it. descriptor_ids_to_keychain_set: HashMap>, // descriptor_id -> descriptor map // This is a "monotone" map, meaning that its size keeps growing, i.e., we never delete // descriptors from it. This is useful for revealing spks for descriptors that don't have // keychains associated. descriptor_ids_to_descriptors: BTreeMap>, // last revealed indexes last_revealed: BTreeMap, // lookahead settings for each keychain lookahead: u32, } impl Default for KeychainTxOutIndex { fn default() -> Self { Self::new(DEFAULT_LOOKAHEAD) } } impl Indexer for KeychainTxOutIndex { type ChangeSet = super::ChangeSet; fn index_txout(&mut self, outpoint: OutPoint, txout: &TxOut) -> Self::ChangeSet { match self.inner.scan_txout(outpoint, txout).cloned() { Some((descriptor_id, index)) => { // We want to reveal spks for descriptors that aren't tracked by any keychain, and // so we call reveal with descriptor_id let (_, changeset) = self.reveal_to_target_with_id(descriptor_id, index) .expect("descriptors are added in a monotone manner, there cannot be a descriptor id with no corresponding descriptor"); changeset } None => super::ChangeSet::default(), } } fn index_tx(&mut self, tx: &bitcoin::Transaction) -> Self::ChangeSet { let mut changeset = super::ChangeSet::::default(); for (op, txout) in tx.output.iter().enumerate() { changeset.append(self.index_txout(OutPoint::new(tx.compute_txid(), op as u32), txout)); } changeset } fn initial_changeset(&self) -> Self::ChangeSet { super::ChangeSet { keychains_added: self .keychains() .map(|(k, v)| (k.clone(), v.clone())) .collect(), last_revealed: self.last_revealed.clone(), } } fn apply_changeset(&mut self, changeset: Self::ChangeSet) { self.apply_changeset(changeset) } fn is_tx_relevant(&self, tx: &bitcoin::Transaction) -> bool { self.inner.is_relevant(tx) } } impl KeychainTxOutIndex { /// Construct a [`KeychainTxOutIndex`] with the given `lookahead`. /// /// The `lookahead` is the number of script pubkeys to derive and cache from the internal /// descriptors over and above the last revealed script index. Without a lookahead the index /// will miss outputs you own when processing transactions whose output script pubkeys lie /// beyond the last revealed index. In certain situations, such as when performing an initial /// scan of the blockchain during wallet import, it may be uncertain or unknown what the index /// of the last revealed script pubkey actually is. /// /// Refer to [struct-level docs](KeychainTxOutIndex) for more about `lookahead`. pub fn new(lookahead: u32) -> Self { Self { inner: SpkTxOutIndex::default(), keychains_to_descriptors: BTreeMap::new(), descriptor_ids_to_keychain_set: HashMap::new(), descriptor_ids_to_descriptors: BTreeMap::new(), last_revealed: BTreeMap::new(), lookahead, } } } /// Methods that are *re-exposed* from the internal [`SpkTxOutIndex`]. impl KeychainTxOutIndex { /// Get the highest-ranked keychain that is currently associated with the given `desc_id`. fn keychain_of_desc_id(&self, desc_id: &DescriptorId) -> Option<&K> { let keychains = self.descriptor_ids_to_keychain_set.get(desc_id)?; keychains.iter().next() } /// Return a reference to the internal [`SpkTxOutIndex`]. /// /// **WARNING:** The internal index will contain lookahead spks. Refer to /// [struct-level docs](KeychainTxOutIndex) for more about `lookahead`. pub fn inner(&self) -> &SpkTxOutIndex<(DescriptorId, u32)> { &self.inner } /// Get the set of indexed outpoints, corresponding to tracked keychains. pub fn outpoints(&self) -> impl DoubleEndedIterator + '_ { self.inner .outpoints() .iter() .filter_map(|((desc_id, index), op)| { let keychain = self.keychain_of_desc_id(desc_id)?; Some(((keychain.clone(), *index), *op)) }) } /// Iterate over known txouts that spend to tracked script pubkeys. pub fn txouts(&self) -> impl DoubleEndedIterator + '_ { self.inner.txouts().filter_map(|((desc_id, i), op, txo)| { let keychain = self.keychain_of_desc_id(desc_id)?; Some((keychain.clone(), *i, op, txo)) }) } /// Finds all txouts on a transaction that has previously been scanned and indexed. pub fn txouts_in_tx( &self, txid: Txid, ) -> impl DoubleEndedIterator { self.inner .txouts_in_tx(txid) .filter_map(|((desc_id, i), op, txo)| { let keychain = self.keychain_of_desc_id(desc_id)?; Some((keychain.clone(), *i, op, txo)) }) } /// Return