1
0
mirror of https://github.com/bitcoin/bips.git synced 2026-02-09 15:23:09 +00:00
bips/bip-0089/secp256k1lab/secp256k1.py
Jurvis Tan 57869d524a
BIP 89: Chain Code Delegation for Private Collaborative Custody (#2004)
* Add Chaincode Delegation BIP

* Update license to BSD-3-Clause and expand blinded signing documentation

* Address initial PR comments

* Update with BIP number assignment

* Fix delegator_sign test vector

* Upgrade secp256k1lab and add license file

- Upgrade vendored secp256k1lab to commit a265da1 (adds type annotations)
- Add COPYING file to satisfy MIT license requirements
- Document secp256k1lab commit reference in BIP text

* Fix type checker and linter issues in reference implementation

- Fix TweakContext to use Scalar types for gacc/tacc
- Replace HashFunction enum with Callable type alias
- Fix bytearray to bytes conversion in blind_sign
- Move imports to top of file
- Fix boolean comparison style (use 'not' instead of '== False')
- Add proper type annotations and casts for dict handling
- Remove unused imports and type ignore comments

* Address PR review comments on terminology and clarity

- Add intro explaining delegation naming (chain code is delegated, not
  signing authority)
- Reorder terminology to list Delegator before Delegatee
- Replace "quorum" with clearer "can co-sign for UTXOs" language
- Clarify derivation constraints in terms of delegatee's extended key
- Rename "Delegatee Signing" section to "Signing Modes"
- Fix "delegatee can apply" to "delegator can produce" (line 112)
- Replace undefined "caller" with "delegatee" (line 173)
- Clarify "Change outputs" to "Tweaks for change outputs" (line 98)
- Add note that message is separate from CCD bundle
- Add note on application-specific verification (addresses, amounts)
- Add transition sentence clarifying non-concurrent protocol scope

* Add changelog entry for 0.1.3

* Fix header: use Authors (plural) for multiple authors

* Fix BIP header format for CI compliance

- Change Type from 'Standards Track' to 'Specification' (valid type)
- Change 'Created' to 'Assigned' (correct field name per BIP format)
- Change 'Post-History' to 'Discussion' (recognized field in buildtable.pl)

