mirror of
https://github.com/bitcoin/bips.git
synced 2025-05-19 12:08:05 +00:00
Merge pull request #200 from real-or-random/prints
Add debug print for intermediate values
This commit is contained in:
commit
038615b7c7
@ -136,9 +136,9 @@ Input:
|
|||||||
* The secret key ''sk'': a 32-byte array, freshly generated uniformly at random
|
* The secret key ''sk'': a 32-byte array, freshly generated uniformly at random
|
||||||
|
|
||||||
The algorithm ''PubKey(sk)'' is defined as:
|
The algorithm ''PubKey(sk)'' is defined as:
|
||||||
* Let ''d = int(sk)''.
|
* Let ''d' = int(sk)''.
|
||||||
* Fail if ''d = 0'' or ''d ≥ n''.
|
* Fail if ''d' = 0'' or ''d' ≥ n''.
|
||||||
* Return ''bytes(d⋅G)''.
|
* Return ''bytes(d'⋅G)''.
|
||||||
|
|
||||||
Note that we use a very different public key format (32 bytes) than the ones used by existing systems (which typically use elliptic curve points as public keys, or 33-byte or 65-byte encodings of them). A side effect is that ''PubKey(sk) = PubKey(bytes(n - int(sk))'', so every public key has two corresponding secret keys.
|
Note that we use a very different public key format (32 bytes) than the ones used by existing systems (which typically use elliptic curve points as public keys, or 33-byte or 65-byte encodings of them). A side effect is that ''PubKey(sk) = PubKey(bytes(n - int(sk))'', so every public key has two corresponding secret keys.
|
||||||
|
|
||||||
|
@ -1,6 +1,15 @@
|
|||||||
import hashlib
|
import hashlib
|
||||||
import binascii
|
import binascii
|
||||||
|
|
||||||
|
# Set DEBUG to True to get a detailed debug output including
|
||||||
|
# intermediate values during key generation, signing, and
|
||||||
|
# verification. This is implemented via calls to the
|
||||||
|
# debug_print_vars() function.
|
||||||
|
#
|
||||||
|
# If you want to print values on an individual basis, use
|
||||||
|
# the pretty() function, e.g., print(pretty(foo)).
|
||||||
|
DEBUG = False
|
||||||
|
|
||||||
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
||||||
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
|
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
|
||||||
|
|
||||||
@ -24,13 +33,13 @@ def y(P):
|
|||||||
return P[1]
|
return P[1]
|
||||||
|
|
||||||
def point_add(P1, P2):
|
def point_add(P1, P2):
|
||||||
if (P1 is None):
|
if P1 is None:
|
||||||
return P2
|
return P2
|
||||||
if (P2 is None):
|
if P2 is None:
|
||||||
return P1
|
return P1
|
||||||
if (x(P1) == x(P2) and y(P1) != y(P2)):
|
if (x(P1) == x(P2)) and (y(P1) != y(P2)):
|
||||||
return None
|
return None
|
||||||
if (P1 == P2):
|
if P1 == P2:
|
||||||
lam = (3 * x(P1) * x(P1) * pow(2 * y(P1), p - 2, p)) % p
|
lam = (3 * x(P1) * x(P1) * pow(2 * y(P1), p - 2, p)) % p
|
||||||
else:
|
else:
|
||||||
lam = ((y(P2) - y(P1)) * pow(x(P2) - x(P1), p - 2, p)) % p
|
lam = ((y(P2) - y(P1)) * pow(x(P2) - x(P1), p - 2, p)) % p
|
||||||
@ -40,7 +49,7 @@ def point_add(P1, P2):
|
|||||||
def point_mul(P, n):
|
def point_mul(P, n):
|
||||||
R = None
|
R = None
|
||||||
for i in range(256):
|
for i in range(256):
|
||||||
if ((n >> i) & 1):
|
if (n >> i) & 1:
|
||||||
R = point_add(R, P)
|
R = point_add(R, P)
