1
0
mirror of https://github.com/bitcoin/bips.git synced 2025-05-12 12:03:29 +00:00

Merge pull request #893 from sipa/bip-taproot

BIP 340 improvements
This commit is contained in:
Luke Dashjr 2020-04-30 14:19:29 +00:00 committed by GitHub
commit 187fabb1de
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 262 additions and 166 deletions

View File

@ -2,7 +2,7 @@
BIP: 340
Title: Schnorr Signatures for secp256k1
Author: Pieter Wuille <pieter.wuille@gmail.com>
Jonas Nick <Jonas Nick <jonasd.nick@gmail.com>
Jonas Nick <jonasd.nick@gmail.com>
Tim Ruffing <crypto@timruffing.de>
Comments-Summary: No comments yet.
Comments-URI: https://github.com/bitcoin/bips/wiki/Comments:BIP-0340
@ -40,7 +40,7 @@ propose a new standard, a number of improvements not specific to Schnorr signatu
made:
* '''Signature encoding''': Instead of using [https://en.wikipedia.org/wiki/X.690#DER_encoding DER]-encoding for signatures (which are variable size, and up to 72 bytes), we can use a simple fixed 64-byte format.
* '''Public key encoding''': Instead of using ''compressed'' 33-byte encodings of elliptic curve points which are common in Bitcoin today, public keys in this proposal are encoded as 32 bytes.
* '''Public key encoding''': Instead of using [https://www.secg.org/sec1-v2.pdf ''compressed''] 33-byte encodings of elliptic curve points which are common in Bitcoin today, public keys in this proposal are encoded as 32 bytes.
* '''Batch verification''': The specific formulation of ECDSA signatures that is standardized cannot be verified more efficiently in batch compared to individually, unless additional witness data is added. Changing the signature scheme offers an opportunity to address this.
* '''Completely specified''': To be safe for usage in consensus systems, the verification algorithm must be completely specified at the byte level. This guarantees that nobody can construct a signature that is valid to some verifiers but not all. This is traditionally not a requirement for digital signature schemes, and the lack of exact specification for the DER parsing of ECDSA signatures has caused problems for Bitcoin [https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-July/009697.html in the past], needing [[bip-0066.mediawiki|BIP66]] to address it. In this document we aim to meet this property by design. For batch verification, which is inherently non-deterministic as the verifier can choose their batches, this property implies that the outcome of verification may only differ from individual verifications with negligible probability, even to an attacker who intentionally tries to make batch- and non-batch verification differ.
@ -85,9 +85,9 @@ In the case of ''R'' the third option is slower at signing time but a bit faster
for elliptic curve operations). The two other options require a possibly
expensive conversion to affine coordinates first. This would even be the case if the sign or oddness were explicitly coded (option 2 in the list above). We therefore choose option 3.
For ''P'' the speed of signing and verification does not significantly differ between any of the three options because affine coordinates of the point have to be computed anyway. For consistency reasons we choose the same option as for ''R''. The signing algorithm ensures that the signature is valid under the correct public key by negating the secret key if necessary.
For ''P'', using the third option comes at the cost of computing a Jacobi symbol (test for squaredness) at key generation or signing time, without avoiding a conversion to affine coordinates (as public keys will use affine coordinates anyway). We choose the second option, making public keys implicitly have an even Y coordinate, to maximize compatibility with existing key generation algorithms and infrastructure.
Implicit Y coordinates are not a reduction in security when expressed as the number of elliptic curve operations an attacker is expected to perform to compute the secret key. An attacker can normalize any given public key to a point whose Y coordinate is a square by negating the point if necessary. This is just a subtraction of field elements and not an elliptic curve operation<ref>This can be formalized by a simple reduction that reduces an attack on Schnorr signatures with implicit Y coordinates to an attack to Schnorr signatures with explicit Y coordinates. The reduction works by reencoding public keys and negating the result of the hash function, which is modeled as random oracle, whenever the challenge public key has an explicit Y coordinate that is not a square. A proof sketch can be found [https://medium.com/blockstream/reducing-bitcoin-transaction-sizes-with-x-only-pubkeys-f86476af05d7 here].</ref>.
Implicit Y coordinates are not a reduction in security when expressed as the number of elliptic curve operations an attacker is expected to perform to compute the secret key. An attacker can normalize any given public key to a point whose Y coordinate is even by negating the point if necessary. This is just a subtraction of field elements and not an elliptic curve operation<ref>This can be formalized by a simple reduction that reduces an attack on Schnorr signatures with implicit Y coordinates to an attack to Schnorr signatures with explicit Y coordinates. The reduction works by reencoding public keys and negating the result of the hash function, which is modeled as random oracle, whenever the challenge public key has an explicit Y coordinate that is odd. A proof sketch can be found [https://medium.com/blockstream/reducing-bitcoin-transaction-sizes-with-x-only-pubkeys-f86476af05d7 here].</ref>.
'''Tagged Hashes''' Cryptographic hash functions are used for multiple purposes in the specification below and in Bitcoin in general. To make sure hashes used in one context can't be reinterpreted in another one, hash functions can be tweaked with a context-dependent tag name, in such a way that collisions across contexts can be assumed to be infeasible. Such collisions obviously can not be ruled out completely, but only for schemes using tagging with a unique name. As for other schemes collisions are at least less likely with tagging than without.
@ -95,7 +95,7 @@ For example, without tagged hashing a BIP340 signature could also be valid for a
This proposal suggests to include the tag by prefixing the hashed data with ''SHA256(tag) || SHA256(tag)''. Because this is a 64-byte long context-specific constant and the ''SHA256'' block size is also 64 bytes, optimized implementations are possible (identical to SHA256 itself, but with a modified initial state). Using SHA256 of the tag name itself is reasonably simple and efficient for implementations that don't choose to use the optimization.
'''Final scheme''' As a result, our final scheme ends up using public key ''pk'' which is the X coordinate of a point ''P'' on the curve whose Y coordinate is a square and signatures ''(r,s)'' where ''r'' is the X coordinate of a point ''R'' whose Y coordinate is a square. The signature satisfies ''s⋅G = R + tagged_hash(r || pk || m)⋅P''.
'''Final scheme''' As a result, our final scheme ends up using public key ''pk'' which is the X coordinate of a point ''P'' on the curve whose Y coordinate is even and signatures ''(r,s)'' where ''r'' is the X coordinate of a point ''R'' whose Y coordinate is a square. The signature satisfies ''s⋅G = R + tagged_hash(r || pk || m)⋅P''.
=== Specification ===
@ -117,30 +117,33 @@ The following conventions are used, with constants as defined for [https://www.s
** The function ''int(x)'', where ''x'' is a 32-byte array, returns the 256-bit unsigned integer whose most significant byte first encoding is ''x''.
** The function ''is_square(x)'', where ''x'' is an integer, returns whether or not ''x'' is a quadratic residue modulo ''p''. Since ''p'' is prime, it is equivalent to the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(x / p) = x<sup>(p-1)/2</sup> mod p'' being equal to ''1''<ref>For points ''P'' on the secp256k1 curve it holds that ''y(P)<sup>(p-1)/2</sup> &ne; 0 mod p''.</ref>.
** The function ''has_square_y(P)'', where ''P'' is a point, is defined as ''not is_infinite(P) and is_square(y(P))''<ref>For points ''P'' on the secp256k1 curve it holds that ''has_square_y(P) = not has_square_y(-P)''.</ref>.
** The function ''lift_x(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x''<ref>
** The function ''has_even_y(x)'', where ''P'' is a point, returns ''y(P) mod 2 = 0''.
** The function ''lift_x_square_y(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x''<ref>
Given a candidate X coordinate ''x'' in the range ''0..p-1'', there exist either exactly two or exactly zero valid Y coordinates. If no valid Y coordinate exists, then ''x'' is not a valid X coordinate either, i.e., no point ''P'' exists for which ''x(P) = x''. The valid Y coordinates for a given candidate ''x'' are the square roots of ''c = x<sup>3</sup> + 7 mod p'' and they can be computed as ''y = &plusmn;c<sup>(p+1)/4</sup> mod p'' (see [https://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus Quadratic residue]) if they exist, which can be checked by squaring and comparing with ''c''.
</ref> and ''has_square_y(P)''<ref>
If ''P := lift_x(x)'' does not fail, then ''y := y(P) = c<sup>(p+1)/4</sup> mod p'' is square. Proof: If ''lift_x'' does not fail, ''y'' is a square root of ''c'' and therefore the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(c / p)'' is ''c<sup>(p-1)/2</sup> = 1 mod p''. Because the Legendre symbol ''(y / p)'' is ''y<sup>(p-1)/2</sup> mod p = c<sup>((p+1)/4)((p-1)/2)</sup> mod p = 1<sup>((p+1)/4)</sup> mod p = 1 mod p'', ''y'' is square.