* Apply suggestion from @murchandamus

---------

Co-authored-by: Jesse Posner <jesse.posner@gmail.com>
2026-02-04 12:58:08 -08:00

484 lines
17 KiB
Python

# Copyright (c) 2022-2023 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test-only implementation of low-level secp256k1 field and group arithmetic
It is designed for ease of understanding, not performance.
WARNING: This code is slow and trivially vulnerable to side channel attacks. Do not use for
anything but tests.
Exports:
* FE: class for secp256k1 field elements
* GE: class for secp256k1 group elements
* G: the secp256k1 generator point
"""
from __future__ import annotations
from typing import Self
# TODO Docstrings of methods still say "field element"
class APrimeFE:
"""Objects of this class represent elements of a prime field.
They are represented internally in numerator / denominator form, in order to delay inversions.
"""
# The size of the field (also its modulus and characteristic).
SIZE: int
def __init__(self, a: int | Self = 0, b: int | Self = 1) -> None:
"""Initialize a field element a/b; both a and b can be ints or field elements."""
if isinstance(a, type(self)):
num = a._num
den = a._den
else:
assert isinstance(a, int)
num = a % self.SIZE
den = 1
if isinstance(b, type(self)):
den = (den * b._num) % self.SIZE
num = (num * b._den) % self.SIZE
else:
assert isinstance(b, int)
den = (den * b) % self.SIZE
assert den != 0
if num == 0:
den = 1
self._num: int = num
self._den: int = den
def __add__(self, a: int | Self) -> Self:
"""Compute the sum of two field elements (second may be int)."""
if isinstance(a, type(self)):
return type(self)(self._num * a._den + self._den * a._num, self._den * a._den)
if isinstance(a, int):
return type(self)(self._num + self._den * a, self._den)
return NotImplemented
def __radd__(self, a: int) -> Self:
"""Compute the sum of an integer and a field element."""
return type(self)(a) + self
@classmethod
def sum(cls, *es: Self) -> Self:
"""Compute the sum of field elements.
sum(a, b, c, ...) is identical to (0 + a + b + c + ...)."""
return sum(es, start=cls(0))
def __sub__(self, a: int | Self) -> Self:
"""Compute the difference of two field elements (second may be int)."""
if isinstance(a, type(self)):
return type(self)(self._num * a._den - self._den * a._num, self._den * a._den)
if isinstance(a, int):
return type(self)(self._num - self._den * a, self._den)
return NotImplemented
def __rsub__(self, a: int) -> Self:
"""Compute the difference of an integer and a field element."""
return type(self)(a) - self
def __mul__(self, a: int | Self) -> Self:
"""Compute the product of two field elements (second may be int)."""
if isinstance(a, type(self)):
return type(self)(self._num * a._num, self._den * a._den)
if isinstance(a, int):
return type(self)(self._num * a, self._den)
return NotImplemented
def __rmul__(self, a: int) -> Self:
"""Compute the product of an integer with a field element."""
return type(self)(a) * self
def __truediv__(self, a: int | Self) -> Self:
"""Compute the ratio of two field elements (second may be int)."""
if isinstance(a, type(self)) or isinstance(a, int):
return type(self)(self, a)
return NotImplemented
def __pow__(self, a: int) -> Self:
"""Raise a field element to an integer power."""
return type(self)(pow(self._num, a, self.SIZE), pow(self._den, a, self.SIZE))
def __neg__(self) -> Self:
"""Negate a field element."""
return type(self)(-self._num, self._den)
def __int__(self) -> int:
"""Convert a field element to an integer in range 0..SIZE-1. The result is cached."""
if self._den != 1:
self._num = (self._num * pow(self._den, -1, self.SIZE)) % self.SIZE
self._den = 1
return self._num
def sqrt(self) -> Self | None:
"""Compute the square root of a field element if it exists (None otherwise)."""
raise NotImplementedError
def is_square(self) -> bool:
"""Determine if this field element has a square root."""
# A more efficient algorithm is possible here (Jacobi symbol).
return self.sqrt() is not None
def is_even(self) -> bool:
"""Determine whether this field element, represented as integer in 0..SIZE-1, is even."""
return int(self) & 1 == 0
def __eq__(self, a: object) -> bool:
"""Check whether two field elements are equal (second may be an int)."""
if isinstance(a, type(self)):
return (self._num * a._den - self._den * a._num) % self.SIZE == 0
elif isinstance(a, int):
return (self._num - self._den * a) % self.SIZE == 0
return False # for other types
def to_bytes(self) -> bytes:
"""Convert a field element to a 32-byte array (BE byte order)."""
return int(self).to_bytes(32, 'big')
@classmethod
def from_int_checked(cls, v: int) -> Self:
"""Convert an integer to a field element (no overflow allowed)."""
if v >= cls.SIZE:
raise ValueError
return cls(v)
@classmethod
def from_int_wrapping(cls, v: int) -> Self:
"""Convert an integer to a field element (reduced modulo SIZE)."""
return cls(v % cls.SIZE)
@classmethod
def from_bytes_checked(cls, b: bytes) -> Self:
"""Convert a 32-byte array to a field element (BE byte order, no overflow allowed)."""
v = int.from_bytes(b, 'big')
return cls.from_int_checked(v)
@classmethod
def from_bytes_wrapping(cls, b: bytes) -> Self:
"""Convert a 32-byte array to a field element (BE byte order, reduced modulo SIZE)."""
v = int.from_bytes(b, 'big')
return cls.from_int_wrapping(v)
def __str__(self) -> str:
"""Convert this field element to a 64 character hex string."""
return f"{int(self):064x}"
def __repr__(self) -> str:
"""Get a string representation of this field element."""
return f"{type(self).__qualname__}(0x{int(self):x})"
class FE(APrimeFE):
SIZE = 2**256 - 2**32 - 977
def sqrt(self) -> Self | None:
# Due to the fact that our modulus p is of the form (p % 4) == 3, the Tonelli-Shanks
# algorithm (https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm) is simply
# raising the argument to the power (p + 1) / 4.
# To see why: (p-1) % 2 = 0, so 2 divides the order of the multiplicative group,
# and thus only half of the non-zero field elements are squares. An element a is
# a (nonzero) square when Euler's criterion, a^((p-1)/2) = 1 (mod p), holds. We're
# looking for x such that x^2 = a (mod p). Given a^((p-1)/2) = 1, that is equivalent
# to x^2 = a^(1 + (p-1)/2) mod p. As (1 + (p-1)/2) is even, this is equivalent to
# x = a^((1 + (p-1)/2)/2) mod p, or x = a^((p+1)/4) mod p.
v = int(self)
s = pow(v, (self.SIZE + 1) // 4, self.SIZE)
if s**2 % self.SIZE == v:
return type(self)(s)
return None
class Scalar(APrimeFE):
"""TODO Docstring"""
SIZE = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
@classmethod
def from_int_nonzero_checked(cls, v: int) -> Self:
"""Convert an integer to a scalar (no zero or overflow allowed)."""
if not (0 < v < cls.SIZE):
raise ValueError
return cls(v)
@classmethod
def from_bytes_nonzero_checked(cls, b: bytes) -> Self:
"""Convert a 32-byte array to a scalar (BE byte order, no zero or overflow allowed)."""
v = int.from_bytes(b, 'big')
return cls.from_int_nonzero_checked(v)
class GE:
"""Objects of this class represent secp256k1 group elements (curve points or infinity)
GE objects are immutable.
Normal points on the curve have fields:
* x: the x coordinate (a field element)
* y: the y coordinate (a field element, satisfying y^2 = x^3 + 7)
* infinity: False
The point at infinity has field:
* infinity: True
"""
# TODO The following two class attributes should probably be just getters as
# classmethods to enforce immutability. Unfortunately Python makes it hard
# to create "classproperties". `G` could then also be just a classmethod.
# Order of the group (number of points on the curve, plus 1 for infinity)
ORDER = Scalar.SIZE
# Number of valid distinct x coordinates on the curve.
ORDER_HALF = ORDER // 2
@property
def infinity(self) -> bool:
"""Whether the group element is the point at infinity."""
return self._infinity
@property
def x(self) -> FE:
"""The x coordinate (a field element) of a non-infinite group element."""
assert not self.infinity
return self._x
@property
def y(self) -> FE:
"""The y coordinate (a field element) of a non-infinite group element."""
assert not self.infinity
return self._y
def __init__(self, x: int | FE | None = None, y: int | FE | None = None) -> None:
"""Initialize a group element with specified x and y coordinates, or infinity."""
if x is None:
# Initialize as infinity.
assert y is None
self._infinity = True
else:
# Initialize as point on the curve (and check that it is).
assert x is not None
assert y is not None
fx = FE(x)
fy = FE(y)
assert fy**2 == fx**3 + 7
self._infinity = False
self._x = fx
self._y = fy
def __add__(self, a: GE) -> GE:
"""Add two group elements together."""
# Deal with infinity: a + infinity == infinity + a == a.
if self.infinity:
return a
if a.infinity:
return self
if self.x == a.x:
if self.y != a.y:
# A point added to its own negation is infinity.
assert self.y + a.y == 0
return GE()
else:
# For identical inputs, use the tangent (doubling formula).
lam = (3 * self.x**2) / (2 * self.y)
else:
# For distinct inputs, use the line through both points (adding formula).
lam = (self.y - a.y) / (self.x - a.x)
# Determine point opposite to the intersection of that line with the curve.
x = lam**2 - (self.x + a.x)
y = lam * (self.x - x) - self.y
return GE(x, y)
@staticmethod
def sum(*ps: GE) -> GE:
"""Compute the sum of group elements.
GE.sum(a, b, c, ...) is identical to (GE() + a + b + c + ...)."""
return sum(ps, start=GE())
@staticmethod
def batch_mul(*aps: tuple[Scalar, GE]) -> GE:
"""Compute a (batch) scalar group element multiplication.
GE.batch_mul((a1, p1), (a2, p2), (a3, p3)) is identical to a1*p1 + a2*p2 + a3*p3,
but more efficient."""
