Merge commit 'refs/pull/235/head' of github.com:bitcoindevkit/bdk

This commit is contained in:
Alekos Filini 2020-12-18 10:41:37 +01:00
commit 63aabe203f
No known key found for this signature in database
GPG Key ID: 5E8AFC3034FDFA4F
5 changed files with 300 additions and 118 deletions

View File

@ -29,10 +29,10 @@
macro_rules! impl_top_level_sh {
// disallow `sortedmulti` in `bare()`
( Bare, Bare, sortedmulti $( $inner:tt )* ) => {
compile_error!("`bare()` descriptors can't contain any `sortedmulti` operands");
compile_error!("`bare()` descriptors can't contain any `sortedmulti()` operands");
};
( Bare, Bare, sortedmulti_vec $( $inner:tt )* ) => {
compile_error!("`bare()` descriptors can't contain any `sortedmulti_vec` operands");
compile_error!("`bare()` descriptors can't contain any `sortedmulti_vec()` operands");
};
( $descriptor_variant:ident, $sortedmulti_variant:ident, sortedmulti $( $inner:tt )* ) => {
@ -72,16 +72,6 @@ macro_rules! impl_top_level_pk {
}};
}
#[doc(hidden)]
#[macro_export]
macro_rules! impl_modifier {
( $terminal_variant:ident, $( $inner:tt )* ) => {
$crate::fragment!($( $inner )*)
.map_err(|e| -> $crate::Error { e.into() })
.and_then(|(minisc, keymap, networks)| Ok(($crate::miniscript::Miniscript::from_ast($crate::miniscript::miniscript::decode::Terminal::$terminal_variant(std::sync::Arc::new(minisc)))?, keymap, networks)))
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! impl_leaf_opcode {
@ -139,9 +129,12 @@ macro_rules! impl_leaf_opcode_value_two {
#[doc(hidden)]
#[macro_export]
macro_rules! impl_node_opcode_two {
( $terminal_variant:ident, ( $( $a:tt )* ), ( $( $b:tt )* ) ) => {
$crate::fragment!($( $a )*)
.and_then(|a| Ok((a, $crate::fragment!($( $b )*)?)))
( $terminal_variant:ident, $( $inner:tt )* ) => ({
let inner = $crate::fragment_internal!( @t $( $inner )* );
let (a, b) = $crate::descriptor::dsl::TupleTwo::from(inner).flattened();
a
.and_then(|a| Ok((a, b?)))
.and_then(|((a_minisc, mut a_keymap, a_networks), (b_minisc, b_keymap, b_networks))| {
// join key_maps
a_keymap.extend(b_keymap.into_iter());
@ -151,15 +144,18 @@ macro_rules! impl_node_opcode_two {
std::sync::Arc::new(b_minisc),
))?, a_keymap, $crate::keys::merge_networks(&a_networks, &b_networks)))
})
};
});
}
#[doc(hidden)]
#[macro_export]
macro_rules! impl_node_opcode_three {
( $terminal_variant:ident, ( $( $a:tt )* ), ( $( $b:tt )* ), ( $( $c:tt )* ) ) => {
$crate::fragment!($( $a )*)
.and_then(|a| Ok((a, $crate::fragment!($( $b )*)?, $crate::fragment!($( $c )*)?)))
( $terminal_variant:ident, $( $inner:tt )* ) => {
let inner = $crate::fragment_internal!( @t $( $inner )* );
let (a, b, c) = $crate::descriptor::dsl::TupleThree::from(inner).flattened();
a
.and_then(|a| Ok((a, b?, c?)))
