bdk/crates/electrum/src/bdk_electrum_client.rs

583 lines
22 KiB
Rust
Raw Normal View History

use bdk_chain::{
bitcoin::{OutPoint, ScriptBuf, Transaction, Txid},
collections::{BTreeMap, HashMap, HashSet},
local_chain::CheckPoint,
spk_client::{FullScanRequest, FullScanResult, SyncRequest, SyncResult},
tx_graph::TxGraph,
BlockId, ConfirmationHeightAnchor, ConfirmationTimeHeightAnchor,
};
use core::str::FromStr;
use electrum_client::{ElectrumApi, Error, HeaderNotification};
use std::sync::{Arc, Mutex};
/// We include a chain suffix of a certain length for the purpose of robustness.
const CHAIN_SUFFIX_LENGTH: u32 = 8;
/// Wrapper around an [`electrum_client::ElectrumApi`] which includes an internal in-memory
/// transaction cache to avoid re-fetching already downloaded transactions.
#[derive(Debug)]
pub struct BdkElectrumClient<E> {
/// The internal [`electrum_client::ElectrumApi`]
pub inner: E,
/// The transaction cache
tx_cache: Mutex<HashMap<Txid, Arc<Transaction>>>,
}
impl<E: ElectrumApi> BdkElectrumClient<E> {
/// Creates a new bdk client from a [`electrum_client::ElectrumApi`]
pub fn new(client: E) -> Self {
Self {
inner: client,
tx_cache: Default::default(),
}
}
/// Inserts transactions into the transaction cache so that the client will not fetch these
/// transactions.
pub fn populate_tx_cache<A>(&self, tx_graph: impl AsRef<TxGraph<A>>) {
let txs = tx_graph
.as_ref()
.full_txs()
.map(|tx_node| (tx_node.txid, tx_node.tx));
let mut tx_cache = self.tx_cache.lock().unwrap();
for (txid, tx) in txs {
tx_cache.insert(txid, tx);
}
}
/// Fetch transaction of given `txid`.
///
/// If it hits the cache it will return the cached version and avoid making the request.
pub fn fetch_tx(&self, txid: Txid) -> Result<Arc<Transaction>, Error> {
let tx_cache = self.tx_cache.lock().unwrap();
if let Some(tx) = tx_cache.get(&txid) {
return Ok(Arc::clone(tx));
}
drop(tx_cache);
let tx = Arc::new(self.inner.transaction_get(&txid)?);
self.tx_cache.lock().unwrap().insert(txid, Arc::clone(&tx));
Ok(tx)
}
/// Full scan the keychain scripts specified with the blockchain (via an Electrum client) and
/// returns updates for [`bdk_chain`] data structures.
///
/// - `request`: struct with data required to perform a spk-based blockchain client full scan,
/// see [`FullScanRequest`]
/// - `stop_gap`: the full scan for each keychain stops after a gap of script pubkeys with no
/// associated transactions
/// - `batch_size`: specifies the max number of script pubkeys to request for in a single batch
/// request
/// - `fetch_prev_txouts`: specifies whether or not we want previous `TxOut`s for fee
pub fn full_scan<K: Ord + Clone>(
&self,
request: FullScanRequest<K>,
stop_gap: usize,
batch_size: usize,
fetch_prev_txouts: bool,
) -> Result<ElectrumFullScanResult<K>, Error> {
let mut request_spks = request.spks_by_keychain;
// We keep track of already-scanned spks just in case a reorg happens and we need to do a
// rescan. We need to keep track of this as iterators in `keychain_spks` are "unbounded" so
// cannot be collected. In addition, we keep track of whether an spk has an active tx
// history for determining the `last_active_index`.
// * key: (keychain, spk_index) that identifies the spk.