# Reduce all the scalars modulo order first (so we can deal with negatives etc).
naps = [(int(a), p) for a, p in aps]
# Start with point at infinity.
r = GE()
# Iterate over all bit positions, from high to low.
for i in range(255, -1, -1):
# Double what we have so far.
r = r + r
# Add then add the points for which the corresponding scalar bit is set.
for (a, p) in naps:
if (a >> i) & 1:
r += p
return r
def __rmul__(self, a: int | Scalar) -> GE:
"""Multiply an integer or scalar with a group element."""
if self == G:
return FAST_G.mul(Scalar(a))
return GE.batch_mul((Scalar(a), self))
def __neg__(self) -> GE:
"""Compute the negation of a group element."""
if self.infinity:
return self
return GE(self.x, -self.y)
def __sub__(self, a: GE) -> GE:
"""Subtract a group element from another."""
return self + (-a)
def __eq__(self, a: object) -> bool:
"""Check if two group elements are equal."""
if not isinstance(a, type(self)):
return False
return (self - a).infinity
def has_even_y(self) -> bool:
"""Determine whether a non-infinity group element has an even y coordinate."""
assert not self.infinity
return self.y.is_even()
def to_bytes_compressed(self) -> bytes:
"""Convert a non-infinite group element to 33-byte compressed encoding."""
assert not self.infinity
return bytes([3 - self.y.is_even()]) + self.x.to_bytes()
def to_bytes_compressed_with_infinity(self) -> bytes:
"""Convert a group element to 33-byte compressed encoding, mapping infinity to zeros."""
if self.infinity:
return 33 * b"\x00"
return self.to_bytes_compressed()
def to_bytes_uncompressed(self) -> bytes:
"""Convert a non-infinite group element to 65-byte uncompressed encoding."""
assert not self.infinity
return b'\x04' + self.x.to_bytes() + self.y.to_bytes()
def to_bytes_xonly(self) -> bytes:
"""Convert (the x coordinate of) a non-infinite group element to 32-byte xonly encoding."""
assert not self.infinity
return self.x.to_bytes()
@staticmethod
def lift_x(x: int | FE) -> GE:
"""Return group element with specified field element as x coordinate (and even y)."""
y = (FE(x)**3 + 7).sqrt()
if y is None:
raise ValueError
if not y.is_even():
y = -y
return GE(x, y)
@staticmethod
def from_bytes_compressed(b: bytes) -> GE:
"""Convert a compressed to a group element."""
assert len(b) == 33
if b[0] != 2 and b[0] != 3:
raise ValueError
x = FE.from_bytes_checked(b[1:])
r = GE.lift_x(x)
if b[0] == 3:
r = -r
return r
@staticmethod
def from_bytes_compressed_with_infinity(b: bytes) -> GE:
"""Convert a compressed to a group element, mapping zeros to infinity."""
if b == 33 * b"\x00":
return GE()
else:
return GE.from_bytes_compressed(b)
@staticmethod
def from_bytes_uncompressed(b: bytes) -> GE:
"""Convert an uncompressed to a group element."""
assert len(b) == 65
if b[0] != 4:
raise ValueError
x = FE.from_bytes_checked(b[1:33])
y = FE.from_bytes_checked(b[33:])
if y**2 != x**3 + 7:
raise ValueError
return GE(x, y)
@staticmethod
def from_bytes(b: bytes) -> GE:
"""Convert a compressed or uncompressed encoding to a group element."""
assert len(b) in (33, 65)
if len(b) == 33:
return GE.from_bytes_compressed(b)
else:
return GE.from_bytes_uncompressed(b)
@staticmethod
def from_bytes_xonly(b: bytes) -> GE:
"""Convert a point given in xonly encoding to a group element."""
assert len(b) == 32
x = FE.from_bytes_checked(b)
r = GE.lift_x(x)
return r
@staticmethod
def is_valid_x(x: int | FE) -> bool:
"""Determine whether the provided field element is a valid X coordinate."""
return (FE(x)**3 + 7).is_square()
def __str__(self) -> str:
"""Convert this group element to a string."""
if self.infinity:
return "(inf)"
return f"({self.x},{self.y})"
def __repr__(self) -> str:
"""Get a string representation for this group element."""
if self.infinity:
return "GE()"
return f"GE(0x{int(self.x):x},0x{int(self.y):x})"
def __hash__(self) -> int:
"""Compute a non-cryptographic hash of the group element."""
if self.infinity:
return 0 # 0 is not a valid x coordinate
return int(self.x)
# The secp256k1 generator point
G = GE.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798)
class FastGEMul:
"""Table for fast multiplication with a constant group element.
Speed up scalar multiplication with a fixed point P by using a precomputed lookup table with
its powers of 2:
table = [P, 2*P, 4*P, (2^3)*P, (2^4)*P, ..., (2^255)*P]
During multiplication, the points corresponding to each bit set in the scalar are added up,
i.e. on average ~128 point additions take place.
"""
def __init__(self, p: GE) -> None:
self.table: list[GE] = [p] # table[i] = (2^i) * p
for _ in range(255):
p = p + p
self.table.append(p)
def mul(self, a: Scalar | int) -> GE:
result = GE()
a_ = int(a)
for bit in range(a_.bit_length()):
if a_ & (1 << bit):
result += self.table[bit]
return result
# Precomputed table with multiples of G for fast multiplication
FAST_G = FastGEMul(G)