|
||||||
P = point_add(P, P)
|
P = point_add(P, P)
|
||||||
return R
|
return R
|
||||||
@ -62,14 +71,14 @@ def lift_x_square_y(b):
|
|||||||
y = pow(y_sq, (p + 1) // 4, p)
|
y = pow(y_sq, (p + 1) // 4, p)
|
||||||
if pow(y, 2, p) != y_sq:
|
if pow(y, 2, p) != y_sq:
|
||||||
return None
|
return None
|
||||||
return [x, y]
|
return (x, y)
|
||||||
|
|
||||||
def lift_x_even_y(b):
|
def lift_x_even_y(b):
|
||||||
P = lift_x_square_y(b)
|
P = lift_x_square_y(b)
|
||||||
if P is None:
|
if P is None:
|
||||||
return None
|
return None
|
||||||
else:
|
else:
|
||||||
return [x(P), y(P) if y(P) % 2 == 0 else p - y(P)]
|
return (x(P), y(P) if y(P) % 2 == 0 else p - y(P))
|
||||||
|
|
||||||
def int_from_bytes(b):
|
def int_from_bytes(b):
|
||||||
return int.from_bytes(b, byteorder="big")
|
return int.from_bytes(b, byteorder="big")
|
||||||
@ -81,38 +90,39 @@ def is_square(x):
|
|||||||
return pow(x, (p - 1) // 2, p) == 1
|
return pow(x, (p - 1) // 2, p) == 1
|
||||||
|
|
||||||
def has_square_y(P):
|
def has_square_y(P):
|
||||||
return not is_infinity(P) and is_square(y(P))
|
return (not is_infinity(P)) and is_square(y(P))
|
||||||
|
|
||||||
def has_even_y(P):
|
def has_even_y(P):
|
||||||
return y(P) % 2 == 0
|
return y(P) % 2 == 0
|
||||||
|
|
||||||
def pubkey_gen(seckey):
|
def pubkey_gen(seckey):
|
||||||
x = int_from_bytes(seckey)
|
d0 = int_from_bytes(seckey)
|
||||||
if not (1 <= x <= n - 1):
|
if not (1 <= d0 <= n - 1):
|
||||||
raise ValueError('The secret key must be an integer in the range 1..n-1.')
|
raise ValueError('The secret key must be an integer in the range 1..n-1.')
|
||||||
P = point_mul(G, x)
|
P = point_mul(G, d0)
|
||||||
return bytes_from_point(P)
|
return bytes_from_point(P)
|
||||||
|
|
||||||
def schnorr_sign(msg, seckey0, aux_rand):
|
def schnorr_sign(msg, seckey, aux_rand):
|
||||||
if len(msg) != 32:
|
if len(msg) != 32:
|
||||||
raise ValueError('The message must be a 32-byte array.')
|
raise ValueError('The message must be a 32-byte array.')
|
||||||
seckey0 = int_from_bytes(seckey0)
|
d0 = int_from_bytes(seckey)
|
||||||
if not (1 <= seckey0 <= n - 1):
|
if not (1 <= d0 <= n - 1):
|
||||||
raise ValueError('The secret key must be an integer in the range 1..n-1.')
|
raise ValueError('The secret key must be an integer in the range 1..n-1.')
|
||||||
if len(aux_rand) != 32:
|
if len(aux_rand) != 32:
|
||||||
raise ValueError('aux_rand must be 32 bytes instead of %i.' % len(aux_rand))
|
raise ValueError('aux_rand must be 32 bytes instead of %i.' % len(aux_rand))
|
||||||
P = point_mul(G, seckey0)
|
P = point_mul(G, d0)
|
||||||
seckey = seckey0 if has_even_y(P) else n - seckey0
|
d = d0 if has_even_y(P) else n - d0
|
||||||
t = xor_bytes(bytes_from_int(seckey), tagged_hash("BIP340/aux", aux_rand))
|
t = xor_bytes(bytes_from_int(d), tagged_hash("BIP340/aux", aux_rand))
|
||||||
k0 = int_from_bytes(tagged_hash("BIP340/nonce", t + bytes_from_point(P) + msg)) % n
|
k0 = int_from_bytes(tagged_hash("BIP340/nonce", t + bytes_from_point(P) + msg)) % n
|
||||||
if k0 == 0:
|
if k0 == 0:
|
||||||
raise RuntimeError('Failure. This happens only with negligible probability.')