the [`TxOut`] of `outpoint` if it has been indexed, and if it corresponds to a /// tracked keychain. /// /// The associated keychain and keychain index of the txout's spk is also returned. /// /// This calls [`SpkTxOutIndex::txout`] internally. pub fn txout(&self, outpoint: OutPoint) -> Option<(K, u32, &TxOut)> { let ((descriptor_id, index), txo) = self.inner.txout(outpoint)?; let keychain = self.keychain_of_desc_id(descriptor_id)?; Some((keychain.clone(), *index, txo)) } /// Return the script that exists under the given `keychain`'s `index`. /// /// This calls [`SpkTxOutIndex::spk_at_index`] internally. pub fn spk_at_index(&self, keychain: K, index: u32) -> Option<&Script> { let descriptor_id = self.keychains_to_descriptors.get(&keychain)?.0; self.inner.spk_at_index(&(descriptor_id, index)) } /// Returns the keychain and keychain index associated with the spk. /// /// This calls [`SpkTxOutIndex::index_of_spk`] internally. pub fn index_of_spk(&self, script: &Script) -> Option<(K, u32)> { let (desc_id, last_index) = self.inner.index_of_spk(script)?; let keychain = self.keychain_of_desc_id(desc_id)?; Some((keychain.clone(), *last_index)) } /// Returns whether the spk under the `keychain`'s `index` has been used. /// /// Here, "unused" means that after the script pubkey was stored in the index, the index has /// never scanned a transaction output with it. /// /// This calls [`SpkTxOutIndex::is_used`] internally. pub fn is_used(&self, keychain: K, index: u32) -> bool { let descriptor_id = self.keychains_to_descriptors.get(&keychain).map(|k| k.0); match descriptor_id { Some(descriptor_id) => self.inner.is_used(&(descriptor_id, index)), None => false, } } /// Marks the script pubkey at `index` as used even though the tracker hasn't seen an output /// with it. /// /// This only has an effect when the `index` had been added to `self` already and was unused. /// /// Returns whether the spk under the given `keychain` and `index` is successfully /// marked as used. Returns false either when there is no descriptor under the given /// keychain, or when the spk is already marked as used. /// /// This is useful when you want to reserve a script pubkey for something but don't want to add /// the transaction output using it to the index yet. Other callers will consider `index` on /// `keychain` used until you call [`unmark_used`]. /// /// This calls [`SpkTxOutIndex::mark_used`] internally. /// /// [`unmark_used`]: Self::unmark_used pub fn mark_used(&mut self, keychain: K, index: u32) -> bool { let descriptor_id = self.keychains_to_descriptors.get(&keychain).map(|k| k.0); match descriptor_id { Some(descriptor_id) => self.inner.mark_used(&(descriptor_id, index)), None => false, } } /// Undoes the effect of [`mark_used`]. Returns whether the `index` is inserted back into /// `unused`. /// /// Note that if `self` has scanned an output with this script pubkey, then this will have no /// effect. /// /// This calls [`SpkTxOutIndex::unmark_used`] internally. /// /// [`mark_used`]: Self::mark_used pub fn unmark_used(&mut self, keychain: K, index: u32) -> bool { let descriptor_id = self.keychains_to_descriptors.get(&keychain).map(|k| k.0); match descriptor_id { Some(descriptor_id) => self.inner.unmark_used(&(descriptor_id, index)), None => false, } } /// Computes the total value transfer effect `tx` has on the script pubkeys belonging to the /// keychains in `range`. Value is *sent* when a script pubkey in the `range` is on an input and /// *received* when it is on an output. For `sent` to be computed correctly, the output being /// spent must have already been scanned by the index. Calculating received just uses the /// [`Transaction`] outputs directly, so it will be correct even if it has not been scanned. pub fn sent_and_received( &self, tx: &Transaction, range: impl RangeBounds, ) -> (Amount, Amount) { self.inner .sent_and_received(tx, self.map_to_inner_bounds(range)) } /// Computes the net value that this transaction gives to the script pubkeys in the index and /// *takes* from the transaction outputs in the index. Shorthand for calling /// [`sent_and_received`] and subtracting sent from received. /// /// This calls [`SpkTxOutIndex::net_value`] internally. /// /// [`sent_and_received`]: Self::sent_and_received pub fn net_value(&self, tx: &Transaction, range: impl RangeBounds) -> SignedAmount { self.inner.net_value(tx, self.map_to_inner_bounds(range)) } } impl KeychainTxOutIndex { /// Return the map of the keychain to descriptors. pub fn keychains( &self, ) -> impl DoubleEndedIterator)> + ExactSizeIterator + '_ { self.keychains_to_descriptors .iter() .map(|(k, (_, d))| (k, d)) } /// Insert a descriptor with a keychain associated to it. /// /// Adding a descriptor means you will be able to derive new script pubkeys under it /// and the txout index will discover transaction outputs with those script pubkeys. /// /// When trying to add a keychain that already existed under a different descriptor, or a descriptor /// that already existed with a different keychain, the old keychain (or descriptor) will be /// overwritten. pub fn insert_descriptor( &mut self, keychain: K, descriptor: Descriptor, ) -> super::ChangeSet { let mut changeset = super::ChangeSet::::default(); let desc_id = descriptor.descriptor_id(); let old_desc = self .keychains_to_descriptors .insert(keychain.clone(), (desc_id, descriptor.clone())); if let Some((old_desc_id, _)) = old_desc { // nothing needs to be done if caller reinsterted the same descriptor under the same // keychain if old_desc_id == desc_id { return changeset; } // we should remove old descriptor that is associated with this keychain as the index // is designed to track one descriptor per keychain (however different keychains can // share the same descriptor) let _is_keychain_removed = self .descriptor_ids_to_keychain_set .get_mut(&old_desc_id) .expect("we must have already inserted this descriptor") .remove(&keychain); debug_assert!(_is_keychain_removed); } self.descriptor_ids_to_keychain_set .entry(desc_id) .or_default() .insert(keychain.clone()); self.descriptor_ids_to_descriptors .insert(desc_id, descriptor.clone()); self.replenish_lookahead(&keychain, self.lookahead); changeset .keychains_added .insert(keychain.clone(), descriptor); changeset } /// Gets the descriptor associated with the keychain. Returns `None` if the keychain doesn't /// have a descriptor associated with it. pub fn get_descriptor(&self, keychain: &K) -> Option<&Descriptor> { self.keychains_to_descriptors.get(keychain).map(|(_, d)| d) } /// Get the lookahead setting. /// /// Refer to [`new`] for more information on the `lookahead`. /// /// [`new`]: Self::new pub fn lookahead(&self) -> u32 { self.lookahead } /// Store lookahead scripts until `target_index` (inclusive). /// /// This does not change the global `lookahead` setting. pub fn lookahead_to_target(&mut self, keychain: &K, target_index: u32) { if let Some((next_index, _)) = self.next_index(keychain) { let temp_lookahead = (target_index + 1) .checked_sub(next_index) .filter(|&index| index > 0); if let Some(temp_lookahead) = temp_lookahead { self.replenish_lookahead(keychain, temp_lookahead); } } } fn replenish_lookahead(&mut self, keychain: &K, lookahead: u32) { let descriptor_opt = self.keychains_to_descriptors.get(keychain).cloned(); if let Some((descriptor_id, descriptor)) = descriptor_opt { let next_store_index = self.next_store_index(descriptor_id); let next_reveal_index = self.last_revealed.get(&descriptor_id).map_or(0, |v| *v + 1); for (new_index, new_spk) in SpkIterator::new_with_range( descriptor, next_store_index..next_reveal_index + lookahead, ) { let _inserted = self.inner.insert_spk((descriptor_id, new_index), new_spk); debug_assert!(_inserted, "replenish lookahead: must not have existing spk: keychain={:?}, lookahead={}, next_store_index={}, next_reveal_index={}", keychain, lookahead, next_store_index, next_reveal_index); } } } fn next_store_index(&self, descriptor_id: DescriptorId) -> u32 { self.inner() .all_spks() // This range is keeping only the spks with descriptor_id equal to // `descriptor_id`. We don't use filter here as range is more optimized. .range((descriptor_id, u32::MIN)..