// * val: (script_pubkey, has_tx_history).
let mut scanned_spks = BTreeMap::<(K, u32), (ScriptBuf, bool)>::new();
let update = loop {
let (tip, _) = construct_update_tip(&self.inner, request.chain_tip.clone())?;
let mut graph_update = TxGraph::<ConfirmationHeightAnchor>::default();
let cps = tip
.iter()
.take(10)
.map(|cp| (cp.height(), cp))
.collect::<BTreeMap<u32, CheckPoint>>();
if !request_spks.is_empty() {
if !scanned_spks.is_empty() {
scanned_spks.append(
&mut self.populate_with_spks(
&cps,
&mut graph_update,
&mut scanned_spks
.iter()
.map(|(i, (spk, _))| (i.clone(), spk.clone())),
stop_gap,
batch_size,
)?,
);
}
for (keychain, keychain_spks) in &mut request_spks {
scanned_spks.extend(
self.populate_with_spks(
&cps,
&mut graph_update,
keychain_spks,
stop_gap,
batch_size,
)?
.into_iter()
.map(|(spk_i, spk)| ((keychain.clone(), spk_i), spk)),
);
}
}
// check for reorgs during scan process
let server_blockhash = self.inner.block_header(tip.height() as usize)?.block_hash();
if tip.hash() != server_blockhash {
continue; // reorg
}
// Fetch previous `TxOut`s for fee calculation if flag is enabled.
if fetch_prev_txouts {
self.fetch_prev_txout(&mut graph_update)?;
}
let chain_update = tip;
let keychain_update = request_spks
.into_keys()
.filter_map(|k| {
scanned_spks
.range((k.clone(), u32::MIN)..=(k.clone(), u32::MAX))
.rev()
.find(|(_, (_, active))| *active)
.map(|((_, i), _)| (k, *i))
})
.collect::<BTreeMap<_, _>>();
break FullScanResult {
graph_update,
chain_update,
last_active_indices: keychain_update,
};
};
Ok(ElectrumFullScanResult(update))
}
/// Sync a set of scripts with the blockchain (via an Electrum client) for the data specified
/// and returns updates for [`bdk_chain`] data structures.
///
/// - `request`: struct with data required to perform a spk-based blockchain client sync,
/// see [`SyncRequest`]
/// - `batch_size`: specifies the max number of script pubkeys to request for in a single batch
/// request
/// - `fetch_prev_txouts`: specifies whether or not we want previous `TxOut`s for fee
/// calculation
///
/// If the scripts to sync are unknown, such as when restoring or importing a keychain that
/// may include scripts that have been used, use [`full_scan`] with the keychain.
///
/// [`full_scan`]: Self::full_scan
pub fn sync(
&self,
request: SyncRequest,
batch_size: usize,
fetch_prev_txouts: bool,
) -> Result<ElectrumSyncResult, Error> {
let full_scan_req = FullScanRequest::from_chain_tip(request.chain_tip.clone())
.set_spks_for_keychain((), request.spks.enumerate().map(|(i, spk)| (i as u32, spk)));
let mut full_scan_res = self
.full_scan(full_scan_req, usize::MAX, batch_size, false)?
.with_confirmation_height_anchor();
let (tip, _) = construct_update_tip(&self.inner, request.chain_tip)?;
let cps = tip
.iter()
.take(10)
.map(|cp| (cp.height(), cp))
.collect::<BTreeMap<u32, CheckPoint>>();
self.populate_with_txids(&cps, &mut full_scan_res.graph_update, request.txids)?;
self.populate_with_outpoints(&cps, &mut full_scan_res.graph_update, request.outpoints)?;
// Fetch previous `TxOut`s for fee calculation if flag is enabled.
if fetch_prev_txouts {
self.fetch_prev_txout(&mut full_scan_res.graph_update)?;
}
Ok(ElectrumSyncResult(SyncResult {
chain_update: full_scan_res.chain_update,
graph_update: full_scan_res.graph_update,
}))
}
/// Populate the `graph_update` with transactions/anchors associated with the given `spks`.
///
/// Transactions that contains an output with requested spk, or spends form an output with
/// requested spk will be added to `graph_update`. Anchors of the aforementioned transactions are
/// also included.