</ref>, or fails if no such point exists. The function ''lift_x(x)'' is equivalent to the following pseudocode:
If ''P := lift_x_square_y(x)'' does not fail, then ''y := y(P) = c<sup>(p+1)/4</sup> mod p'' is square. Proof: If ''lift_x_square_y'' does not fail, ''y'' is a square root of ''c'' and therefore the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(c / p)'' is ''c<sup>(p-1)/2</sup> = 1 mod p''. Because the Legendre symbol ''(y / p)'' is ''y<sup>(p-1)/2</sup> mod p = c<sup>((p+1)/4)((p-1)/2)</sup> mod p = 1<sup>((p+1)/4)</sup> mod p = 1 mod p'', ''y'' is square.
</ref>, or fails if no such point exists. The function ''lift_x_square_y(x)'' is equivalent to the following pseudocode:
*** Let ''c = x<sup>3</sup> + 7 mod p''.
*** Let ''y = c<sup>(p+1)/4</sup> mod p''.
*** Fail if ''c &ne; y<sup>2</sup> mod p''.
*** Return the unique point ''P'' such that ''x(P) = x'' and ''y(P) = y'', or fail if no such point exists.
** The function ''point(x)'', where ''x'' is a 32-byte array, returns the point ''P = lift_x(int(x))''.
** The function ''lift_x_even_y(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x'' and ''has_even_y(P)'', or fails if no such point exists. If such a point does exist, it is always equal to either ''lift_x_square_y(x)'' or ''-lift_x_square_y(x)'', which suggests implementing it in terms of ''lift_x_square_y'', and optionally negating the result.
** The function ''hash<sub>tag</sub>(x)'' where ''tag'' is a UTF-8 encoded tag name and ''x'' is a byte array returns the 32-byte hash ''SHA256(SHA256(tag) || SHA256(tag) || x)''.
==== Public Key Generation ====
Input:
* The secret key ''sk'': a 32-byte array, generated uniformly at random
* The secret key ''sk'': a 32-byte array, freshly generated uniformly at random
The algorithm ''PubKey(sk)'' is defined as:
* Let ''d = int(sk)''.
* Fail if ''d = 0'' or ''d &ge; n''.
* Return ''bytes(d⋅G)''.
* Let ''d' = int(sk)''.
* Fail if ''d' = 0'' or ''d' &ge; n''.
* Return ''bytes(d'⋅G)''.
Note that we use a very different public key format (32 bytes) than the ones used by existing systems (which typically use elliptic curve points as public keys, or 33-byte or 65-byte encodings of them). A side effect is that ''PubKey(sk) = PubKey(bytes(n - int(sk))'', so every public key has two corresponding secret keys.
==== Public Key Conversion ====
As an alternative to generating keys randomly, it is also possible and safe to repurpose existing key generation algorithms for ECDSA in a compatible way. The secret keys constructed by such an algorithm can be used as ''sk'' directly. The public keys constructed by such an algorithm (assuming they use the 33-byte compressed encoding) need to be converted by dropping the first byte. Specifically, [[bip-0032.mediawiki|BIP32]] and schemes built on top of it remain usable.
==== Default Signing ====
@ -148,33 +151,37 @@ As an alternative to generating keys randomly, it is also possible and safe to r
Input:
* The secret key ''sk'': a 32-byte array
* The message ''m'': a 32-byte array
* Auxiliary random data ''a'': a 32-byte array
The algorithm ''Sign(sk, m)'' is defined as:
* Let ''d' = int(sk)''
* Fail if ''d' = 0'' or ''d' &ge; n''
* Let ''P = d'⋅G''
* Let ''d = d' '' if ''has_square_y(P)'', otherwise let ''d = n - d' ''.
* Let ''rand = hash<sub>BIPSchnorrDerive</sub>(bytes(d) || m)''.
* Let ''d = d' '' if ''has_even_y(P)'', otherwise let ''d = n - d' ''.
* Let ''t'' be the byte-wise xor of ''bytes(d)'' and ''H<sub>BIP340/aux</sub>(a)''<ref>The auxiliary random data is hashed (with a unique tag) as a precaution against situations where the randomness may be correlated with the private key itself. It is xored with the private key (rather than combined with it in a hash) to reduce the number of operations exposed to the actual secret key.</ref>.
* Let ''rand = hash<sub>BIP340/nonce</sub>(t || bytes(P) || m)''<ref>Including the [https://moderncrypto.org/mail-archive/curves/2020/001012.html public key as input to the nonce hash] helps ensure the robustness of the signing algorithm by preventing leakage of the secret key if the calculation of the public key ''P'' is performed incorrectly or maliciously, for example if it is left to the caller for performance reasons.</ref>.
* Let ''k' = int(rand) mod n''<ref>Note that in general, taking a uniformly random 256-bit integer modulo the curve order will produce an unacceptably biased result. However, for the secp256k1 curve, the order is sufficiently close to ''2<sup>256</sup>'' that this bias is not observable (''1 - n / 2<sup>256</sup>'' is around ''1.27 * 2<sup>-128</sup>'').</ref>.
* Fail if ''k' = 0''.
* Let ''R = k'⋅G''.
* Let ''k = k' '' if ''has_square_y(R)'', otherwise let ''k = n - k' ''.
* Let ''e = int(hash<sub>BIPSchnorr</sub>(bytes(R) || bytes(P) || m)) mod n''.
* Return the signature ''bytes(R) || bytes((k + ed) mod n)''.
* Let ''e = int(hash<sub>BIP340/challenge</sub>(bytes(R) || bytes(P) || m)) mod n''.
* Let ''sig = bytes(R) || bytes((k + ed) mod n)''.
* If ''Verify(bytes(P), m, sig)'' (see below) returns failure, abort<ref>Verifying the signature before leaving the signer prevents random or attacker provoked computation errors. This prevents publishing invalid signatures which may leak information about the secret key. It is recommended, but can be omitted if the computation cost is prohibitive.</ref>.
* Return the signature ''sig''.
The auxiliary random data should be set to fresh randomness generated at signing time, resulting in what is called a ''synthetic nonce''. Using 32 bytes of randomness is optimal. If obtaining randomness is expensive, 16 random bytes can be padded with 16 null bytes to obtain a 32-byte array. If randomness is not available at all at signing time, a simple counter wide enough to not repeat in practice (e.g., 64 bits or wider) and padded with null bytes to a 32 byte-array can be used, or even the constant array with 32 null bytes. Using any non-repeating value increases protection against [https://moderncrypto.org/mail-archive/curves/2017/000925.html fault injection attacks]. Using unpredictable randomness additionally increases protection against other side-channel attacks, and is '''recommended whenever available'''. Note that while this means the resulting nonce is not deterministic, the randomness is only supplemental to security. The normal security properties (excluding side-channel attacks) do not depend on the quality of the signing-time RNG.
==== Alternative Signing ====
It should be noted that various alternative signing algorithms can be used to produce equally valid signatures. The algorithm in the previous section is deterministic, i.e., it will always produce the same signature for a given message and secret key. This method does not need a random number generator (RNG) at signing time and is thus trivially robust against failures of RNGs. Alternatively the 32-byte ''rand'' value may be generated in other ways, producing a different but still valid signature (in other words, this is not a ''unique'' signature scheme). '''No matter which method is used to generate the ''rand'' value, the value must be a fresh uniformly random 32-byte string which is not even partially predictable for the attacker.'''
'''Synthetic nonces''' For instance when a RNG is available, 32 bytes of RNG output can be appended to the input to ''hash<sub>BIPSchnorrDerive</sub>''. This will change the corresponding line in the signing algorithm to ''rand = hash<sub>BIPSchnorrDerive</sub>(bytes(d) || m || get_32_bytes_from_rng())'', where ''get_32_bytes_from_rng()'' is the call to the RNG. It is safe to add the output of a low-entropy RNG. Adding high-entropy RNG output may improve protection against [https://moderncrypto.org/mail-archive/curves/2017/000925.html fault injection attacks and side-channel attacks]. Therefore, '''synthetic nonces are recommended in settings where these attacks are a concern''' - in particular on offline signing devices.
'''Verifying the signing output''' To prevent random or attacker provoked computation errors, the signature can be verified with the verification algorithm defined below before leaving the signer. This prevents publishing invalid signatures which may leak information about the secret key. '''If the additional computational cost is not a concern, it is recommended to verify newly created signatures and reject them in case of failure.'''