(descriptor_id, u32::MAX)) .last() .map_or(0, |((_, index), _)| *index + 1) } /// Get an unbounded spk iterator over a given `keychain`. Returns `None` if the provided /// keychain doesn't exist pub fn unbounded_spk_iter( &self, keychain: &K, ) -> Option>> { let descriptor = self.keychains_to_descriptors.get(keychain)?.1.clone(); Some(SpkIterator::new(descriptor)) } /// Get unbounded spk iterators for all keychains. pub fn all_unbounded_spk_iters( &self, ) -> BTreeMap>> { self.keychains_to_descriptors .iter() .map(|(k, (_, descriptor))| (k.clone(), SpkIterator::new(descriptor.clone()))) .collect() } /// Iterate over revealed spks of keychains in `range` pub fn revealed_spks( &self, range: impl RangeBounds, ) -> impl DoubleEndedIterator + Clone { self.keychains_to_descriptors .range(range) .flat_map(|(_, (descriptor_id, _))| { let start = Bound::Included((*descriptor_id, u32::MIN)); let end = match self.last_revealed.get(descriptor_id) { Some(last_revealed) => Bound::Included((*descriptor_id, *last_revealed)), None => Bound::Excluded((*descriptor_id, u32::MIN)), }; self.inner .all_spks() .range((start, end)) .map(|((descriptor_id, i), spk)| { ( self.keychain_of_desc_id(descriptor_id) .expect("must have keychain"), *i, spk.as_script(), ) }) }) } /// Iterate over revealed spks of the given `keychain`. pub fn revealed_keychain_spks<'a>( &'a self, keychain: &'a K, ) -> impl DoubleEndedIterator + 'a { self.revealed_spks(keychain..=keychain) .map(|(_, i, spk)| (i, spk)) } /// Iterate over revealed, but unused, spks of all keychains. pub fn unused_spks(&self) -> impl DoubleEndedIterator + Clone { self.keychains_to_descriptors.keys().flat_map(|keychain| { self.unused_keychain_spks(keychain) .map(|(i, spk)| (keychain.clone(), i, spk)) }) } /// Iterate over revealed, but unused, spks of the given `keychain`. /// Returns an empty iterator if the provided keychain doesn't exist. pub fn unused_keychain_spks( &self, keychain: &K, ) -> impl DoubleEndedIterator + Clone { let desc_id = self .keychains_to_descriptors .get(keychain) .map(|(desc_id, _)| *desc_id) // We use a dummy desc id if we can't find the real one in our map. In this way, // if this method was to be called with a non-existent keychain, we would return an // empty iterator .unwrap_or_else(|| DescriptorId::from_byte_array([0; 32])); let next_i = self.last_revealed.get(&desc_id).map_or(0, |&i| i + 1); self.inner .unused_spks((desc_id, u32::MIN)..(desc_id, next_i)) .map(|((_, i), spk)| (*i, spk)) } /// Get the next derivation index for `keychain`. The next index is the index after the last revealed /// derivation index. /// /// The second field in the returned tuple represents whether the next derivation index is new. /// There are two scenarios where the next derivation index is reused (not new): /// /// 1. The keychain's descriptor has no wildcard, and a script has already been revealed. /// 2. The number of revealed scripts has already reached 2^31 (refer to BIP-32). /// /// Not checking the second field of the tuple may result in address reuse. /// /// Returns None if the provided `keychain` doesn't exist. pub fn next_index(&self, keychain: &K) -> Option<(u32, bool)> { let (descriptor_id, descriptor) = self.keychains_to_descriptors.get(keychain)?; let last_index = self.last_revealed.get(descriptor_id).cloned(); // we can only get the next index if the wildcard exists. let has_wildcard = descriptor.has_wildcard(); Some(match last_index { // if there is no index, next_index is always 0. None => (0, true), // descriptors without wildcards can only have one index. Some(_) if !has_wildcard => (0, false), // derivation index must be < 2^31 (BIP-32). Some(index) if index > BIP32_MAX_INDEX => { unreachable!("index is out of bounds") } Some(index) if index == BIP32_MAX_INDEX => (index, false), // get the next derivation index. Some(index) => (index + 1, true), }) } /// Get the last derivation index that is revealed for each keychain. /// /// Keychains with no revealed indices will not be included in the returned [`BTreeMap`]. pub fn last_revealed_indices(&self) -> BTreeMap { self.last_revealed .iter() .filter_map(|(desc_id, index)| { let keychain = self.keychain_of_desc_id(desc_id)?; Some((keychain.clone(), *index)) }) .collect() } /// Get the last derivation index revealed for `keychain`. Returns None if the keychain doesn't /// exist, or if the keychain doesn't have any revealed scripts. pub fn last_revealed_index(&self, keychain: &K) -> Option { let descriptor_id = self.keychains_to_descriptors.get(keychain)?.0; self.last_revealed.get(&descriptor_id).cloned() } /// Convenience