.and_then(|((a_minisc, mut a_keymap, a_networks), (b_minisc, b_keymap, b_networks), (c_minisc, c_keymap, c_networks))| {
// join key_maps
a_keymap.extend(b_keymap.into_iter());
@ -180,11 +176,11 @@ macro_rules! impl_node_opcode_three {
#[doc(hidden)]
#[macro_export]
macro_rules! impl_sortedmulti {
( sortedmulti_vec $thresh:expr, $keys:expr ) => ({
( sortedmulti_vec ( $thresh:expr, $keys:expr ) ) => ({
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
$crate::keys::make_sortedmulti_inner($thresh, $keys, &secp)
});
( sortedmulti $thresh:expr $(, $key:expr )+ ) => ({
( sortedmulti ( $thresh:expr $(, $key:expr )+ ) ) => ({
use $crate::keys::ToDescriptorKey;
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
@ -199,20 +195,103 @@ macro_rules! impl_sortedmulti {
}
#[doc(hidden)]
#[macro_export]
macro_rules! apply_modifier {
( $terminal_variant:ident, $inner:expr ) => {{
$inner
.map_err(|e| -> $crate::Error { e.into() })
.and_then(|(minisc, keymap, networks)| {
Ok((
$crate::miniscript::Miniscript::from_ast(
$crate::miniscript::miniscript::decode::Terminal::$terminal_variant(
std::sync::Arc::new(minisc),
),
)?,
keymap,
networks,
))
})
}};
( a: $inner:expr ) => {{
$crate::apply_modifier!(Alt, $inner)
}};
( s: $inner:expr ) => {{
$crate::apply_modifier!(Swap, $inner)
}};
( c: $inner:expr ) => {{
$crate::apply_modifier!(Check, $inner)
}};
( d: $inner:expr ) => {{
$crate::apply_modifier!(DupIf, $inner)
}};
( v: $inner:expr ) => {{
$crate::apply_modifier!(Verify, $inner)
}};
( j: $inner:expr ) => {{
$crate::apply_modifier!(NonZero, $inner)
}};
( n: $inner:expr ) => {{
$crate::apply_modifier!(ZeroNotEqual, $inner)
}};
// Modifiers expanded to other operators
( t: $inner:expr ) => {{
$inner.and_then(|(a_minisc, a_keymap, a_networks)| {
$crate::impl_leaf_opcode_value_two!(
AndV,
std::sync::Arc::new(a_minisc),
std::sync::Arc::new($crate::fragment!(true).unwrap().0)
)
.map(|(minisc, _, _)| (minisc, a_keymap, a_networks))
})
}};
( l: $inner:expr ) => {{
$inner.and_then(|(a_minisc, a_keymap, a_networks)| {
$crate::impl_leaf_opcode_value_two!(
OrI,
std::sync::Arc::new($crate::fragment!(false).unwrap().0),
std::sync::Arc::new(a_minisc)
)
.map(|(minisc, _, _)| (minisc, a_keymap, a_networks))
})
}};
( u: $inner:expr ) => {{
$inner.and_then(|(a_minisc, a_keymap, a_networks)| {
$crate::impl_leaf_opcode_value_two!(
OrI,
std::sync::Arc::new(a_minisc),
std::sync::Arc::new($crate::fragment!(false).unwrap().0)
)
.map(|(minisc, _, _)| (minisc, a_keymap, a_networks))
})
}};
}
/// Macro to write full descriptors with code
///
/// This macro expands to a `Result` of
/// [`DescriptorTemplateOut`](super::template::DescriptorTemplateOut) and [`Error`](crate::Error)
///
/// The syntax is very similar to the normal descriptor syntax, with the exception that modifiers
/// cannot be grouped together. For instance, a descriptor fragment like `sdv:older(144)` has to be
/// broken up to `s:d:v:older(144)`.
///
/// The `pk()`, `pk_k()` and `pk_h()` operands can take as argument any type that implements
/// [`ToDescriptorKey`]. This means that keys can also be written inline as strings, but in that
/// case they must be wrapped in quotes, which is another difference compared to the standard
/// descriptor syntax.