///
/// Checkpoints (in `cps`) are used to create anchors. The `tx_cache` is self-explanatory.
fn populate_with_spks<I: Ord + Clone>(
&self,
cps: &BTreeMap<u32, CheckPoint>,
graph_update: &mut TxGraph<ConfirmationHeightAnchor>,
spks: &mut impl Iterator<Item = (I, ScriptBuf)>,
stop_gap: usize,
batch_size: usize,
) -> Result<BTreeMap<I, (ScriptBuf, bool)>, Error> {
let mut unused_spk_count = 0_usize;
let mut scanned_spks = BTreeMap::new();
loop {
let spks = (0..batch_size)
.map_while(|_| spks.next())
.collect::<Vec<_>>();
if spks.is_empty() {
return Ok(scanned_spks);
}
let spk_histories = self
.inner
.batch_script_get_history(spks.iter().map(|(_, s)| s.as_script()))?;
for ((spk_index, spk), spk_history) in spks.into_iter().zip(spk_histories) {
if spk_history.is_empty() {
scanned_spks.insert(spk_index, (spk, false));
unused_spk_count += 1;
if unused_spk_count > stop_gap {
return Ok(scanned_spks);
}
continue;
} else {
scanned_spks.insert(spk_index, (spk, true));
unused_spk_count = 0;
}
for tx_res in spk_history {
let _ = graph_update.insert_tx(self.fetch_tx(tx_res.tx_hash)?);
if let Some(anchor) = determine_tx_anchor(cps, tx_res.height, tx_res.tx_hash) {
let _ = graph_update.insert_anchor(tx_res.tx_hash, anchor);
}
}
}
}
}
// Helper function which fetches the `TxOut`s of our relevant transactions' previous transactions,
// which we do not have by default. This data is needed to calculate the transaction fee.
fn fetch_prev_txout(
&self,
graph_update: &mut TxGraph<ConfirmationHeightAnchor>,
) -> Result<(), Error> {
let full_txs: Vec<Arc<Transaction>> =
graph_update.full_txs().map(|tx_node| tx_node.tx).collect();
for tx in full_txs {
for vin in &tx.input {
let outpoint = vin.previous_output;
let vout = outpoint.vout;
let prev_tx = self.fetch_tx(outpoint.txid)?;
let txout = prev_tx.output[vout as usize].clone();
let _ = graph_update.insert_txout(outpoint, txout);
}
}
Ok(())
}
/// Populate the `graph_update` with associated transactions/anchors of `outpoints`.
///
/// Transactions in which the outpoint resides, and transactions that spend from the outpoint are
/// included. Anchors of the aforementioned transactions are included.
///
/// Checkpoints (in `cps`) are used to create anchors. The `tx_cache` is self-explanatory.
fn populate_with_outpoints(
&self,
cps: &BTreeMap<u32, CheckPoint>,
graph_update: &mut TxGraph<ConfirmationHeightAnchor>,
outpoints: impl IntoIterator<Item = OutPoint>,
) -> Result<(), Error> {
for outpoint in outpoints {
let op_txid = outpoint.txid;
let op_tx = self.fetch_tx(op_txid)?;
let op_txout = match op_tx.output.get(outpoint.vout as usize) {
Some(txout) => txout,
None => continue,
};
debug_assert_eq!(op_tx.txid(), op_txid);
// attempt to find the following transactions (alongside their chain positions), and
// add to our sparsechain `update`:
let mut has_residing = false; // tx in which the outpoint resides
let mut has_spending = false; // tx that spends the outpoint
for res in self.inner.script_get_history(&op_txout.script_pubkey)? {
if has_residing && has_spending {
break;
}
if !has_residing && res.tx_hash == op_txid {
has_residing = true;
let _ = graph_update.insert_tx(Arc::clone(&op_tx));
if let Some(anchor) = determine_tx_anchor(cps, res.height, res.tx_hash) {
let _ = graph_update.insert_anchor(res.tx_hash, anchor);
}
}
if !has_spending && res.tx_hash != op_txid {
let res_tx = self.fetch_tx(res.tx_hash)?;
// we exclude txs/anchors that do not spend our specified outpoint(s)
has_spending = res_tx
.input
.iter()
.any(|txin| txin.previous_output == outpoint);
if !has_spending {
continue;
}
let _ = graph_update.insert_tx(Arc::clone(&res_tx));
if let Some(anchor) = determine_tx_anchor(cps, res.height, res.tx_hash) {
let _ = graph_update.insert_anchor(res.tx_hash, anchor);
}
}
}
}
Ok(())
}
/// Populate the `graph_update` with transactions/anchors of the provided `txids`.