It should be noted that various alternative signing algorithms can be used to produce equally valid signatures. The 32-byte ''rand'' value may be generated in other ways, producing a different but still valid signature (in other words, this is not a ''unique'' signature scheme). '''No matter which method is used to generate the ''rand'' value, the value must be a fresh uniformly random 32-byte string which is not even partially predictable for the attacker.''' For nonces without randomness this implies that the same inputs must not be presented in another context. This can be most reliably accomplished by not reusing the same private key across different signing schemes. For example, if the ''rand'' value was computed as per RFC6979 and the same secret key is used in deterministic ECDSA with RFC6979, the signatures can leak the secret key through nonce reuse.
'''Nonce exfiltration protection''' It is possible to strengthen the nonce generation algorithm using a second device. In this case, the second device contributes randomness which the actual signer provably incorporates into its nonce. This prevents certain attacks where the signer device is compromised and intentionally tries to leak the secret key through its nonce selection.
'''Multisignatures''' This signature scheme is compatible with various types of multisignature and threshold schemes such as [https://eprint.iacr.org/2018/068 MuSig], where a single public key requires holders of multiple secret keys to participate in signing (see Applications below).
'''It is important to note that multisignature signing schemes in general are insecure with the ''rand'' generation from the default signing algorithm above (or any other deterministic method).'''
'''Precomputed public key data''' For many uses the compressed 33-byte encoding of the public key corresponding to the secret key may already be known, making it easy to evaluate ''has_even_y(P)'' and ''bytes(P)''. As such, having signers supply this directly may be more efficient than recalculating the public key from the secret key. However, if this optimization is used and additionally the signature verification at the end of the signing algorithm is dropped for increased efficiency, signers must ensure the public key is correctly calculated and not taken from untrusted sources.
==== Verification ====
Input:
@ -183,17 +190,17 @@ Input:
* A signature ''sig'': a 64-byte array
The algorithm ''Verify(pk, m, sig)'' is defined as:
* Let ''P = point(pk)''; fail if ''point(pk)'' fails.
* Let ''P = lift_x_even_y(int(pk))''; fail if that fails.
* Let ''r = int(sig[0:32])''; fail if ''r &ge; p''.
* Let ''s = int(sig[32:64])''; fail if ''s &ge; n''.
* Let ''e = int(hash<sub>BIPSchnorr</sub>(bytes(r) || bytes(P) || m)) mod n''.
* Let ''e = int(hash<sub>BIP340/challenge</sub>(bytes(r) || bytes(P) || m)) mod n''.
* Let ''R = s⋅G - e⋅P''.
* Fail if ''not has_square_y(R)'' or ''x(R) &ne; r''.
* Return success iff no failure occurred before reaching this point.
For every valid secret key ''sk'' and message ''m'', ''Verify(PubKey(sk),m,Sign(sk,m))'' will succeed.
Note that the correctness of verification relies on the fact that ''point(pk)'' always returns a point with a square Y coordinate. A hypothetical verification algorithm that treats points as public keys, and takes the point ''P'' directly as input would fail any time a point with non-square Y is used. While it is possible to correct for this by negating points with non-square Y coordinate before further processing, this would result in a scheme where every (message, signature) pair is valid for two public keys (a type of malleability that exists for ECDSA as well, but we don't wish to retain). We avoid these problems by treating just the X coordinate as public key.
Note that the correctness of verification relies on the fact that ''lift_x_even_y'' always returns a point with an even Y coordinate. A hypothetical verification algorithm that treats points as public keys, and takes the point ''P'' directly as input would fail any time a point with odd Y is used. While it is possible to correct for this by negating points with odd Y coordinate before further processing, this would result in a scheme where every (message, signature) pair is valid for two public keys (a type of malleability that exists for ECDSA as well, but we don't wish to retain). We avoid these problems by treating just the X coordinate as public key.
==== Batch Verification ====
@ -206,11 +213,11 @@ Input:
The algorithm ''BatchVerify(pk<sub>1..u</sub>, m<sub>1..u</sub>, sig<sub>1..u</sub>)'' is defined as:
* Generate ''u-1'' random integers ''a<sub>2...u</sub>'' in the range ''1...n-1''. They are generated deterministically using a [https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator CSPRNG] seeded by a cryptographic hash of all inputs of the algorithm, i.e. ''seed = seed_hash(pk<sub>1</sub>..pk<sub>u</sub> || m<sub>1</sub>..m<sub>u</sub> || sig<sub>1</sub>..sig<sub>u</sub> )''. A safe choice is to instantiate ''seed_hash'' with SHA256 and use [https://tools.ietf.org/html/rfc8439 ChaCha20] with key ''seed'' as a CSPRNG to generate 256-bit integers, skipping integers not in the range ''1...n-1''.
* For ''i = 1 .. u'':
** Let ''P<sub>i</sub> = point(pk<sub>i</sub>)''; fail if ''point(pk<sub>i</sub>)'' fails.
** Let ''P<sub>i</sub> = lift_x_even_y(int(pk<sub>i</sub>))''; fail if it fails.
** Let ''r<sub>i</sub> = int(sig<sub>i</sub>[0:32])''; fail if ''r<sub>i</sub> &ge; p''.
** Let ''s<sub>i</sub> = int(sig<sub>i</sub>[32:64])''; fail if ''s<sub>i</sub> &ge; n''.
** Let ''e<sub>i</sub> = int(hash<sub>BIPSchnorr</sub>(bytes(r<sub>i</sub>) || bytes(P<sub>i</sub>) || m<sub>i</sub>)) mod n''.
** Let ''R<sub>i</sub> = lift_x(r<sub>i</sub>)''; fail if ''lift_x(r<sub>i</sub>)'' fails.
** Let ''e<sub>i</sub> = int(hash<sub>BIP340/challenge</sub>(bytes(r<sub>i</sub>) || bytes(P<sub>i</sub>) || m<sub>i</sub>)) mod n''.
** Let ''R<sub>i</sub> = lift_x_square_y(r<sub>i</sub>)''; fail if ''lift_x_square_y(r<sub>i</sub>)'' fails.
* Fail if ''(s<sub>1</sub> + a<sub>2</sub>s<sub>2</sub> + ... + a<sub>u</sub>s<sub>u</sub>)⋅G &ne; R<sub>1</sub> + a<sub>2</sub>⋅R<sub>2</sub> + ... + a<sub>u</sub>⋅R<sub>u</sub> + e<sub>1</sub>⋅P<sub>1</sub> + (a<sub>2</sub>e<sub>2</sub>)⋅P<sub>2</sub> + ... + (a<sub>u</sub>e<sub>u</sub>)⋅P<sub>u</sub>''.
* Return success iff no failure occurred before reaching this point.

View File

@ -1,6 +1,16 @@
from typing import Tuple, Optional, Any
import hashlib
import binascii
# Set DEBUG to True to get a detailed debug output including
# intermediate values during key generation, signing, and
# verification. This is implemented via calls to the
# debug_print_vars() function.
#
# If you want to print values on an individual basis, use
# the pretty() function, e.g., print(pretty(foo)).
DEBUG = False
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
@ -8,50 +18,55 @@ n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
# represented by the None keyword.
G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)
Point = Tuple[int, int]