///
/// [`ToDescriptorKey`]: crate::keys::ToDescriptorKey
///
/// ## Example
///
/// Signature plus timelock, equivalent to: `sh(wsh(and_v(v:pk(...), older(...))))`
/// Signature plus timelock descriptor:
///
/// ```
/// # use std::str::FromStr;
/// let my_key = bitcoin::PublicKey::from_str("02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c")?;
/// let my_timelock = 50;
/// let (my_descriptor, my_keys_map, networks) = bdk::descriptor!(sh ( wsh ( and_v (+v pk my_key), ( older my_timelock ))))?;
/// let (my_descriptor, my_keys_map, networks) = bdk::descriptor!(sh(wsh(and_v(v:pk("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy"),older(50)))))?;
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
@ -232,16 +311,16 @@ macro_rules! impl_sortedmulti {
///
/// let (descriptor_a, key_map_a, networks) = bdk::descriptor! {
/// wsh (
/// thresh 2, (pk my_key_1), (+s pk my_key_2), (+s+d+v older my_timelock)
/// thresh(2, pk(my_key_1), s:pk(my_key_2), s:d:v:older(my_timelock))
/// )
/// }?;
///
/// let b_items = vec![
/// bdk::fragment!(pk my_key_1)?,
/// bdk::fragment!(+s pk my_key_2)?,
/// bdk::fragment!(+s+d+v older my_timelock)?,
/// bdk::fragment!(pk(my_key_1))?,
/// bdk::fragment!(s:pk(my_key_2))?,
/// bdk::fragment!(s:d:v:older(my_timelock))?,
/// ];
/// let (descriptor_b, mut key_map_b, networks) = bdk::descriptor!( wsh ( thresh_vec 2, b_items ) )?;
/// let (descriptor_b, mut key_map_b, networks) = bdk::descriptor!(wsh(thresh_vec(2,b_items)))?;
///
/// assert_eq!(descriptor_a, descriptor_b);
/// assert_eq!(key_map_a.len(), key_map_b.len());
@ -262,7 +341,7 @@ macro_rules! impl_sortedmulti {
///
/// let (descriptor, key_map, networks) = bdk::descriptor! {
/// wsh (
/// multi 2, my_key_1, my_key_2
/// multi(2, my_key_1, my_key_2)
/// )
/// }?;
/// # Ok::<(), Box<dyn std::error::Error>>(())
@ -290,13 +369,13 @@ macro_rules! descriptor {
( shwsh ( $( $minisc:tt )* ) ) => ({
$crate::impl_top_level_sh!(ShWsh, ShWshSortedMulti, $( $minisc )*)
});
( pk $key:expr ) => ({
( pk ( $key:expr ) ) => ({
$crate::impl_top_level_pk!(Pk, $crate::miniscript::Legacy, $key)
});
( pkh $key:expr ) => ({
( pkh ( $key:expr ) ) => ({
$crate::impl_top_level_pk!(Pkh,$crate::miniscript::Legacy, $key)
});
( wpkh $key:expr ) => ({
( wpkh ( $key:expr ) ) => ({
$crate::impl_top_level_pk!(Wpkh, $crate::miniscript::Segwitv0, $key)
});
( sh ( wpkh ( $key:expr ) ) ) => ({
@ -313,42 +392,120 @@ macro_rules! descriptor {
});
}
#[doc(hidden)]
pub struct TupleTwo<A, B> {
pub a: A,
pub b: B,
}
impl<A, B> TupleTwo<A, B> {
pub fn flattened(self) -> (A, B) {
(self.a, self.b)
}
}
impl<A, B> From<(A, (B, ()))> for TupleTwo<A, B> {
fn from((a, (b, _)): (A, (B, ()))) -> Self {
TupleTwo { a, b }
}
}
#[doc(hidden)]
pub struct TupleThree<A, B, C> {
pub a: A,
pub b: B,
pub c: C,
}
impl<A, B, C> TupleThree<A, B, C> {
pub fn flattened(self) -> (A, B, C) {
(self.a, self.b, self.c)
}
}
impl<A, B, C> From<(A, (B, (C, ())))> for TupleThree<A, B, C> {
fn from((a, (b, (c, _))): (A, (B, (C, ())))) -> Self {
TupleThree { a, b, c }
}
}
#[doc(hidden)]
#[macro_export]
macro_rules! fragment_internal {
// The @v prefix is used to parse a sequence of operands and return them in a vector. This is
// used by operands that take a variable number of arguments, like `thresh()` and `multi()`.