fn populate_with_txids(
&self,
cps: &BTreeMap<u32, CheckPoint>,
graph_update: &mut TxGraph<ConfirmationHeightAnchor>,
txids: impl IntoIterator<Item = Txid>,
) -> Result<(), Error> {
for txid in txids {
let tx = match self.fetch_tx(txid) {
Ok(tx) => tx,
Err(electrum_client::Error::Protocol(_)) => continue,
Err(other_err) => return Err(other_err),
};
let spk = tx
.output
.first()
.map(|txo| &txo.script_pubkey)
.expect("tx must have an output");
// because of restrictions of the Electrum API, we have to use the `script_get_history`
// call to get confirmation status of our transaction
let anchor = match self
.inner
.script_get_history(spk)?
.into_iter()
.find(|r| r.tx_hash == txid)
{
Some(r) => determine_tx_anchor(cps, r.height, txid),
None => continue,
};
let _ = graph_update.insert_tx(tx);
if let Some(anchor) = anchor {
let _ = graph_update.insert_anchor(txid, anchor);
}
}
Ok(())
}
}
/// The result of [`BdkElectrumClient::full_scan`].
///
/// This can be transformed into a [`FullScanResult`] with either [`ConfirmationHeightAnchor`] or
/// [`ConfirmationTimeHeightAnchor`] anchor types.
pub struct ElectrumFullScanResult<K>(FullScanResult<K, ConfirmationHeightAnchor>);
impl<K> ElectrumFullScanResult<K> {
/// Return [`FullScanResult`] with [`ConfirmationHeightAnchor`].
pub fn with_confirmation_height_anchor(self) -> FullScanResult<K, ConfirmationHeightAnchor> {
self.0
}
/// Return [`FullScanResult`] with [`ConfirmationTimeHeightAnchor`].
///
/// This requires additional calls to the Electrum server.
pub fn with_confirmation_time_height_anchor(
self,
client: &BdkElectrumClient<impl ElectrumApi>,
) -> Result<FullScanResult<K, ConfirmationTimeHeightAnchor>, Error> {
let res = self.0;
Ok(FullScanResult {
graph_update: try_into_confirmation_time_result(res.graph_update, &client.inner)?,
chain_update: res.chain_update,
last_active_indices: res.last_active_indices,
})
}
}
/// The result of [`BdkElectrumClient::sync`].
///
/// This can be transformed into a [`SyncResult`] with either [`ConfirmationHeightAnchor`] or
/// [`ConfirmationTimeHeightAnchor`] anchor types.
pub struct ElectrumSyncResult(SyncResult<ConfirmationHeightAnchor>);
impl ElectrumSyncResult {
/// Return [`SyncResult`] with [`ConfirmationHeightAnchor`].
pub fn with_confirmation_height_anchor(self) -> SyncResult<ConfirmationHeightAnchor> {
self.0
}
/// Return [`SyncResult`] with [`ConfirmationTimeHeightAnchor`].
///
/// This requires additional calls to the Electrum server.
pub fn with_confirmation_time_height_anchor(
self,
client: &BdkElectrumClient<impl ElectrumApi>,
) -> Result<SyncResult<ConfirmationTimeHeightAnchor>, Error> {
let res = self.0;
Ok(SyncResult {
graph_update: try_into_confirmation_time_result(res.graph_update, &client.inner)?,
chain_update: res.chain_update,
})
}
}
fn try_into_confirmation_time_result(
graph_update: TxGraph<ConfirmationHeightAnchor>,
client: &impl ElectrumApi,
) -> Result<TxGraph<ConfirmationTimeHeightAnchor>, Error> {
let relevant_heights = graph_update
.all_anchors()
.iter()
.map(|(a, _)| a.confirmation_height)
.collect::<HashSet<_>>();
let height_to_time = relevant_heights
.clone()
.into_iter()
.zip(
client
.batch_block_header(relevant_heights)?
