mirror of
https://github.com/bitcoin/bips.git
synced 2025-05-12 12:03:29 +00:00
Rework Applications section
This commit is contained in:
parent
204b7f13a0
commit
2b987b5711
@ -207,9 +207,9 @@ While recent academic papers claim that they are also possible with ECDSA, conse
|
||||
|
||||
=== Multisignatures and Threshold Signatures ===
|
||||
|
||||
By means of an interactive scheme such as [https://eprint.iacr.org/2018/068 MuSig], participants can produce a combined public key which they can jointly sign for. This allows n-of-n multisignatures which, from a verifier's perspective, are no different from ordinary signatures, giving improved privacy and efficiency versus ''CHECKMULTISIG'' or other means.
|
||||
By means of an interactive scheme such as [https://eprint.iacr.org/2018/068 MuSig], participants can aggregate their public keys into a single public key which they can jointly sign for. This allows n-of-n multisignatures which, from a verifier's perspective, are no different from ordinary signatures, giving improved privacy and efficiency versus ''CHECKMULTISIG'' or other means.
|
||||
|
||||
Further, by combining Schnorr signatures with [https://link.springer.com/content/pdf/10.1007/3-540-46766-1_9.pdf Pedersen Secret Sharing], it is possible to obtain [http://cacr.uwaterloo.ca/techreports/2001/corr2001-13.ps an interactive threshold signature scheme] that ensures that signatures can only be produced by arbitrary but predetermined sets of signers. For example, k-of-n threshold signatures can be realized this way. Furthermore, it is possible to replace the combination of participant keys in this scheme with MuSig, though the security of that combination still needs analysis.
|
||||
Moreover, Schnorr signatures are compatible with [https://web.archive.org/web/20031003232851/http://www.research.ibm.com/security/dkg.ps distributed key generation], which enables interactive threshold signatures schemes, e.g., the schemes described by [http://cacr.uwaterloo.ca/techreports/2001/corr2001-13.ps Stinson and Strobl (2001)] or [https://web.archive.org/web/20060911151529/http://theory.lcs.mit.edu/~stasio/Papers/gjkr03.pdf Genaro, Jarecki and Krawczyk (2003)]. These protocols make it possible to realize k-of-n threshold signatures, which ensure that any subset of size k of the set of n signers can sign but no subset of size less than k can produce a valid Schnorr signature. However, the practicality of the existing schemes is limited: most schemes in the literature have been proven secure only for the case k < n/2, are not secure when used concurrently in multiple sessions, or require a reliable broadcast mechanism to be secure. Further research is necessary to improve this situation.
|
||||
|
||||
=== Adaptor Signatures ===
|
||||
|
||||
@ -221,10 +221,9 @@ Adaptor signatures, beyond the efficiency and privacy benefits of encoding scrip
|
||||
|
||||
=== Blind Signatures ===
|
||||
|
||||
Schnorr signatures admit a very [https://www.math.uni-frankfurt.de/~dmst/research/papers/schnorr.blind_sigs_attack.2001.pdf simple '''blind signature''' construction] which is a signature that a signer produces at the behest of another party without learning what he has signed.
|
||||
These can for example be used in [https://github.com/jonasnick/scriptless-scripts/blob/blind-swaps/md/partially-blind-swap.md Partially Blind Atomic Swaps], a construction to enable transferring of coins, mediated by an untrusted escrow agent, without connecting the transactors in the public blockchain transaction graph.
|
||||
A blind signature protocol is an interactive protocol that enables a signer to sign a message at the behest of another party without learning the signer learning any information about the signed message or the signature. Schnorr signatures admit a very [https://www.math.uni-frankfurt.de/~dmst/research/papers/schnorr.blind_sigs_attack.2001.pdf simple blind signature scheme] which is however insecure because it's vulnerable to [https://www.iacr.org/archive/crypto2002/24420288/24420288.pdf Wagner's attack]. A known mitigation is to let the signer abort a signing session with a certain probability, and the resulting scheme can be [https://eprint.iacr.org/2019/877 proven secure under non-standard cryptographic assumptions].
|
||||
|
||||
While the traditional Schnorr blind signatures are vulnerable to [https://www.iacr.org/archive/crypto2002/24420288/24420288.pdf Wagner's attack], there are [https://www.math.uni-frankfurt.de/~dmst/teaching/SS2012/Vorlesung/EBS5.pdf a number of mitigations] which allow them to be usable in practice without any known attacks. Nevertheless, more analysis is required to be confident about the security of the blind signature scheme.
|
||||
Blind Schnorr signatures could for example be used in [https://github.com/jonasnick/scriptless-scripts/blob/blind-swaps/md/partially-blind-swap.md Partially Blind Atomic Swaps], a construction to enable transferring of coins, mediated by an untrusted escrow agent, without connecting the transactors in the public blockchain transaction graph.
|
||||
|
||||
== Test Vectors and Reference Code ==
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user