( @v $op:ident ( $( $args:tt )* ) $( $tail:tt )* ) => ({
let mut v = vec![$crate::fragment!( $op ( $( $args )* ) )];
v.append(&mut $crate::fragment_internal!( @v $( $tail )* ));
v
});
// Match modifiers
( @v $modif:tt : $( $tail:tt )* ) => ({
let mut v = $crate::fragment_internal!( @v $( $tail )* );
let first = v.drain(..1).next().unwrap();
let first = $crate::apply_modifier!($modif:first);
let mut v_final = vec![first];
v_final.append(&mut v);
v_final
});
// Remove commas between operands
( @v , $( $tail:tt )* ) => ({
$crate::fragment_internal!( @v $( $tail )* )
});
( @v ) => ({
vec![]
});
// The @t prefix is used to parse a sequence of operands and return them in a tuple. This
// allows checking at compile-time the number of arguments passed to an operand. For this
// reason it's used by `and_*()`, `or_*()`, etc.
//
// Unfortunately, due to the fact that concatenating tuples is pretty hard, the final result
// adds in the first spot the parsed operand and in the second spot the result of parsing
// all the following ones. For two operands the type then corresponds to: (X, (X, ())). For
// three operands it's (X, (X, (X, ()))), etc.
//
// To check that the right number of arguments has been passed we can "cast" those tuples to
// more convenient structures like `TupleTwo`. If the conversion succedes, the right number of
// args was passed. Otherwise the compilation fails entirely.
( @t $op:ident ( $( $args:tt )* ) $( $tail:tt )* ) => ({
($crate::fragment!( $op ( $( $args )* ) ), $crate::fragment_internal!( @t $( $tail )* ))
});
// Match modifiers
( @t $modif:tt : $( $tail:tt )* ) => ({
let (first, tail) = $crate::fragment_internal!( @t $( $tail )* );
($crate::apply_modifier!($modif:first), tail)
});
// Remove commas between operands
( @t , $( $tail:tt )* ) => ({
$crate::fragment_internal!( @t $( $tail )* )
});
( @t ) => ({
()
});
// Fallback to calling `fragment!()`
( $( $tokens:tt )* ) => ({
$crate::fragment!($( $tokens )*)
});
}
/// Macro to write descriptor fragments with code
///
/// This macro will be expanded to an object of type `Result<(Miniscript<DescriptorPublicKey, _>, KeyMap, ValidNetworks), Error>`. It allows writing
/// fragments of larger descriptors that can be pieced together using `fragment!(thresh_vec ...)`.
/// fragments of larger descriptors that can be pieced together using `fragment!(thresh_vec(m, ...))`.
///
/// The syntax to write macro fragment is the same as documented for the [`descriptor`] macro.