.into_iter()
.map(|bh| bh.time as u64),
)
.collect::<HashMap<u32, u64>>();
Ok(graph_update.map_anchors(|a| ConfirmationTimeHeightAnchor {
anchor_block: a.anchor_block,
confirmation_height: a.confirmation_height,
confirmation_time: height_to_time[&a.confirmation_height],
}))
}
/// Return a [`CheckPoint`] of the latest tip, that connects with `prev_tip`.
fn construct_update_tip(
client: &impl ElectrumApi,
prev_tip: CheckPoint,
) -> Result<(CheckPoint, Option<u32>), Error> {
let HeaderNotification { height, .. } = client.block_headers_subscribe()?;
let new_tip_height = height as u32;
// If electrum returns a tip height that is lower than our previous tip, then checkpoints do
// not need updating. We just return the previous tip and use that as the point of agreement.
if new_tip_height < prev_tip.height() {
return Ok((prev_tip.clone(), Some(prev_tip.height())));
}
// Atomically fetch the latest `CHAIN_SUFFIX_LENGTH` count of blocks from Electrum. We use this
// to construct our checkpoint update.
let mut new_blocks = {
let start_height = new_tip_height.saturating_sub(CHAIN_SUFFIX_LENGTH - 1);
let hashes = client
.block_headers(start_height as _, CHAIN_SUFFIX_LENGTH as _)?
.headers
.into_iter()
.map(|h| h.block_hash());
(start_height..).zip(hashes).collect::<BTreeMap<u32, _>>()
};
// Find the "point of agreement" (if any).
let agreement_cp = {
let mut agreement_cp = Option::<CheckPoint>::None;
for cp in prev_tip.iter() {
let cp_block = cp.block_id();
let hash = match new_blocks.get(&cp_block.height) {
Some(&hash) => hash,
None => {
assert!(
new_tip_height >= cp_block.height,
"already checked that electrum's tip cannot be smaller"
);
let hash = client.block_header(cp_block.height as _)?.block_hash();
new_blocks.insert(cp_block.height, hash);
hash
}
};
if hash == cp_block.hash {
agreement_cp = Some(cp);
break;
}
}
agreement_cp
};
let agreement_height = agreement_cp.as_ref().map(CheckPoint::height);
let new_tip = new_blocks
.into_iter()
// Prune `new_blocks` to only include blocks that are actually new.
.filter(|(height, _)| Some(*height) > agreement_height)
.map(|(height, hash)| BlockId { height, hash })
.fold(agreement_cp, |prev_cp, block| {
Some(match prev_cp {
Some(cp) => cp.push(block).expect("must extend checkpoint"),
None => CheckPoint::new(block),
})
})
.expect("must have at least one checkpoint");
Ok((new_tip, agreement_height))
}
/// A [tx status] comprises of a concatenation of `tx_hash:height:`s. We transform a single one of
/// these concatenations into a [`ConfirmationHeightAnchor`] if possible.
///
/// We use the lowest possible checkpoint as the anchor block (from `cps`). If an anchor block
/// cannot be found, or the transaction is unconfirmed, [`None`] is returned.
///
/// [tx status](https://electrumx-spesmilo.readthedocs.io/en/latest/protocol-basics.html#status)
fn determine_tx_anchor(
cps: &BTreeMap<u32, CheckPoint>,
raw_height: i32,
txid: Txid,
) -> Option<ConfirmationHeightAnchor> {
// The electrum API has a weird quirk where an unconfirmed transaction is presented with a
// height of 0. To avoid invalid representation in our data structures, we manually set
// transactions residing in the genesis block to have height 0, then interpret a height of 0 as
// unconfirmed for all other transactions.
if txid
== Txid::from_str("4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b")
.expect("must deserialize genesis coinbase txid")
{
let anchor_block = cps.values().next()?.block_id();
return Some(ConfirmationHeightAnchor {
anchor_block,
confirmation_height: 0,
});
}
match raw_height {
h if h <= 0 => {
debug_assert!(h == 0 || h == -1, "unexpected height ({}) from electrum", h);
None
}
h => {
let h = h as u32;
let anchor_block = cps.range(h..).next().map(|(_, cp)| cp.block_id())?;
if h > anchor_block.height {
None
} else {
Some(ConfirmationHeightAnchor {
anchor_block,
confirmation_height: h,
})
}
}
}
}