# This implementation can be sped up by storing the midstate after hashing
# tag_hash instead of rehashing it all the time.
def tagged_hash(tag, msg):
def tagged_hash(tag: str, msg: bytes) -> bytes:
tag_hash = hashlib.sha256(tag.encode()).digest()
return hashlib.sha256(tag_hash + tag_hash + msg).digest()
def is_infinity(P):
def is_infinity(P: Optional[Point]) -> bool:
return P is None
def x(P):
def x(P: Point) -> int:
return P[0]
def y(P):
def y(P: Point) -> int:
return P[1]
def point_add(P1, P2):
if (P1 is None):
def point_add(P1: Optional[Point], P2: Optional[Point]) -> Optional[Point]:
if P1 is None:
return P2
if (P2 is None):
if P2 is None:
return P1
if (x(P1) == x(P2) and y(P1) != y(P2)):
if (x(P1) == x(P2)) and (y(P1) != y(P2)):
return None
if (P1 == P2):
if P1 == P2:
lam = (3 * x(P1) * x(P1) * pow(2 * y(P1), p - 2, p)) % p
else:
lam = ((y(P2) - y(P1)) * pow(x(P2) - x(P1), p - 2, p)) % p
x3 = (lam * lam - x(P1) - x(P2)) % p
return (x3, (lam * (x(P1) - x3) - y(P1)) % p)
def point_mul(P, n):
def point_mul(P: Optional[Point], n: int) -> Optional[Point]:
R = None
for i in range(256):
if ((n >> i) & 1):
if (n >> i) & 1:
R = point_add(R, P)
P = point_add(P, P)
return R
def bytes_from_int(x):
def bytes_from_int(x: int) -> bytes:
return x.to_bytes(32, byteorder="big")
def bytes_from_point(P):
def bytes_from_point(P: Point) -> bytes:
return bytes_from_int(x(P))
def point_from_bytes(b):
def xor_bytes(b0: bytes, b1: bytes) -> bytes:
return bytes(x ^ y for (x, y) in zip(b0, b1))
def lift_x_square_y(b: bytes) -> Optional[Point]:
x = int_from_bytes(b)
if x >= p:
return None
@ -59,94 +74,125 @@ def point_from_bytes(b):
y = pow(y_sq, (p + 1) // 4, p)
if pow(y, 2, p) != y_sq:
return None
return [x, y]
return (x, y)
def int_from_bytes(b):
def lift_x_even_y(b: bytes) -> Optional[Point]:
P = lift_x_square_y(b)
if P is None:
return None
else:
return (x(P), y(P) if y(P) % 2 == 0 else p - y(P))
def int_from_bytes(b: bytes) -> int:
return int.from_bytes(b, byteorder="big")
def hash_sha256(b):
def hash_sha256(b: bytes) -> bytes:
return hashlib.sha256(b).digest()
def is_square(x):
return pow(x, (p - 1) // 2, p) == 1
def is_square(x: int) -> bool:
return int(pow(x, (p - 1) // 2, p)) == 1
def has_square_y(P):
return not is_infinity(P) and is_square(y(P))
def has_square_y(P: Optional[Point]) -> bool:
infinity = is_infinity(P)
if infinity: return False
assert P is not None
return is_square(y(P))
def pubkey_gen(seckey):
x = int_from_bytes(seckey)
if not (1 <= x <= n - 1):
def has_even_y(P: Point) -> bool:
return y(P) % 2 == 0
def pubkey_gen(seckey: bytes) -> bytes:
d0 = int_from_bytes(seckey)
if not (1 <= d0 <= n - 1):
raise ValueError('The secret key must be an integer in the range 1..n-1.')
P = point_mul(G, x)
P = point_mul(G, d0)
assert P is not None
return bytes_from_point(P)
def schnorr_sign(msg, seckey0):
def schnorr_sign(msg: bytes, seckey: bytes, aux_rand: bytes) -> bytes:
if len(msg) != 32:
raise ValueError('The message must be a 32-byte array.')
seckey0 = int_from_bytes(seckey0)
if not (1 <= seckey0 <= n - 1):
d0 = int_from_bytes(seckey)
if not (1 <= d0 <= n - 1):
raise ValueError('The secret key must be an integer in the range 1..n-1.')
P = point_mul(G, seckey0)
seckey = seckey0 if has_square_y(P) else n - seckey0
k0 = int_from_bytes(tagged_hash("BIPSchnorrDerive", bytes_from_int(seckey) + msg)) % n
if len(aux_rand) != 32:
raise ValueError('aux_rand must be 32 bytes instead of %i.' % len(aux_rand))
P = point_mul(G, d0)
assert P is not None
d = d0 if has_even_y(P) else n - d0
t = xor_bytes(bytes_from_int(d), tagged_hash("BIP340/aux", aux_rand))
k0 = int_from_bytes(tagged_hash("BIP340/nonce", t + bytes_from_point(P) + msg)) % n
if k0 == 0:
raise RuntimeError('Failure. This happens only with negligible probability.')
R = point_mul(G, k0)
assert R is not None
k = n - k0 if not has_square_y(R) else k0
e = int_from_bytes(tagged_hash("BIPSchnorr", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
sig = bytes_from_point(R) + bytes_from_int((k + e * d) % n)
debug_print_vars()
if not schnorr_verify(msg, bytes_from_point(P), sig):
raise RuntimeError('The created signature does not pass verification.')
return sig
def schnorr_verify(msg, pubkey, sig):
def schnorr_verify(msg: bytes, pubkey: bytes, sig: bytes) -> bool:
if len(msg) != 32:
raise ValueError('The message must be a 32-byte array.')
if len(pubkey) != 32:
raise ValueError('The public key must be a 32-byte array.')
if len(sig) != 64:
raise ValueError('The signature must be a 64-byte array.')
P = point_from_bytes(pubkey)
if (P is None):
return False
P = lift_x_even_y(pubkey)
r = int_from_bytes(sig[0:32])
s = int_from_bytes(sig[32:64])
if (r >= p or s >= n):
if (P is None) or (r >= p) or (s >= n):
debug_print_vars()
return False
e = int_from_bytes(tagged_hash("BIPSchnorr", sig[0:32] + pubkey + msg)) % n
e = int_from_bytes(tagged_hash("BIP340/challenge", sig[0:32] + pubkey + msg)) % n
R = point_add(point_mul(G, s), point_mul(P, n - e))
if R is None or not has_square_y(R) or x(R) != r:
if (R is None) or (not has_square_y(R)) or (x(R) != r):
debug_print_vars()
return False
debug_print_vars()
return True
#
# The following code is only used to verify the test vectors.
#
import csv
import os
import sys
def test_vectors():
def test_vectors() -> bool:
all_passed = True
with open('test-vectors.csv', newline='') as csvfile:
with open(os.path.join(sys.path[0], 'test-vectors.csv'), newline='') as csvfile:
reader = csv.reader(csvfile)
reader.__next__()
for row in reader:
(index, seckey, pubkey, msg, sig, result, comment) = row
pubkey = bytes.fromhex(pubkey)
msg = bytes.fromhex(msg)
sig = bytes.fromhex(sig)
result = result == 'TRUE'
print('\nTest vector #%-3i: ' % int(index))
if seckey != '':
seckey = bytes.fromhex(seckey)
(index, seckey_hex, pubkey_hex, aux_rand_hex, msg_hex, sig_hex, result_str, comment) = row
pubkey = bytes.fromhex(pubkey_hex)
msg = bytes.fromhex(msg_hex)
sig = bytes.fromhex(sig_hex)
result = result_str == 'TRUE'
print('\nTest vector', ('#' + index).rjust(3, ' ') + ':')
if seckey_hex != '':
seckey = bytes.fromhex(seckey_hex)
pubkey_actual = pubkey_gen(seckey)
if pubkey != pubkey_actual:
print(' * Failed key generation.')
print(' Expected key:', pubkey.hex().upper())
print(' Actual key:', pubkey_actual.hex().upper())
sig_actual = schnorr_sign(msg, seckey)
if sig == sig_actual:
print(' * Passed signing test.')
else:
print(' * Failed signing test.')
print(' Expected signature:', sig.hex().upper())
print(' Actual signature:', sig_actual.hex().upper())
aux_rand = bytes.fromhex(aux_rand_hex)
try:
sig_actual = schnorr_sign(msg, seckey, aux_rand)
if sig == sig_actual:
print(' * Passed signing test.')
else:
print(' * Failed signing test.')
print(' Expected signature:', sig.hex().upper())
print(' Actual signature:', sig_actual.hex().upper())
all_passed = False
except RuntimeError as e:
print(' * Signing test raised exception:', e)
all_passed = False
result_actual = schnorr_verify(msg, pubkey, sig)
if result == result_actual:
@ -165,5 +211,29 @@ def test_vectors():
print('Some test vectors failed.')