#[macro_export]
macro_rules! fragment {
// Modifiers
( +a $( $inner:tt )* ) => ({
$crate::impl_modifier!(Alt, $( $inner )*)
});
( +s $( $inner:tt )* ) => ({
$crate::impl_modifier!(Swap, $( $inner )*)
});
( +c $( $inner:tt )* ) => ({
$crate::impl_modifier!(Check, $( $inner )*)
});
( +d $( $inner:tt )* ) => ({
$crate::impl_modifier!(DupIf, $( $inner )*)
});
( +v $( $inner:tt )* ) => ({
$crate::impl_modifier!(Verify, $( $inner )*)
});
( +j $( $inner:tt )* ) => ({
$crate::impl_modifier!(NonZero, $( $inner )*)
});
( +n $( $inner:tt )* ) => ({
$crate::impl_modifier!(ZeroNotEqual, $( $inner )*)
});
( +t $( $inner:tt )* ) => ({
$crate::fragment!(and_v ( $( $inner )* ), ( true ) )
});
( +l $( $inner:tt )* ) => ({
$crate::fragment!(or_i ( false ), ( $( $inner )* ) )
});
( +u $( $inner:tt )* ) => ({
$crate::fragment!(or_i ( $( $inner )* ), ( false ) )
( $modif:tt : $( $tail:tt )* ) => ({
let op = $crate::fragment!( $( $tail )* );
$crate::apply_modifier!($modif:op)
});
// Miniscript
@ -358,56 +515,56 @@ macro_rules! fragment {
( false ) => ({
$crate::impl_leaf_opcode!(False)
});
( pk_k $key:expr ) => ({
( pk_k ( $key:expr ) ) => ({
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
$crate::keys::make_pk($key, &secp)
});
( pk $key:expr ) => ({
$crate::fragment!(+c pk_k $key)
( pk ( $key:expr ) ) => ({
$crate::fragment!(c:pk_k ( $key ))
});
( pk_h $key_hash:expr ) => ({
( pk_h ( $key_hash:expr ) ) => ({
$crate::impl_leaf_opcode_value!(PkH, $key_hash)
});
( after $value:expr ) => ({
( after ( $value:expr ) ) => ({
$crate::impl_leaf_opcode_value!(After, $value)
});
( older $value:expr ) => ({
( older ( $value:expr ) ) => ({
$crate::impl_leaf_opcode_value!(Older, $value)
});
( sha256 $hash:expr ) => ({
( sha256 ( $hash:expr ) ) => ({
$crate::impl_leaf_opcode_value!(Sha256, $hash)
});
( hash256 $hash:expr ) => ({
( hash256 ( $hash:expr ) ) => ({
$crate::impl_leaf_opcode_value!(Hash256, $hash)
});
( ripemd160 $hash:expr ) => ({
( ripemd160 ( $hash:expr ) ) => ({
$crate::impl_leaf_opcode_value!(Ripemd160, $hash)
});
( hash160 $hash:expr ) => ({
( hash160 ( $hash:expr ) ) => ({
$crate::impl_leaf_opcode_value!(Hash160, $hash)
});
( and_v ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
$crate::impl_node_opcode_two!(AndV, ( $( $a )* ), ( $( $b )* ))
( and_v ( $( $inner:tt )* ) ) => ({
$crate::impl_node_opcode_two!(AndV, $( $inner )*)
});
( and_b ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
$crate::impl_node_opcode_two!(AndB, ( $( $a )* ), ( $( $b )* ))
( and_b ( $( $inner:tt )* ) ) => ({
$crate::impl_node_opcode_two!(AndB, $( $inner )*)
});
( and_or ( $( $a:tt )* ), ( $( $b:tt )* ), ( $( $c:tt )* ) ) => ({
$crate::impl_node_opcode_three!(AndOr, ( $( $a )* ), ( $( $b )* ), ( $( $c )* ))
( and_or ( $( $inner:tt )* ) ) => ({
$crate::impl_node_opcode_three!(AndOr, $( $inner )*)
});
( or_b ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
$crate::impl_node_opcode_two!(OrB, ( $( $a )* ), ( $( $b )* ))
( or_b ( $( $inner:tt )* ) ) => ({
$crate::impl_node_opcode_two!(OrB, $( $inner )*)
});
