1
0
mirror of https://github.com/bitcoin/bips.git synced 2025-05-12 12:03:29 +00:00
bips/bip-0374/reference.py
VolodymyrBg 7c80a699ff Implement subtraction operator for GE class in BIP-0374 reference code
This commit implements the subtraction operator (sub) for the GE (Group Element) class in the secp256k1.py file as requested in the TODO comment in reference.py.

The implementation is straightforward, leveraging the existing neg method to define subtraction as addition with the negated element: self + (-a).

After implementing the operator, the code in reference.py was simplified by replacing expressions like:
s * G + (-e * A) with s * G - e * A

This makes the code more readable and directly matches the mathematical notation used in the BIP-0374 specification.

Co-Authored-By: Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
2025-04-15 14:39:09 +03:00

149 lines
4.4 KiB
Python
Executable File

#!/usr/bin/env python3
"""Reference implementation of DLEQ BIP for secp256k1 with unit tests."""
from hashlib import sha256
import random
from secp256k1 import G, GE
import sys
import unittest
DLEQ_TAG_AUX = "BIP0374/aux"
DLEQ_TAG_NONCE = "BIP0374/nonce"
DLEQ_TAG_CHALLENGE = "BIP0374/challenge"
def TaggedHash(tag: str, data: bytes) -> bytes:
ss = sha256(tag.encode()).digest()
ss += ss
ss += data
return sha256(ss).digest()
def xor_bytes(lhs: bytes, rhs: bytes) -> bytes:
assert len(lhs) == len(rhs)
return bytes([lhs[i] ^ rhs[i] for i in range(len(lhs))])
def dleq_challenge(
A: GE, B: GE, C: GE, R1: GE, R2: GE, m: bytes | None, G: GE,
) -> int:
if m is not None:
assert len(m) == 32
m = bytes([]) if m is None else m
return int.from_bytes(
TaggedHash(
DLEQ_TAG_CHALLENGE,
A.to_bytes_compressed()
+ B.to_bytes_compressed()
+ C.to_bytes_compressed()
+ G.to_bytes_compressed()
+ R1.to_bytes_compressed()
+ R2.to_bytes_compressed()
+ m,
),
"big",
)
def dleq_generate_proof(
a: int, B: GE, r: bytes, G: GE = G, m: bytes | None = None
) -> bytes | None:
assert len(r) == 32
if not (0 < a < GE.ORDER):
return None
if B.infinity:
return None
if m is not None:
assert len(m) == 32
A = a * G
C = a * B
t = xor_bytes(a.to_bytes(32, "big"), TaggedHash(DLEQ_TAG_AUX, r))
m_prime = bytes([]) if m is None else m
rand = TaggedHash(
DLEQ_TAG_NONCE, t + A.to_bytes_compressed() + C.to_bytes_compressed() + m_prime
)
k = int.from_bytes(rand, "big") % GE.ORDER
if k == 0:
return None
R1 = k * G
R2 = k * B
e = dleq_challenge(A, B, C, R1, R2, m, G)
s = (k + e * a) % GE.ORDER
proof = e.to_bytes(32, "big") + s.to_bytes(32, "big")
if not dleq_verify_proof(A, B, C, proof, G=G, m=m):
return None
return proof
def dleq_verify_proof(
A: GE, B: GE, C: GE, proof: bytes, G: GE = G, m: bytes | None = None
) -> bool:
if A.infinity or B.infinity or C.infinity or G.infinity:
return False
assert len(proof) == 64
e = int.from_bytes(proof[:32], "big")
s = int.from_bytes(proof[32:], "big")
if s >= GE.ORDER:
return False
R1 = s * G - e * A
if R1.infinity:
return False
R2 = s * B - e * C
if R2.infinity:
return False
if e != dleq_challenge(A, B, C, R1, R2, m, G):
return False
return True
class DLEQTests(unittest.TestCase):
def test_dleq(self):
seed = random.randrange(sys.maxsize)
random.seed(seed)
print(f"PRNG seed is: {seed}")
for _ in range(10):
# generate random keypairs for both parties
a = random.randrange(1, GE.ORDER)
A = a * G
b = random.randrange(1, GE.ORDER)
B = b * G
# create shared secret
C = a * B
# create dleq proof
rand_aux = random.randbytes(32)
proof = dleq_generate_proof(a, B, rand_aux)
self.assertTrue(proof is not None)
# verify dleq proof
success = dleq_verify_proof(A, B, C, proof)
self.assertTrue(success)
# flip a random bit in the dleq proof and check that verification fails
for _ in range(5):
proof_damaged = list(proof)
proof_damaged[random.randrange(len(proof))] ^= 1 << (
random.randrange(8)
)
success = dleq_verify_proof(A, B, C, bytes(proof_damaged))
self.assertFalse(success)
# create the same dleq proof with a message
message = random.randbytes(32)
proof = dleq_generate_proof(a, B, rand_aux, m=message)
self.assertTrue(proof is not None)
# verify dleq proof with a message
success = dleq_verify_proof(A, B, C, proof, m=message)
self.assertTrue(success)
# flip a random bit in the dleq proof and check that verification fails
for _ in range(5):
proof_damaged = list(proof)
proof_damaged[random.randrange(len(proof))] ^= 1 << (
random.randrange(8)
)
success = dleq_verify_proof(A, B, C, bytes(proof_damaged))
self.assertFalse(success)