return all_passed
#
# The following code is only used for debugging
#
import inspect
def pretty(v: Any) -> Any:
if isinstance(v, bytes):
return '0x' + v.hex()
if isinstance(v, int):
return pretty(bytes_from_int(v))
if isinstance(v, tuple):
return tuple(map(pretty, v))
return v
def debug_print_vars() -> None:
if DEBUG:
current_frame = inspect.currentframe()
assert current_frame is not None
frame = current_frame.f_back
assert frame is not None
print(' Variables in function ', frame.f_code.co_name, ' at line ', frame.f_lineno, ':', sep='')
for var_name, var_val in frame.f_locals.items():
print(' ' + var_name.rjust(11, ' '), '==', pretty(var_val))
if __name__ == '__main__':
test_vectors()

View File

@ -1,16 +1,16 @@
index,secret key,public key,message,signature,verification result,comment
0,0000000000000000000000000000000000000000000000000000000000000001,79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,0000000000000000000000000000000000000000000000000000000000000000,528F745793E8472C0329742A463F59E58F3A3F1A4AC09C28F6F8514D4D0322A258BD08398F82CF67B812AB2C7717CE566F877C2F8795C846146978E8F04782AE,TRUE,
1,B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E844160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598,TRUE,
2,C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9,DD308AFEC5777E13121FA72B9CC1B7CC0139715309B086C960E18FD969774EB8,5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C,2D941B38E32624BF0AC7669C0971B990994AF6F9B18426BF4F4E7EC10E6CDF386CF646C6DDAFCFA7F1993EEB2E4D66416AEAD1DDAE2F22D63CAD901412D116C6,TRUE,
3,0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710,25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,8BD2C11604B0A87A443FCC2E5D90E5328F934161B18864FB48CE10CB59B45FB9B5B2A0F129BD88F5BDC05D5C21E5C57176B913002335784F9777A24BD317CD36,TRUE,test fails if msg is reduced modulo p or n
4,,D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9,4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703,00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C63EE374AC7FAE927D334CCB190F6FB8FD27A2DDC639CCEE46D43F113A4035A2C7F,TRUE,
5,,EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E844160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598,FALSE,public key not on the curve
6,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9935554D1AA5F0374E5CDAACB3925035C7C169B27C4426DF0A6B19AF3BAEAB138,FALSE,has_square_y(R) is false
7,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,10AC49A6A2EBF604189C5F40FC75AF2D42D77DE9A2782709B1EB4EAF1CFE9108D7003B703A3499D5E29529D39BA040A44955127140F81A8A89A96F992AC0FE79,FALSE,negated message
8,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E84BE9F4303C0B9913470532E6521A827951D39F5C631CFD98CE39AC4D7A5A83BA9,FALSE,negated s value
9,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,000000000000000000000000000000000000000000000000000000000000000099D2F0EBC2996808208633CD9926BF7EC3DAB73DAAD36E85B3040A698E6D1CE0,FALSE,sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0
10,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,000000000000000000000000000000000000000000000000000000000000000124E81D89F01304695CE943F7D5EBD00EF726A0864B4FF33895B4E86BEADC5456,FALSE,sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1
11,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D4160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598,FALSE,sig[0:32] is not an X coordinate on the curve
12,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F4160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598,FALSE,sig[0:32] is equal to field size
13,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E84FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141,FALSE,sig[32:64] is equal to curve order
14,,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC30,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E844160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598,FALSE,public key is not a valid X coordinate because it exceeds the field size
index,secret key,public key,aux_rand,message,signature,verification result,comment
0,0000000000000000000000000000000000000000000000000000000000000003,F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9,0000000000000000000000000000000000000000000000000000000000000000,0000000000000000000000000000000000000000000000000000000000000000,067E337AD551B2276EC705E43F0920926A9CE08AC68159F9D258C9BBA412781C9F059FCDF4824F13B3D7C1305316F956704BB3FEA2C26142E18ACD90A90C947E,TRUE,
1,B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,0000000000000000000000000000000000000000000000000000000000000001,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,0E12B8C520948A776753A96F21ABD7FDC2D7D0C0DDC90851BE17B04E75EF86A47EF0DA46C4DC4D0D1BCB8668C2CE16C54C7C23A6716EDE303AF86774917CF928,TRUE,
2,C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9,DD308AFEC5777E13121FA72B9CC1B7CC0139715309B086C960E18FD969774EB8,C87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906,7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C,FC012F9FB8FE00A358F51EF93DCE0DC0C895F6E9A87C6C4905BC820B0C3677616B8737D14E703AF8E16E22E5B8F26227D41E5128F82D86F747244CC289C74D1D,TRUE,
3,0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710,25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FC132D4E426DFF535AEC0FA7083AC5118BC1D5FFFD848ABD8290C23F271CA0DD11AEDCEA3F55DA9BD677FE29C9DDA0CF878BCE43FDE0E313D69D1AF7A5AE8369,TRUE,test fails if msg is reduced modulo p or n
4,,D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9,,4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703,00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C630EC50E5363E227ACAC6F542CE1C0B186657E0E0D1A6FFE283A33438DE4738419,TRUE,
5,,EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,public key not on the curve
6,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F995A579DA959FA739FCE39E8BD16FECB5CDCF97060B2C73CDE60E87ABCA1AA5D9,FALSE,has_square_y(R) is false
7,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,F8704654F4687B7365ED32E796DE92761390A3BCC495179BFE073817B7ED32824E76B987F7C1F9A751EF5C343F7645D3CFFC7D570B9A7192EBF1898E1344E3BF,FALSE,negated message
8,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C8076BE9F84A9C5445BEBD780C8B5CCD45C883D0DC47CD594B21A858F31A19AAB71D,FALSE,negated s value
9,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,00000000000000000000000000000000000000000000000000000000000000009915EE59F07F9DBBAEDC31BFCC9B34AD49DE669CD24773BCED77DDA36D073EC8,FALSE,sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0
10,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,0000000000000000000000000000000000000000000000000000000000000001C7EC918B2B9CF34071BB54BED7EB4BB6BAB148E9A7E36E6B228F95DFA08B43EC,FALSE,sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1
11,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,sig[0:32] is not an X coordinate on the curve
12,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,sig[0:32] is equal to field size
13,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141,FALSE,sig[32:64] is equal to curve order
14,,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC30,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,public key is not a valid X coordinate because it exceeds the field size

1 index secret key public key aux_rand message signature verification result comment
2 0 0000000000000000000000000000000000000000000000000000000000000001 0000000000000000000000000000000000000000000000000000000000000003 79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 528F745793E8472C0329742A463F59E58F3A3F1A4AC09C28F6F8514D4D0322A258BD08398F82CF67B812AB2C7717CE566F877C2F8795C846146978E8F04782AE 067E337AD551B2276EC705E43F0920926A9CE08AC68159F9D258C9BBA412781C9F059FCDF4824F13B3D7C1305316F956704BB3FEA2C26142E18ACD90A90C947E TRUE
3 1 B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 0000000000000000000000000000000000000000000000000000000000000001 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E844160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598 0E12B8C520948A776753A96F21ABD7FDC2D7D0C0DDC90851BE17B04E75EF86A47EF0DA46C4DC4D0D1BCB8668C2CE16C54C7C23A6716EDE303AF86774917CF928 TRUE
4 2 C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9 DD308AFEC5777E13121FA72B9CC1B7CC0139715309B086C960E18FD969774EB8 C87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906 5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C 7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C 2D941B38E32624BF0AC7669C0971B990994AF6F9B18426BF4F4E7EC10E6CDF386CF646C6DDAFCFA7F1993EEB2E4D66416AEAD1DDAE2F22D63CAD901412D116C6 FC012F9FB8FE00A358F51EF93DCE0DC0C895F6E9A87C6C4905BC820B0C3677616B8737D14E703AF8E16E22E5B8F26227D41E5128F82D86F747244CC289C74D1D TRUE
5 3 0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710 25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 8BD2C11604B0A87A443FCC2E5D90E5328F934161B18864FB48CE10CB59B45FB9B5B2A0F129BD88F5BDC05D5C21E5C57176B913002335784F9777A24BD317CD36 FC132D4E426DFF535AEC0FA7083AC5118BC1D5FFFD848ABD8290C23F271CA0DD11AEDCEA3F55DA9BD677FE29C9DDA0CF878BCE43FDE0E313D69D1AF7A5AE8369 TRUE test fails if msg is reduced modulo p or n
6 4 D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9 4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703 00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C63EE374AC7FAE927D334CCB190F6FB8FD27A2DDC639CCEE46D43F113A4035A2C7F 00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C630EC50E5363E227ACAC6F542CE1C0B186657E0E0D1A6FFE283A33438DE4738419 TRUE
7 5 EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E844160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598 7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24 FALSE public key not on the curve
8 6 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9935554D1AA5F0374E5CDAACB3925035C7C169B27C4426DF0A6B19AF3BAEAB138 F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F995A579DA959FA739FCE39E8BD16FECB5CDCF97060B2C73CDE60E87ABCA1AA5D9 FALSE has_square_y(R) is false
9 7 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 10AC49A6A2EBF604189C5F40FC75AF2D42D77DE9A2782709B1EB4EAF1CFE9108D7003B703A3499D5E29529D39BA040A44955127140F81A8A89A96F992AC0FE79 F8704654F4687B7365ED32E796DE92761390A3BCC495179BFE073817B7ED32824E76B987F7C1F9A751EF5C343F7645D3CFFC7D570B9A7192EBF1898E1344E3BF FALSE negated message
10 8 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E84BE9F4303C0B9913470532E6521A827951D39F5C631CFD98CE39AC4D7A5A83BA9 7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C8076BE9F84A9C5445BEBD780C8B5CCD45C883D0DC47CD594B21A858F31A19AAB71D FALSE negated s value
11 9 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 000000000000000000000000000000000000000000000000000000000000000099D2F0EBC2996808208633CD9926BF7EC3DAB73DAAD36E85B3040A698E6D1CE0 00000000000000000000000000000000000000000000000000000000000000009915EE59F07F9DBBAEDC31BFCC9B34AD49DE669CD24773BCED77DDA36D073EC8 FALSE sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0
12 10 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 000000000000000000000000000000000000000000000000000000000000000124E81D89F01304695CE943F7D5EBD00EF726A0864B4FF33895B4E86BEADC5456 0000000000000000000000000000000000000000000000000000000000000001C7EC918B2B9CF34071BB54BED7EB4BB6BAB148E9A7E36E6B228F95DFA08B43EC FALSE sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1
13 11 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D4160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598 4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24 FALSE sig[0:32] is not an X coordinate on the curve
14 12 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F4160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24 FALSE sig[0:32] is equal to field size
15 13 DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E84FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 FALSE sig[32:64] is equal to curve order
16 14 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC30 243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E844160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598 7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24 FALSE public key is not a valid X coordinate because it exceeds the field size

View File

@ -2,46 +2,67 @@ import sys
from reference import *
def vector0():
seckey = bytes_from_int(1)
seckey = bytes_from_int(3)
msg = bytes_from_int(0)
sig = schnorr_sign(msg, seckey)
aux_rand = bytes_from_int(0)
sig = schnorr_sign(msg, seckey, aux_rand)
pubkey = pubkey_gen(seckey)