( or_d ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
$crate::impl_node_opcode_two!(OrD, ( $( $a )* ), ( $( $b )* ))
( or_d ( $( $inner:tt )* ) ) => ({
$crate::impl_node_opcode_two!(OrD, $( $inner )*)
});
( or_c ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
$crate::impl_node_opcode_two!(OrC, ( $( $a )* ), ( $( $b )* ))
( or_c ( $( $inner:tt )* ) ) => ({
$crate::impl_node_opcode_two!(OrC, $( $inner )*)
});
( or_i ( $( $a:tt )* ), ( $( $b:tt )* ) ) => ({
$crate::impl_node_opcode_two!(OrI, ( $( $a )* ), ( $( $b )* ))
( or_i ( $( $inner:tt )* ) ) => ({
$crate::impl_node_opcode_two!(OrI, $( $inner )*)
});
( thresh_vec $thresh:expr, $items:expr ) => ({
( thresh_vec ( $thresh:expr, $items:expr ) ) => ({
use $crate::miniscript::descriptor::KeyMap;
let (items, key_maps_networks): (Vec<_>, Vec<_>) = $items.into_iter().map(|(a, b, c)| (a, (b, c))).unzip();
@ -423,19 +580,16 @@ macro_rules! fragment {
$crate::impl_leaf_opcode_value_two!(Thresh, $thresh, items)
.map(|(minisc, _, _)| (minisc, key_maps, valid_networks))
});
( thresh $thresh:expr $(, ( $( $item:tt )* ) )+ ) => ({
let mut items = vec![];
$(
items.push($crate::fragment!($( $item )*));
)*
( thresh ( $thresh:expr, $( $inner:tt )* ) ) => ({
let items = $crate::fragment_internal!( @v $( $inner )* );
items.into_iter().collect::<Result<Vec<_>, _>>()
.and_then(|items| $crate::fragment!(thresh_vec $thresh, items))
.and_then(|items| $crate::fragment!(thresh_vec($thresh, items)))
});
( multi_vec $thresh:expr, $keys:expr ) => ({
( multi_vec ( $thresh:expr, $keys:expr ) ) => ({
$crate::keys::make_multi($thresh, $keys)
});
( multi $thresh:expr $(, $key:expr )+ ) => ({
( multi ( $thresh:expr $(, $key:expr )+ ) ) => ({
use $crate::keys::ToDescriptorKey;
let secp = $crate::bitcoin::secp256k1::Secp256k1::new();
@ -449,10 +603,10 @@ macro_rules! fragment {
});
// `sortedmulti()` is handled separately
( sortedmulti $( $inner:tt )* ) => ({
( sortedmulti ( $( $inner:tt )* ) ) => ({
compile_error!("`sortedmulti` can only be used as the root operand of a descriptor");
});
( sortedmulti_vec $( $inner:tt )* ) => ({
( sortedmulti_vec ( $( $inner:tt )* ) ) => ({
compile_error!("`sortedmulti_vec` can only be used as the root operand of a descriptor");
});
}
@ -471,6 +625,7 @@ mod test {
use bitcoin::network::constants::Network::{Bitcoin, Regtest, Testnet};
use bitcoin::util::bip32;
use bitcoin::util::bip32::ChildNumber;
use bitcoin::PrivateKey;
// test the descriptor!() macro
@ -522,7 +677,7 @@ mod test {
.unwrap();
check(
descriptor!(bare(multi 1,pubkey1,pubkey2)),
descriptor!(bare(multi(1,pubkey1,pubkey2))),
false,
true,
&["512103a34b99f22c790c4e36b2b3c2c35a36db06226e41c692fc82b8b56ac1c540c5bd21032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af52ae"],
@ -540,7 +695,7 @@ mod test {
&["muZpTpBYhxmRFuCjLc7C6BBDF32C8XVJUi"],
);
check(
descriptor!(sh(multi 1,pubkey1,pubkey2)),
descriptor!(sh(multi(1, pubkey1, pubkey2))),
false,
true,
&["2MymURoV1bzuMnWMGiXzyomDkeuxXY7Suey"],
@ -571,13 +726,13 @@ mod test {
&["2N5LiC3CqzxDamRTPG1kiNv1FpNJQ7x28sb"],
);
check(