|
raise RuntimeError('Failure. This happens only with negligible probability.')
|
||||||
R = point_mul(G, k0)
|
R = point_mul(G, k0)
|
||||||
k = n - k0 if not has_square_y(R) else k0
|
k = n - k0 if not has_square_y(R) else k0
|
||||||
e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
|
e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
|
||||||
sig = bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
|
sig = bytes_from_point(R) + bytes_from_int((k + e * d) % n)
|
||||||
|
debug_print_vars()
|
||||||
if not schnorr_verify(msg, bytes_from_point(P), sig):
|
if not schnorr_verify(msg, bytes_from_point(P), sig):
|
||||||
raise RuntimeError('The signature does not pass verification.')
|
raise RuntimeError('The created signature does not pass verification.')
|
||||||
return sig
|
return sig
|
||||||
|
|
||||||
def schnorr_verify(msg, pubkey, sig):
|
def schnorr_verify(msg, pubkey, sig):
|
||||||
@ -123,26 +133,29 @@ def schnorr_verify(msg, pubkey, sig):
|
|||||||
if len(sig) != 64:
|
if len(sig) != 64:
|
||||||
raise ValueError('The signature must be a 64-byte array.')
|
raise ValueError('The signature must be a 64-byte array.')
|
||||||
P = lift_x_even_y(pubkey)
|
P = lift_x_even_y(pubkey)
|
||||||
if (P is None):
|
|
||||||
return False
|
|
||||||
r = int_from_bytes(sig[0:32])
|
r = int_from_bytes(sig[0:32])
|
||||||
s = int_from_bytes(sig[32:64])
|
s = int_from_bytes(sig[32:64])
|
||||||
if (r >= p or s >= n):
|
if (P is None) or (r >= p) or (s >= n):
|
||||||
|
debug_print_vars()
|
||||||
return False
|
return False
|
||||||
e = int_from_bytes(tagged_hash("BIP340/challenge", sig[0:32] + pubkey + msg)) % n
|
e = int_from_bytes(tagged_hash("BIP340/challenge", sig[0:32] + pubkey + msg)) % n
|
||||||
R = point_add(point_mul(G, s), point_mul(P, n - e))
|
R = point_add(point_mul(G, s), point_mul(P, n - e))
|
||||||
if R is None or not has_square_y(R) or x(R) != r:
|
if (R is None) or (not has_square_y(R)) or (x(R) != r):
|
||||||
|
debug_print_vars()
|
||||||
return False
|
return False
|
||||||
|
debug_print_vars()