# The point reconstructed from the public key has an even Y coordinate.
pubkey_point = point_from_bytes(pubkey)
assert(pubkey_point[1] & 1 == 0)
# We should have at least one test vector where the seckey needs to be
# negated and one where it doesn't. In this one the seckey doesn't need to
# be negated.
x = int_from_bytes(seckey)
P = point_mul(G, x)
assert(y(P) % 2 == 0)
return (seckey, pubkey, msg, sig, "TRUE", None)
# For historical reasons (pubkey tiebreaker was squareness and not evenness)
# we should have at least one test vector where the the point reconstructed
# from the public key has a square and one where it has a non-square Y
# coordinate. In this one Y is non-square.
pubkey_point = lift_x_even_y(pubkey)
assert(not has_square_y(pubkey_point))
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None)
def vector1():
seckey = bytes_from_int(0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF)
msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
sig = schnorr_sign(msg, seckey)
pubkey = pubkey_gen(seckey)
aux_rand = bytes_from_int(1)
# The point reconstructed from the public key has an odd Y coordinate.
pubkey_point = point_from_bytes(pubkey)
assert(pubkey_point[1] & 1 == 1)
return (seckey, pubkey, msg, sig, "TRUE", None)
sig = schnorr_sign(msg, seckey, aux_rand)
return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", None)
def vector2():
seckey = bytes_from_int(0xC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9)
msg = bytes_from_int(0x5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C)
sig = schnorr_sign(msg, seckey)
msg = bytes_from_int(0x7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C)
aux_rand = bytes_from_int(0xC87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906)
sig = schnorr_sign(msg, seckey, aux_rand)
# The point reconstructed from the public key has a square Y coordinate.
pubkey = pubkey_gen(seckey)
pubkey_point = lift_x_even_y(pubkey)
assert(has_square_y(pubkey_point))
# This signature vector would not verify if the implementer checked the
# squareness of the X coordinate of R instead of the Y coordinate.
R = point_from_bytes(sig[0:32])
R = lift_x_square_y(sig[0:32])
assert(not is_square(R[0]))
return (seckey, pubkey_gen(seckey), msg, sig, "TRUE", None)
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None)
def vector3():
seckey = bytes_from_int(0x0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710)
# Need to negate this seckey before signing
x = int_from_bytes(seckey)
P = point_mul(G, x)
assert(y(P) % 2 != 0)
msg = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
sig = schnorr_sign(msg, seckey)
return (seckey, pubkey_gen(seckey), msg, sig, "TRUE", "test fails if msg is reduced modulo p or n")
aux_rand = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
sig = schnorr_sign(msg, seckey, aux_rand)
return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", "test fails if msg is reduced modulo p or n")
# Signs with a given nonce. This can be INSECURE and is only INTENDED FOR
# GENERATING TEST VECTORS. Results in an invalid signature if y(kG) is not
@ -53,9 +74,9 @@ def insecure_schnorr_sign_fixed_nonce(msg, seckey0, k):
if not (1 <= seckey0 <= n - 1):
raise ValueError('The secret key must be an integer in the range 1..n-1.')
P = point_mul(G, seckey0)
seckey = seckey0 if has_square_y(P) else n - seckey0
seckey = seckey0 if has_even_y(P) else n - seckey0
R = point_mul(G, k)
e = int_from_bytes(tagged_hash("BIPSchnorr", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
# Creates a singature with a small x(R) by using k = 1/2
@ -64,10 +85,11 @@ def vector4():
seckey = bytes_from_int(0x763758E5CBEEDEE4F7D3FC86F531C36578933228998226672F13C4F0EBE855EB)
msg = bytes_from_int(0x4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703)
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, one_half)
return (None, pubkey_gen(seckey), msg, sig, "TRUE", None)
return (None, pubkey_gen(seckey), None, msg, sig, "TRUE", None)
default_seckey = bytes_from_int(0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF)
default_msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
default_aux_rand = bytes_from_int(0xC87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906)
# Public key is not on the curve
def vector5():
@ -75,12 +97,12 @@ def vector5():
# public key.
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
sig = schnorr_sign(msg, seckey, default_aux_rand)
pubkey = bytes_from_int(0xEEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34)
assert(point_from_bytes(pubkey) is None)
assert(lift_x_even_y(pubkey) is None)
return (None, pubkey, msg, sig, "FALSE", "public key not on the curve")
return (None, pubkey, None, msg, sig, "FALSE", "public key not on the curve")
def vector6():
seckey = default_seckey
@ -92,21 +114,21 @@ def vector6():
R = point_mul(G, k)
assert(not has_square_y(R))
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "has_square_y(R) is false")
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "has_square_y(R) is false")
def vector7():
seckey = default_seckey
msg = int_from_bytes(default_msg)
neg_msg = bytes_from_int(n - msg)
sig = schnorr_sign(neg_msg, seckey)
return (None, pubkey_gen(seckey), bytes_from_int(msg), sig, "FALSE", "negated message")
sig = schnorr_sign(neg_msg, seckey, default_aux_rand)
return (None, pubkey_gen(seckey), None, bytes_from_int(msg), sig, "FALSE", "negated message")
def vector8():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
sig = schnorr_sign(msg, seckey, default_aux_rand)
sig = sig[0:32] + bytes_from_int(n - int_from_bytes(sig[32:64]))
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "negated s value")
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "negated s value")
def bytes_from_point_inf0(P):
if P == None:
@ -125,7 +147,7 @@ def vector9():
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0")
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0")
def bytes_from_point_inf1(P):
if P == None:
@ -144,7 +166,7 @@ def vector10():
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1")
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is an X
@ -152,14 +174,14 @@ def vector10():
def vector11():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
sig = schnorr_sign(msg, seckey, default_aux_rand)
# Replace R's X coordinate with an X coordinate that's not on the curve
x_not_on_curve = bytes_from_int(0x4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D)
assert(point_from_bytes(x_not_on_curve) is None)
assert(lift_x_square_y(x_not_on_curve) is None)
sig = x_not_on_curve + sig[32:64]
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve")
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is smaller
@ -167,12 +189,12 @@ def vector11():
def vector12():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
sig = schnorr_sign(msg, seckey, default_aux_rand)
# Replace R's X coordinate with an X coordinate that's equal to field size
sig = bytes_from_int(p) + sig[32:64]
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[0:32] is equal to field size")
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is equal to field size")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[32:64] is smaller
@ -180,12 +202,12 @@ def vector12():
def vector13():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
sig = schnorr_sign(msg, seckey, default_aux_rand)
# Replace s with a number that's equal to the curve order
sig = sig[0:32] + bytes_from_int(n)
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[32:64] is equal to curve order")
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[32:64] is equal to curve order")
# Test out of range pubkey
# It's cryptographically impossible to create a test vector that fails if run
@ -197,16 +219,15 @@ def vector14():