descriptor!(wsh(multi 1,pubkey1,pubkey2)),
descriptor!(wsh(multi(1, pubkey1, pubkey2))),
true,
true,
&["bcrt1qgw8jvv2hsrvjfa6q66rk6har7d32lrqm5unnf5cl63q9phxfvgps5fyfqe"],
);
check(
descriptor!(sh(wsh(multi 1,pubkey1,pubkey2))),
descriptor!(sh(wsh(multi(1, pubkey1, pubkey2)))),
true,
true,
&["2NCidRJysy7apkmE6JF5mLLaJFkrN3Ub9iy"],
@ -618,7 +773,7 @@ mod test {
let desc_key2 = (xprv, path2).to_descriptor_key().unwrap();
check(
descriptor!(sh(multi 1,desc_key1,desc_key2)),
descriptor!(sh(multi(1, desc_key1, desc_key2))),
false,
false,
&[
@ -662,7 +817,7 @@ mod test {
let desc_key1 = (xprv, path.clone()).to_descriptor_key().unwrap();
let desc_key2 = (xprv, path2.clone()).to_descriptor_key().unwrap();
check(
descriptor!(wsh(multi 1,desc_key1,desc_key2)),
descriptor!(wsh(multi(1, desc_key1, desc_key2))),
true,
false,
&[
@ -675,7 +830,7 @@ mod test {
let desc_key1 = (xprv, path).to_descriptor_key().unwrap();
let desc_key2 = (xprv, path2).to_descriptor_key().unwrap();
check(
descriptor!(sh(wsh(multi 1,desc_key1,desc_key2))),
descriptor!(sh(wsh(multi(1, desc_key1, desc_key2)))),
true,
false,
&[
@ -698,7 +853,7 @@ mod test {
let desc_key2 = (key_2, path_2);
check(
descriptor!(sh(sortedmulti 1, desc_key1.clone(), desc_key2.clone())),
descriptor!(sh(sortedmulti(1, desc_key1.clone(), desc_key2.clone()))),
false,
false,
&[
@ -712,7 +867,11 @@ mod test {
);
check(
descriptor!(sh(wsh(sortedmulti 1, desc_key1.clone(), desc_key2.clone()))),
descriptor!(sh(wsh(sortedmulti(
1,
desc_key1.clone(),
desc_key2.clone()
)))),
true,
false,
&[
@ -726,7 +885,7 @@ mod test {
);
check(
descriptor!(wsh(sortedmulti_vec 1, vec![desc_key1, desc_key2])),
descriptor!(wsh(sortedmulti_vec(1, vec![desc_key1, desc_key2]))),
true,
false,
&[
@ -776,7 +935,7 @@ mod test {
let desc_key3 = (xprv3, path3.clone()).to_descriptor_key().unwrap();
let (_desc, key_map, _valid_networks) =
descriptor!(sh(wsh(multi 2,desc_key1,desc_key2,desc_key3))).unwrap();
descriptor!(sh(wsh(multi(2, desc_key1, desc_key2, desc_key3)))).unwrap();
assert_eq!(key_map.len(), 3);
let desc_key1: DescriptorKey<Segwitv0> =
@ -809,4 +968,14 @@ mod test {
//let desc_key:DescriptorKey<Segwitv0> = (xprv, path.clone()).to_descriptor_key().unwrap();
//let (desc, _key_map, _valid_networks) = descriptor!(pkh(desc_key)).unwrap();
}
#[test]
fn test_dsl_modifiers() {
let private_key =
PrivateKey::from_wif("cSQPHDBwXGjVzWRqAHm6zfvQhaTuj1f2bFH58h55ghbjtFwvmeXR").unwrap();
let (descriptor, _, _) =
descriptor!(wsh(thresh(2,d:v:older(1),s:pk(private_key),s:pk(private_key)))).unwrap();
assert_eq!(descriptor.to_string(), "wsh(thresh(2,dv:older(1),s:pk(02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c),s:pk(02e96fe52ef0e22d2f131dd425ce1893073a3c6ad20e8cac36726393dfb4856a4c)))")
}
}

View File

@ -42,7 +42,8 @@ pub use miniscript::{
};
pub mod checksum;
mod dsl;
#[doc(hidden)]
pub mod dsl;
pub mod error;
pub mod policy;
pub mod template;

View File

@ -1018,7 +1018,7 @@ mod test {
fn test_extract_policy_for_sh_multi_complete_1of2() {
let (_prvkey0, pubkey0, fingerprint0) = setup_keys(TPRV0_STR);