method to call [`Self::reveal_to_target`] on multiple keychains. pub fn reveal_to_target_multi( &mut self, keychains: &BTreeMap, ) -> ( BTreeMap>>, super::ChangeSet, ) { let mut changeset = super::ChangeSet::default(); let mut spks = BTreeMap::new(); for (keychain, &index) in keychains { if let Some((new_spks, new_changeset)) = self.reveal_to_target(keychain, index) { if !new_changeset.is_empty() { spks.insert(keychain.clone(), new_spks); changeset.append(new_changeset.clone()); } } } (spks, changeset) } /// Convenience method to call `reveal_to_target` with a descriptor_id instead of a keychain. /// This is useful for revealing spks of descriptors for which we don't have a keychain /// tracked. /// Refer to the `reveal_to_target` documentation for more. /// /// Returns None if the provided `descriptor_id` doesn't correspond to a tracked descriptor. fn reveal_to_target_with_id( &mut self, descriptor_id: DescriptorId, target_index: u32, ) -> Option<( SpkIterator>, super::ChangeSet, )> { let descriptor = self .descriptor_ids_to_descriptors .get(&descriptor_id)? .clone(); let has_wildcard = descriptor.has_wildcard(); let target_index = if has_wildcard { target_index } else { 0 }; let next_reveal_index = self .last_revealed .get(&descriptor_id) .map_or(0, |index| *index + 1); debug_assert!(next_reveal_index + self.lookahead >= self.next_store_index(descriptor_id)); // If the target_index is already revealed, we are done if next_reveal_index > target_index { return Some(( SpkIterator::new_with_range(descriptor, next_reveal_index..next_reveal_index), super::ChangeSet::default(), )); } // We range over the indexes that are not stored and insert their spks in the index. // Indexes from next_reveal_index to next_reveal_index + lookahead are already stored (due // to lookahead), so we only range from next_reveal_index + lookahead to target + lookahead let range = next_reveal_index + self.lookahead..=target_index + self.lookahead; for (new_index, new_spk) in SpkIterator::new_with_range(descriptor.clone(), range) { let _inserted = self.inner.insert_spk((descriptor_id, new_index), new_spk); debug_assert!(_inserted, "must not have existing spk"); debug_assert!( has_wildcard || new_index == 0, "non-wildcard descriptors must not iterate past index 0" ); } let _old_index = self.last_revealed.insert(descriptor_id, target_index); debug_assert!(_old_index < Some(target_index)); Some(( SpkIterator::new_with_range(descriptor, next_reveal_index..target_index + 1), super::ChangeSet { keychains_added: BTreeMap::new(), last_revealed: core::iter::once((descriptor_id, target_index)).collect(), }, )) } /// Reveals script pubkeys of the `keychain`'s descriptor **up to and including** the /// `target_index`. /// /// If the `target_index` cannot be reached (due to the descriptor having no wildcard and/or /// the `target_index` is in the hardened index range), this method will make a best-effort and /// reveal up to the last possible index. /// /// This returns an iterator of newly revealed indices (alongside their scripts) and a /// [`super::ChangeSet`], which reports updates to the latest revealed index. If no new script /// pubkeys are revealed, then both of these will be empty. /// /// Returns None if the provided `keychain` doesn't exist. pub fn reveal_to_target( &mut self, keychain: &K, target_index: u32, ) -> Option<( SpkIterator>, super::ChangeSet, )> { let descriptor_id = self.keychains_to_descriptors.get(keychain)?.0; self.reveal_to_target_with_id(descriptor_id, target_index) } /// Attempts to reveal the next script pubkey for `keychain`. /// /// Returns the derivation index of the revealed script pubkey, the revealed script pubkey and a /// [`super::ChangeSet`] which represents changes in the last revealed index (if any). /// Returns None if the provided keychain doesn't exist. /// /// When a new script cannot be revealed, we return the last revealed script and an empty /// [`super::ChangeSet`]. There are two scenarios when a new script pubkey cannot be derived: /// /// 1. The descriptor has no wildcard and already has one script revealed. /// 2. The descriptor has already revealed scripts up to the numeric bound. /// 3. There is no descriptor associated with the given keychain. pub fn reveal_next_spk( &mut