# public key.
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
sig = schnorr_sign(msg, seckey, default_aux_rand)
pubkey_int = p + 1
pubkey = bytes_from_int(pubkey_int)
assert(point_from_bytes(pubkey) is None)
assert(lift_x_even_y(pubkey) is None)
# If an implementation would reduce a given public key modulo p then the
# pubkey would be valid
assert(point_from_bytes(bytes_from_int(pubkey_int % p)) is not None)
assert(lift_x_even_y(bytes_from_int(pubkey_int % p)) is not None)
return (None, pubkey, msg, sig, "FALSE", "public key is not a valid X coordinate because it exceeds the field size")
return (None, pubkey, None, msg, sig, "FALSE", "public key is not a valid X coordinate because it exceeds the field size")
vectors = [
vector0(),
@ -227,14 +248,14 @@ vectors = [
]
# Converts the byte strings of a test vector into hex strings
def bytes_to_hex(seckey, pubkey, msg, sig, result, comment):
return (seckey.hex().upper() if seckey is not None else None, pubkey.hex().upper(), msg.hex().upper(), sig.hex().upper(), result, comment)
def bytes_to_hex(seckey, pubkey, aux_rand, msg, sig, result, comment):
return (seckey.hex().upper() if seckey is not None else None, pubkey.hex().upper(), aux_rand.hex().upper() if aux_rand is not None else None, msg.hex().upper(), sig.hex().upper(), result, comment)
vectors = list(map(lambda vector: bytes_to_hex(vector[0], vector[1], vector[2], vector[3], vector[4], vector[5]), vectors))
vectors = list(map(lambda vector: bytes_to_hex(vector[0], vector[1], vector[2], vector[3], vector[4], vector[5], vector[6]), vectors))
def print_csv(vectors):
writer = csv.writer(sys.stdout)
writer.writerow(("index", "secret key", "public key", "message", "signature", "verification result", "comment"))
writer.writerow(("index", "secret key", "public key", "aux_rand", "message", "signature", "verification result", "comment"))
for (i,v) in enumerate(vectors):
writer.writerow((i,)+v)

View File

@ -59,13 +59,13 @@ The following rules only apply when such an output is being spent. Any other out
* Let ''q'' be the 32-byte array containing the witness program (the second push in the scriptPubKey) which represents a public key according to [[bip-0340.mediawiki#design|BIP340]].
* Fail if the witness stack has 0 elements.
* If there are at least two witness elements, and the first byte of the last element is 0x50<ref>'''Why is the first byte of the annex <code>0x50</code>?''' The <code>0x50</code> is chosen as it could not be confused with a valid P2WPKH or P2WSH spending. As the control block's initial byte's lowest bit is used to indicate the public key's Y squareness, each leaf version needs an even byte value and the immediately following odd byte value that are both not yet used in P2WPKH or P2WSH spending. To indicate the annex, only an "unpaired" available byte is necessary like <code>0x50</code>. This choice maximizes the available options for future script versions.</ref>, this last element is called ''annex'' ''a''<ref>'''What is the purpose of the annex?''' The annex is a reserved space for future extensions, such as indicating the validation costs of computationally expensive new opcodes in a way that is recognizable without knowing the scriptPubKey of the output being spent. Until the meaning of this field is defined by another softfork, users SHOULD NOT include <code>annex</code> in transactions, or it may lead to PERMANENT FUND LOSS.</ref> and is removed from the witness stack. The annex (or the lack of thereof) is always covered by the signature and contributes to transaction weight, but is otherwise ignored during taproot validation.
* If there are at least two witness elements, and the first byte of the last element is 0x50<ref>'''Why is the first byte of the annex <code>0x50</code>?''' The <code>0x50</code> is chosen as it could not be confused with a valid P2WPKH or P2WSH spending. As the control block's initial byte's lowest bit is used to indicate the parity of the public key's Y coordinate, each leaf version needs an even byte value and the immediately following odd byte value that are both not yet used in P2WPKH or P2WSH spending. To indicate the annex, only an "unpaired" available byte is necessary like <code>0x50</code>. This choice maximizes the available options for future script versions.</ref>, this last element is called ''annex'' ''a''<ref>'''What is the purpose of the annex?''' The annex is a reserved space for future extensions, such as indicating the validation costs of computationally expensive new opcodes in a way that is recognizable without knowing the scriptPubKey of the output being spent. Until the meaning of this field is defined by another softfork, users SHOULD NOT include <code>annex</code> in transactions, or it may lead to PERMANENT FUND LOSS.</ref> and is removed from the witness stack. The annex (or the lack of thereof) is always covered by the signature and contributes to transaction weight, but is otherwise ignored during taproot validation.
* If there is exactly one element left in the witness stack, key path spending is used:
** The single witness stack element is interpreted as the signature and must be valid (see the next section) for the public key ''q'' (see the next subsection).
* If there are at least two witness elements left, script path spending is used:
** Call the second-to-last stack element ''s'', the script.
** The last stack element is called the control block ''c'', and must have length ''33 + 32m'', for a value of ''m'' that is an integer between 0 and 128<ref>'''Why is the Merkle path length limited to 128?''' The optimally space-efficient Merkle tree can be constructed based on the probabilities of the scripts in the leaves, using the Huffman algorithm. This algorithm will construct branches with lengths approximately equal to ''log<sub>2</sub>(1/probability)'', but to have branches longer than 128 you would need to have scripts with an execution chance below 1 in ''2<sup>128</sup>''. As that is our security bound, scripts that truly have such a low chance can probably be removed entirely.</ref>, inclusive. Fail if it does not have such a length.
** Let ''p = c[1:33]'' and let ''P = point(p)'' where ''point'' and ''[:]'' are defined as in [[bip-0340.mediawiki#design|BIP340]]. Fail if this point is not on the curve.
** Let ''p = c[1:33]'' and let ''P = lift_x_even_y(int(p))'' where ''lift_x_even_y'' and ''[:]'' are defined as in [[bip-0340.mediawiki#design|BIP340]]. Fail if this point is not on the curve.
** Let ''v = c[0] & 0xfe'' and call it the ''leaf version''<ref>'''What constraints are there on the leaf version?''' First, the leaf version cannot be odd as ''c[0] & 0xfe'' will always be even, and cannot be ''0x50'' as that would result in ambiguity with the annex. In addition, in order to support some forms of static analysis that rely on being able to identify script spends without access to the output being spent, it is recommended to avoid using any leaf versions that would conflict with a valid first byte of either a valid P2WPKH pubkey or a valid P2WSH script (that is, both ''v'' and ''v | 1'' should be an undefined, invalid or disabled opcode or an opcode that is not valid as the first opcode). The values that comply to this rule are the 32 even values between ''0xc0'' and ''0xfe'' and also ''0x66'', ''0x7e'', ''0x80'', ''0x84'', ''0x96'', ''0x98'', ''0xba'', ''0xbc'', ''0xbe''. Note also that this constraint implies that leaf versions should be shared amongst different witness versions, as knowing the witness version requires access to the output being spent.</ref>.
** Let ''k<sub>0</sub> = hash<sub>TapLeaf</sub>(v || compact_size(size of s) || s)''; also call it the ''tapleaf hash''.
** For ''j'' in ''[0,1,...,m-1]'':
@ -75,8 +75,8 @@ The following rules only apply when such an output is being spent. Any other out
**** If ''k<sub>j</sub> &ge; e<sub>j</sub>'': ''k<sub>j+1</sub> = hash<sub>TapBranch</sub>(e<sub>j</sub> || k<sub>j</sub>)''.
** Let ''t = hash<sub>TapTweak</sub>(p || k<sub>m</sub>)''.
** If ''t &ge; 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141'' (order of secp256k1), fail.
** Let ''Q = point(q) if (c[0] & 1) = 1 and -point(q) otherwise''<ref>'''Why is it necessary to reveal a bit to indicate if the point represented by the output public key is negated in a script path spend?''' The ''point'' function (defined in [[bip-0340.mediawiki#design|BIP340]]) always constructs a point with a square Y coordinate, but because ''Q'' is constructed by adding the taproot tweak to the internal public key ''P'', it cannot easily be guaranteed that ''Q'' in fact has such a Y coordinate. Therefore, before verifying the taproot tweak the original point is restored by negating if necessary. We can not ignore the Y coordinate because it would prevent batch verification. Trying out multiple internal keys until there's such a ''Q'' is possible but undesirable and unnecessary since this information about the Y coordinate only consumes an unused bit.</ref>. Fail if this point is not on the curve.