let (prvkey1, _pubkey1, fingerprint1) = setup_keys(TPRV1_STR);
let desc = descriptor!(sh(multi 1, pubkey0, prvkey1)).unwrap();
let desc = descriptor!(sh(multi(1, pubkey0, prvkey1))).unwrap();
let (wallet_desc, keymap) = desc.to_wallet_descriptor(Network::Testnet).unwrap();
let signers_container = Arc::new(SignersContainer::from(keymap));
let policy = wallet_desc
@ -1046,7 +1046,7 @@ mod test {
fn test_extract_policy_for_sh_multi_complete_2of2() {
let (prvkey0, _pubkey0, fingerprint0) = setup_keys(TPRV0_STR);
let (prvkey1, _pubkey1, fingerprint1) = setup_keys(TPRV1_STR);
let desc = descriptor!(sh(multi 2, prvkey0, prvkey1)).unwrap();
let desc = descriptor!(sh(multi(2, prvkey0, prvkey1))).unwrap();
let (wallet_desc, keymap) = desc.to_wallet_descriptor(Network::Testnet).unwrap();
let signers_container = Arc::new(SignersContainer::from(keymap));
let policy = wallet_desc
@ -1111,7 +1111,7 @@ mod test {
fn test_extract_policy_for_single_wsh_multi_complete_1of2() {
let (_prvkey0, pubkey0, fingerprint0) = setup_keys(TPRV0_STR);
let (prvkey1, _pubkey1, fingerprint1) = setup_keys(TPRV1_STR);
let desc = descriptor!(sh(multi 1, pubkey0, prvkey1)).unwrap();
let desc = descriptor!(sh(multi(1, pubkey0, prvkey1))).unwrap();
let (wallet_desc, keymap) = desc.to_wallet_descriptor(Network::Testnet).unwrap();
let single_key = wallet_desc.derive(ChildNumber::from_normal_idx(0).unwrap());
let signers_container = Arc::new(SignersContainer::from(keymap));
@ -1143,9 +1143,12 @@ mod test {
let (prvkey0, _pubkey0, _fingerprint0) = setup_keys(TPRV0_STR);
let (_prvkey1, pubkey1, _fingerprint1) = setup_keys(TPRV1_STR);
let sequence = 50;
let desc = descriptor!(wsh (
thresh 2, (pk prvkey0), (+s pk pubkey1), (+s+d+v older sequence)
))
let desc = descriptor!(wsh(thresh(
2,
pk(prvkey0),
s: pk(pubkey1),
s: d: v: older(sequence)
)))
.unwrap();
let (wallet_desc, keymap) = desc.to_wallet_descriptor(Network::Testnet).unwrap();

View File

@ -28,6 +28,7 @@ use std::any::TypeId;
use std::collections::HashSet;
use std::marker::PhantomData;
use std::ops::Deref;
use std::str::FromStr;
use bitcoin::secp256k1;
@ -667,6 +668,14 @@ impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for DescriptorSecretKey {
}
}
impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for &'_ str {
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
DescriptorSecretKey::from_str(self)
.map_err(|e| KeyError::Message(e.to_string()))?
.to_descriptor_key()
}
}
impl<Ctx: ScriptContext> ToDescriptorKey<Ctx> for PrivateKey {
fn to_descriptor_key(self) -> Result<DescriptorKey<Ctx>, KeyError> {
DescriptorSecretKey::SinglePriv(DescriptorSinglePriv {

View File

@ -560,7 +560,7 @@ mod signers_container_tests {
fn signers_with_same_ordering() {
let (prvkey1, _, _) = setup_keys(TPRV0_STR);
let (prvkey2, _, _) = setup_keys(TPRV1_STR);
let desc = descriptor!(sh(multi 2, prvkey1, prvkey2)).unwrap();
let desc = descriptor!(sh(multi(2, prvkey1, prvkey2))).unwrap();
let (_, keymap) = desc.to_wallet_descriptor(Network::Testnet).unwrap();
let signers = SignersContainer::from(keymap);