self, keychain: &K, ) -> Option<((u32, &Script), super::ChangeSet)> { let descriptor_id = self.keychains_to_descriptors.get(keychain)?.0; let (next_index, _) = self.next_index(keychain).expect("We know keychain exists"); let changeset = self .reveal_to_target(keychain, next_index) .expect("We know keychain exists") .1; let script = self .inner .spk_at_index(&(descriptor_id, next_index)) .expect("script must already be stored"); Some(((next_index, script), changeset)) } /// Gets the next unused script pubkey in the keychain. I.e., the script pubkey with the lowest /// index that has not been used yet. /// /// This will derive and reveal a new script pubkey if no more unused script pubkeys exist. /// /// If the descriptor has no wildcard and already has a used script pubkey or if a descriptor /// has used all scripts up to the derivation bounds, then the last derived script pubkey will be /// returned. /// /// Returns None if the provided keychain doesn't exist. pub fn next_unused_spk( &mut self, keychain: &K, ) -> Option<((u32, &Script), super::ChangeSet)> { let need_new = self.unused_keychain_spks(keychain).next().is_none(); // this rather strange branch is needed because of some lifetime issues if need_new { self.reveal_next_spk(keychain) } else { Some(( self.unused_keychain_spks(keychain) .next() .expect("we already know next exists"), super::ChangeSet::default(), )) } } /// Iterate over all [`OutPoint`]s that have `TxOut`s with script pubkeys derived from /// `keychain`. pub fn keychain_outpoints<'a>( &'a self, keychain: &'a K, ) -> impl DoubleEndedIterator + 'a { self.keychain_outpoints_in_range(keychain..=keychain) .map(move |(_, i, op)| (i, op)) } /// Iterate over [`OutPoint`]s that have script pubkeys derived from keychains in `range`. pub fn keychain_outpoints_in_range<'a>( &'a self, range: impl RangeBounds + 'a, ) -> impl DoubleEndedIterator + 'a { let bounds = self.map_to_inner_bounds(range); self.inner .outputs_in_range(bounds) .map(move |((desc_id, i), op)| { let keychain = self .keychain_of_desc_id(desc_id) .expect("keychain must exist"); (keychain, *i, op) }) } fn map_to_inner_bounds( &self, bound: impl RangeBounds, ) -> impl RangeBounds<(DescriptorId, u32)> { let get_desc_id = |keychain| { self.keychains_to_descriptors .get(keychain) .map(|(desc_id, _)| *desc_id) .unwrap_or_else(|| DescriptorId::from_byte_array([0; 32])) }; let start = match bound.start_bound() { Bound::Included(keychain) => Bound::Included((get_desc_id(keychain), u32::MIN)), Bound::Excluded(keychain) => Bound::Excluded((get_desc_id(keychain), u32::MAX)), Bound::Unbounded => Bound::Unbounded, }; let end = match bound.end_bound() { Bound::Included(keychain) => Bound::Included((get_desc_id(keychain), u32::MAX)), Bound::Excluded(keychain) => Bound::Excluded((get_desc_id(keychain), u32::MIN)), Bound::Unbounded => Bound::Unbounded, }; (start, end) } /// Returns the highest derivation index of the `keychain` where [`KeychainTxOutIndex`] has /// found a [`TxOut`] with it's script pubkey. pub fn last_used_index(&self, keychain: &K) -> Option { self.keychain_outpoints(keychain).last().map(|(i, _)| i) } /// Returns the highest derivation index of each keychain that [`KeychainTxOutIndex`] has found /// a [`TxOut`] with it's script pubkey. pub fn last_used_indices(&self) -> BTreeMap { self.keychains_to_descriptors .iter() .filter_map(|(keychain, _)| { self.last_used_index(keychain) .map(|index| (keychain.clone(), index)) }) .collect() } /// Applies the derivation changeset to the [`KeychainTxOutIndex`], as specified in the /// [`ChangeSet::append`] documentation: /// - Extends the number of derived scripts per keychain /// - Adds new descriptors introduced /// - If a descriptor is introduced for a keychain that already had a descriptor, overwrites /// the old descriptor pub fn apply_changeset(&mut self, changeset: super::ChangeSet) { let ChangeSet { keychains_added, last_revealed, } = changeset; for (keychain, descriptor) in keychains_added { let _ = self.insert_descriptor(keychain, descriptor); } let last_revealed = last_revealed .into_iter() .filter_map(|(desc_id, index)| { let keychain = self.keychain_of_desc_id(&desc_id)?; Some((keychain.clone(), index)) }) .collect(); let _ = self.reveal_to_target_multi(&last_revealed); } }