** If ''Q &ne; P + int(t)G'', fail.
** Let ''Q = P + int(t)G''.
** If ''q &ne; x(Q)'' or ''c[0] & 1 &ne; y(Q) mod 2'', fail<ref>'''Why is it necessary to reveal a bit in a script path spend and check that it matches the parity of the Y coordinate of ''Q''?''' The parity of the Y coordinate is necessary to lift the X coordinate ''q'' to a unique point. While this is not strictly necessary for verifying the taproot commitment as described above, it is necessary to allow batch verification. Alternatively, ''Q'' could be forced to have an even Y coordinate, but that would require retrying with different internal public keys (or different messages) until ''Q'' has that property. There is no downside to adding the parity bit because otherwise the control block bit would be unused.</ref>.
** Execute the script, according to the applicable script rules<ref>'''What are the applicable script rules in script path spends?''' [[bip-0342.mediawiki|BIP342]] specifies validity rules that apply for leaf version 0xc0, but future proposals can introduce rules for other leaf versions.</ref>, using the witness stack elements excluding the script ''s'', the control block ''c'', and the annex ''a'' if present, as initial stack.
''q'' is referred to as ''taproot output key'' and ''p'' as ''taproot internal key''.
@ -95,7 +95,7 @@ The parameter ''hash_type'' is an 8-bit unsigned value. The <code>SIGHASH</code>
The parameter ''ext_flag'' is an integer in range 0-127, and is used for indicating (in the message) that extensions are added at the end of the message<ref>'''What extensions use the ''ext_flag'' mechanism?''' [[bip-0342.mediawiki|BIP342]] reuses the same common signature message algorithm, but adds BIP342-specific data at the end, which is indicated using ''ext_flag = 1''.</ref>.
If the parameters take acceptable values, the message is the concatenation of the following data, in order(with byte size of each item listed in parentheses). Numerical values in 2, 4, or 8-byte are encoded in little-endian.
If the parameters take acceptable values, the message is the concatenation of the following data, in order (with byte size of each item listed in parentheses). Numerical values in 2, 4, or 8-byte are encoded in little-endian.
* Control:
** ''hash_type'' (1).
@ -150,7 +150,7 @@ Satisfying any of these conditions is sufficient to spend the output.
'''Initial steps''' The first step is determining what the internal key and the organization of the rest of the scripts should be. The specifics are likely application dependent, but here are some general guidelines:
* When deciding between scripts with conditionals (<code>OP_IF</code> etc.) and splitting them up into multiple scripts (each corresponding to one execution path through the original script), it is generally preferable to pick the latter.
* When a single condition requires signatures with multiple keys, key aggregation techniques like MuSig can be used to combine them into a single key. The details are out of scope for this document, but note that this may complicate the signing procedure.
* If one or more of the spending conditions consist of just a single key (after aggregation), the most likely one should be made the internal key. If no such condition exists, it may be worthwhile adding one that consists of an aggregation of all keys participating in all scripts combined; effectively adding an "everyone agrees" branch. If that is inacceptable, pick as internal key a point with unknown discrete logarithm. One example of such a point is ''H = point(0x0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0)'' which is [https://github.com/ElementsProject/secp256k1-zkp/blob/11af7015de624b010424273be3d91f117f172c82/src/modules/rangeproof/main_impl.h#L16 constructed] by taking the hash of the standard uncompressed encoding of the [https://www.secg.org/sec2-v2.pdf secp256k1] base point ''G'' as X coordinate. In order to avoid leaking the information that key path spending is not possible it is recommended to pick a fresh integer ''r'' in the range ''0...n-1'' uniformly at random and use ''H + rG'' as internal key. It is possible to prove that this internal key does not have a known discrete logarithm with respect to ''G'' by revealing ''r'' to a verifier who can then reconstruct how the internal key was created.
* If one or more of the spending conditions consist of just a single key (after aggregation), the most likely one should be made the internal key. If no such condition exists, it may be worthwhile adding one that consists of an aggregation of all keys participating in all scripts combined; effectively adding an "everyone agrees" branch. If that is inacceptable, pick as internal key a point with unknown discrete logarithm. One example of such a point is ''H = lift_x_even_y(0x0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0)'' which is [https://github.com/ElementsProject/secp256k1-zkp/blob/11af7015de624b010424273be3d91f117f172c82/src/modules/rangeproof/main_impl.h#L16 constructed] by taking the hash of the standard uncompressed encoding of the [https://www.secg.org/sec2-v2.pdf secp256k1] base point ''G'' as X coordinate. In order to avoid leaking the information that key path spending is not possible it is recommended to pick a fresh integer ''r'' in the range ''0...n-1'' uniformly at random and use ''H + rG'' as internal key. It is possible to prove that this internal key does not have a known discrete logarithm with respect to ''G'' by revealing ''r'' to a verifier who can then reconstruct how the internal key was created.
* If the spending conditions do not require a script path, the output key should commit to an unspendable script path instead of having no script path. This can be achieved by computing the output key point as ''Q = P + int(hash<sub>TapTweak</sub>(bytes(P)))G''. <ref>'''Why should the output key always have a taproot commitment, even if there is no script path?'''
If the taproot output key is an aggregate of keys, there is the possibility for a malicious party to add a script path without being noticed by the other parties.
This allows to bypass the multiparty policy and to steal the coin.
@ -168,8 +168,8 @@ Alice will not be able to notice the script path, but Mallory can unilaterally s
'''Computing the output script''' Once the spending conditions are split into an internal key <code>internal_pubkey</code> and a binary tree whose leaves are (leaf_version, script) tuples, the output script can be computed using the Python3 algorithms below. These algorithms take advantage of helper functions from the [bip-0340/referency.py BIP340 reference code] for integer conversion, point multiplication, and tagged hashes.
First, we define <code>taproot_tweak_pubkey</code> for 32-byte [[bip-0340.mediawiki|BIP340]] public key arrays.
In addition to the tweaked public key byte array, the function returns a boolean indicating whether the public key represents the tweaked point or its negation.
This will be required for spending the output with a script path.
The function returns a bit indicating the tweaked public key's Y coordinate as well as the public key byte array.
The parity bit will be required for spending the output with a script path.
In order to allow spending with the key path, we define <code>taproot_tweak_seckey</code> to compute the secret key for a tweaked public key.
For any byte string <code>h</code> it holds that <code>taproot_tweak_pubkey(pubkey_gen(seckey), h)[0] == pubkey_gen(taproot_tweak_seckey(seckey, h))</code>.
@ -178,13 +178,12 @@ def taproot_tweak_pubkey(pubkey, h):
t = int_from_bytes(tagged_hash("TapTweak", pubkey + h))
if t >= SECP256K1_ORDER:
raise ValueError
Q = point_add(point(pubkey), point_mul(G, t))
is_negated = not has_square_y(Q)
return bytes_from_int(x(Q)), is_negated
Q = point_add(lift_x_even_y(int_from_bytes(pubkey)), point_mul(G, t))
return 0 if has_even_y(Q) else 1, bytes_from_int(x(Q))
def taproot_tweak_seckey(seckey0, h):
P = point_mul(G, int_from_bytes(seckey0))
seckey = SECP256K1_ORDER - seckey0 if not has_square_y(P) else seckey
seckey = seckey0 if has_even_y(P) else SECP256K1_ORDER - seckey0
t = int_from_bytes(tagged_hash("TapTweak", bytes_from_int(x(P)) + h))
if t >= SECP256K1_ORDER:
raise ValueError
@ -226,7 +225,7 @@ def taproot_output_script(internal_pubkey, script_tree):
To spend this output using script ''D'', the control block would contain the following data in this order:
<control byte with leaf version and negation bit> <internal key p> <C> <E> <AB>
<control byte with leaf version and parity bit> <internal key p> <C> <E> <AB>
The TapTweak would then be computed as described [[bip-0341.mediawiki#script-validation-rules|above]] like so:
@ -258,9 +257,8 @@ This function returns the witness stack necessary and a <code>sighash</code> fun
def taproot_sign_script(internal_pubkey, script_tree, script_num, inputs):
info, h = taproot_tree_helper(script_tree)
(leaf_version, script), path = info[script_num]
_, is_negated = taproot_tweak_pubkey(internal_pubkey, h)
output_pubkey_tag = 0 if is_negated else 1
pubkey_data = bytes([output_pubkey_tag + leaf_version]) + internal_pubkey
output_pubkey_y_parity, _ = taproot_tweak_pubkey(internal_pubkey, h)
pubkey_data = bytes([output_pubkey_y_parity + leaf_version]) + internal_pubkey
return inputs + [script, pubkey_data + path]
</source>