|
||||||
return True
|
return True
|
||||||
|
|
||||||
#
|
#
|
||||||
# The following code is only used to verify the test vectors.
|
# The following code is only used to verify the test vectors.
|
||||||
#
|
#
|
||||||
import csv
|
import csv
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
def test_vectors():
|
def test_vectors():
|
||||||
all_passed = True
|
all_passed = True
|
||||||
with open('test-vectors.csv', newline='') as csvfile:
|
with open(os.path.join(sys.path[0], 'test-vectors.csv'), newline='') as csvfile:
|
||||||
reader = csv.reader(csvfile)
|
reader = csv.reader(csvfile)
|
||||||
reader.__next__()
|
reader.__next__()
|
||||||
for row in reader:
|
for row in reader:
|
||||||
@ -151,7 +164,7 @@ def test_vectors():
|
|||||||
msg = bytes.fromhex(msg)
|
msg = bytes.fromhex(msg)
|
||||||
sig = bytes.fromhex(sig)
|
sig = bytes.fromhex(sig)
|
||||||
result = result == 'TRUE'
|
result = result == 'TRUE'
|
||||||
print('\nTest vector #%-3i: ' % int(index))
|
print('\nTest vector', ('#' + index).rjust(3, ' ') + ':')
|
||||||
if seckey != '':
|
if seckey != '':
|
||||||
seckey = bytes.fromhex(seckey)
|
seckey = bytes.fromhex(seckey)
|
||||||
pubkey_actual = pubkey_gen(seckey)
|
pubkey_actual = pubkey_gen(seckey)
|
||||||
@ -160,6 +173,7 @@ def test_vectors():
|
|||||||
print(' Expected key:', pubkey.hex().upper())
|
print(' Expected key:', pubkey.hex().upper())
|
||||||
print(' Actual key:', pubkey_actual.hex().upper())
|
print(' Actual key:', pubkey_actual.hex().upper())
|
||||||
aux_rand = bytes.fromhex(aux_rand)
|
aux_rand = bytes.fromhex(aux_rand)
|
||||||
|
try:
|
||||||
sig_actual = schnorr_sign(msg, seckey, aux_rand)
|
sig_actual = schnorr_sign(msg, seckey, aux_rand)
|
||||||
if sig == sig_actual:
|
if sig == sig_actual:
|
||||||
print(' * Passed signing test.')
|
print(' * Passed signing test.')
|
||||||
@ -168,6 +182,9 @@ def test_vectors():
|
|||||||
print(' Expected signature:', sig.hex().upper())
|
print(' Expected signature:', sig.hex().upper())
|
||||||
print(' Actual signature:', sig_actual.hex().upper())
|
print(' Actual signature:', sig_actual.hex().upper())
|
||||||
all_passed = False
|
all_passed = False
|
||||||
|
except RuntimeError as e:
|
||||||
|
print(' * Signing test raised exception:', e)
|
||||||
|
all_passed = False
|
||||||
result_actual = schnorr_verify(msg, pubkey, sig)
|
result_actual = schnorr_verify(msg, pubkey, sig)
|
||||||
if result == result_actual:
|
if result == result_actual:
|
||||||
print(' * Passed verification test.')
|
print(' * Passed verification test.')
|
||||||
@ -185,5 +202,26 @@ def test_vectors():
|
|||||||
print('Some test vectors failed.')
|
print('Some test vectors failed.')
|
||||||
return all_passed
|
return all_passed
|
||||||
|
|
||||||
|
#
|
||||||
|
# The following code is only used for debugging
|
||||||
|
#
|
||||||
|
import inspect
|
||||||
|
|
||||||
|
def pretty(v):
|
||||||
|
if isinstance(v, bytes):
|
||||||
|
return '0x' + v.hex()
|
||||||
|
if isinstance(v, int):
|
||||||
|
return pretty(bytes_from_int(v))
|
||||||
|
if isinstance(v, tuple):
|
||||||
|
return tuple(map(pretty, v))
|
||||||
|
return v
|
||||||
|
|
||||||
|
def debug_print_vars():
|
||||||
|
if DEBUG:
|
||||||
|
frame = inspect.currentframe().f_back
|
||||||
|
print(' Variables in function ', frame.f_code.co_name, ' at line ', frame.f_lineno, ':', sep='')
|
||||||
|
for var_name, var_val in frame.f_locals.items():
|
||||||
|
print(' ' + var_name.rjust(11, ' '), '==', pretty(var_val))
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_vectors()
|
test_vectors()
|
||||||
|
@ -15,7 +15,7 @@ def vector0():
|
|||||||
P = point_mul(G, x)
|
P = point_mul(G, x)
|
||||||
assert(y(P) % 2 == 0)
|
assert(y(P) % 2 == 0)
|
||||||
|
|
||||||
# For historic reasons (pubkey tiebreaker was squareness and not evenness)
|
# For historical reasons (pubkey tiebreaker was squareness and not evenness)
|
||||||
# we should have at least one test vector where the the point reconstructed
|
# we should have at least one test vector where the the point reconstructed
|
||||||
# from the public key has a square and one where it has a non-square Y
|
# from the public key has a square and one where it has a non-square Y
|
||||||
# coordinate. In this one Y is non-square.
|
# coordinate. In this one Y is non-square.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user